
Programming Staff Note 37

FllOM: Louis Pouzin

Computation Center

November 6,1964

SUBJ: An Approach to a Standard Error Procedure in Chains of Commands

1. What tbe Problem. t.s

When a command is executed, it may encounter some conditions

which make it impossible to run to completion. Some situations may be

handled by interaction with the console, as 'NEED' messages, or 'DO YOU

WANT '1'f DELETE' an Rl mode file. Some other conditions turn out to be

fatal, as an illeg•l card in loading a BSS file, or at least a console

proeedure would be too compl.icated or hazardous in order to restart a

normal execution~ Appropriate messages are then printed on the console,

and the command is terminated.

This visual procedure may be satisfactory enough when commands

are executed as isolated programs. It is not satisfactory when they

are part of a more general program which controls their execution by

setting them into chains of commands. Indeed, a failure in a particular

command may or may not be fatal for the chain; and depending on the

circumstances, it would be necessary to ~top, or execute a predetermined

error procedure, or even just continue and ignore the failure.
Evidently, no systematic decision, built into the command, is

satisfactory. Ne~ther is it usually possible to modify a command from

another command. In a sense this complete independence between c~ands

is purposely · carried out in order to keep larger flexibility in the

system.

Actually there is a wide variety in the way commands te~inate

on errors. E.g.

• Go to CHNCOM with core image

- Go to Cl-INCOM without core image

.. Go to DORMNT

-2-

.. Go to DEAD

... Print 1'lYPE S'1'ART Tt1 G'il ON', and go to OORMNT. If the user

types STAJl!', then go to CHNCOM.

- Protection mode violation.

2. Au Aeeroach to ~olut~on

Since commands are not pieces of a closed package, but rather

an open list, incremented with additiona from various users groups, and

design~d for any particular usage, it seems desirable to keep the set

of conventions as thin as possible. Tbis eliminates practically the

idea of having commands returning au abundant collection of arguments,

through some core A buffer, or written onto the disk. Even though such

a possibility ~ be very valuable to one command, it does not seem to

be fle~ible enough to make it a mandatory convention for all commands.

the minimum requirement should be stmple, cost few machine instructions,

and not make any assumption as to the way an error procedure might be

carried .out. In other words, an error exit should be a standard exit,

as atr.aigbtforward as calling CBNCfM.

3. Some Suaaestions

Another requirement is that an error exit should not disturb

whatever has been already set by other commands into the supervisor

buffers. Ramely, command lists and command counter do not belong to

the current command, and they should not be destroyed as a result of

some unfortunate situation. On the other hand, the content of the

current command buffer will not be of any use after completion of the

command. Bence, it may be used to return to the ~pervisor enough
information in order to initiate a standard error procedure.

E. g. the command might call NEXCfiM as an error exit, which
allows the very important facility of executing an extra-command not

previously set in the chain~ On the other hand, nothing else 1s

destroyed whatever.

The drawback of NEX~M ia that it allows for replacement of

only the first two arguments in the command buffer. Even if this

restriction is bearable, or even convenient in some cases, it is

unquestionable that the whole command buffer could be of better use.

NEXC~M being what it is, it is not suggested to change its

behavior, because this would raise problems of compatibilityo But

one may think of using SETCLS, as:

TSX SETCLS,4

PZE BUF,.,O

meaning: set the current command buffer to the content of DUF ••• BUF+19o

Let us notice that a symetrical call:

TSX GETCLS,4

P3E BUP', 0

could return into BUF ••• BUP+l9, the whole content of the current command

buffer.

Thia suggestion has the advantage of using existing calls by

simply allowing the command list number of zero to mean the current

command buffer.

In order to start the command, CBNC~M may not be used, since

it would go to the next command in the chain. But a different call,

such as:

for REPeat C\fMma.nd

could start the execution of the new current command. NEXC"M may be

used, if one resets the first two words in the command bufferp

through the simple machinery outlines above, it would be possible

to call any •extra• command, without disturbing the setting of the

current chain.

4. Standard Error Procedure

A standard error exit from a command could be to start the
command:

arg 1 arg 2 arg n
which could be a core A or core B CO'IIlDland. The al'gi' s are arbitrarily
set to whatever information seems useful to hand over in tbe particular

error condition encountered by the command.

The ~R command would execute very few things. E.g. Print: ERROR

BREAK~POINT. TYPE S~ TO GO ON and write a disk file containing a

copy of: current command buffer, all command lists, and command counter.

This file would be called by a special name, (ERR¢a FILE) e.g., and

created as temporary, i.e. would not be stalled by a track quota

emausted.. Then go to JlfBMNT.

-4-

By typiug StARr, the user could ignore the error, and force

the continuation of the chain. On the other hand, if he does not

type STARr, he may 'SAVE' the present status. Then he can examine

the disk file in order to know in which context the error occurred,

and thereafter fix up the trouble and restart.

5. Tailor-made Error Procedure

In the above paragraph, we sketched out an elementary error

procedure, which could be the standard one. But we did not mention

a major feature of ERRfa ~tich allows bypassing the standard procedure

completely.

In effeet1 EBRfR would check for the existence of an ERJfR

SAVED flle in the user's directory, and if there were any, it would

transfer control to the user's command, by setting a RESUME EBR0l

with all argume~ts as set by the original command. Then a particular

procedure could be executed for any particular error condition,

including possibly an automatic restarting of the chain.

Such a procedure would allow for taking into account the

context of au error, before making a decision on Whatever salvage

procedure should be selected.

