
11. J.. Ccn:-bQto

Prograw~ing Style and Exposition

First, a few lofty remarks. tbs perfectly written program
would be 011~) where the . procedure were not rmly lucidly stated but
&;ceompl:tshed with the most effective use of computer time a1.d ·
space rei';ources.. Tbese s~at contradictory objec:ti'"v~s require
a comprCI'mise aiQOilg the factors of brevity, completeness., and
suggestiveness ae well as the ever-present- eoneern for space-time
effleieney. · - -

In general, to present progr&mmrl.ng method, spec:tfieation m1d
usage ideas effeetively is of course a problem of exposition. A
descr~.pticm of a. progrlfB mieb may or m&y not be aubedded in ·a formal
progren should resemble & section of a textbook, in that by
organiz~d material, the reader is guided and Sbowa tbe proper
sequence for absnrbing. the ideas present. ,This is often done by_
&1 introductory 8'Uti'!Bary establishing the scope and context as well
as the essential points to be made; indications of the relative
importance c:f the different sections to be read are of further
assistance. A not unreasonable guide is to assume that the liklihood
of a description being.read to completion is inversely proportional
to the length, so that it is a contest fer you, the writer. to gain
for & given degree of clarity, maximum reader impact $td interest
as briefly as possible. lor in the-end the all•too•typieal reader
will only read that which be bas been Jerrt~{i..c\1 is worth his
a-pending his time on. lbr1ing made this point t nevertheless r&w~ins
to ba ... b4lai:eed that lack of elarlty is more of a fault then lack
of brwity ..

Re~!.ppro~ebing . the practical world of 'll1riting CTSS system programst;
the follow.I.ir,g guJ delines.11 many of whieh .are typographical in nature,
are off~red:

1. All tn:ogrammfng ideas should be organized and. broken d()Wit
so that they cs.1 be expressed i.n mod\tlat.: of BSS subprogrea ..
Th1.s modularity gives assurance tbat any single pieea em be
undftr:!ltood or rewritten rea90tl.able quickly and that theli!'e is
eomplote 1..ndepandextee between subprograms e.."'C.cept for the
expl:tcit: Mcalls" and the implicit "common" pool.. Further .
benefits 1~sult from the rapidity and machine-time efficiency
with which a ~ule can be redone and replaced. At present
the laek of generality and the slight inefficiency of the ISS
form do not seem to be a problem~

2. All modules should be as m~chi.ne invariant as possible,
and in the MAD languagr;::; c2::rc>:::_iJt "i•th>r!1tl excessive clumsiness
or inefficiency result. It is important that our programming
ideas be in a state to be rapidly transferable to the different
computers of the future.

3. Unless good reasons exist, no MAD subprogram should exceed
about 200 statements. FAP subprograms should be kept as
small as possible unless they are a high-efficiency version
of a !'sAD module; in any case, single FAP subprograms should
not exceed a few hundred cards.

4. .Programs should have vertical punctuation (by means of
blank Remark cards in MAD, * cards in FAP) such that significant
sections are set off as "paragraphs". Thi!J_P.articularly
applies to before and after the scope of THRIUGH statements.

5. Every MAD or FAP progrsm should contain interspersed
commentso A MAD program which is between 20 to 35 percent
remark cards (including blank "punctuation" remark cards)
is reasonable. (All remark cards in MAD should be blank in
column 12 at least.) ln FAP, 25 to 50 percent of the cards
with couments is reasonable. FAP programs should always have
preceding remark cards givi.ng a sample calling sequence.

6. Extended remarks of greater let.tgth are tolerable (and in
general desirable) provided they are all in one block at either
the beginning or end of the progr•. In either ease, there
should be an initial remark stating the scope (i.e. line
numbers) of tbe extended remarks so that typewriter users can
skip over them. if desired. (A special version of PR.IN'I'F which
filters out remarks might be usefUl during debugging.)

1. To show loop and conditional nesting, in MAD, all loops
and compound conditional statements should be clarified by
indentation of 2 spaces (or 1 space in heavily~nested cases).
This indentation Should apply to all statements in the respective
scopes except ~GR, WHENEVER, * WHENEVER, ~WISE and
END t/iF C{INDITIONAL. (Use circled digits for spaces when key
punching is being done by others.)

8. To set off key phrases punctuate with a space between the
conma and the Fc&R in a THR(IUGH statement; punctuate with a
space after the comma in a simple WHENEVER statemento

9. All programs should have their declarations collected at
either the beginning or the end.

10. The above points are not rigid rules and exceptions
(especially in the direction of greater explicitness) should
be made whenever important or tricky algorithms are being
done. Maximum speed of communication of :tdeas with minimum
reader time and effort is the overall criterion by which to
judge alternativeso

