GO090

DATE: AUGUST 22, 1969
TO: REPOSITORY DISTRIBUTION
FROM: C. T.CLINGEN

The attached working paper entitled "Program Naming Problems in
a Shared Tree-Structured Hierarchy" is to be delivered at the
Conference on Techniques in Software Engineering in Roue,

October 27-31, 1969.

WORKING PAPER ON G000

PROGRAM NAMING PROBLEMS
IN_ A SHARED TREE-STRUCTURED HIERARCHY

C. T. Clingen

rd
4

INTRODUCT ION

The recent proliferation of direct-access systems with large amounts of
on-line secondary storage has greatly increased the capability of programmers
to share information easily. On systems such as CTSS, Mﬁltics, TSS/360,
ete,, the ability for a programmer to incorporate procedures written by
others into his own programs has become increééingly attractive as a way

to save programming time and labor, to stimulate creativity, and to

encourage the solution of problems that would not otherwise be solved,

However, environments which encourage controlled sharing have given rise

to a new set of technical issues centered primarily around the implementa-

tion of ‘access control and information protection mechanisms. The topics ‘.., .. ' ©..

of access control and information protection contain many difficult problems

and have received considerable attention. On the other hand, certain topics:. ...i.. -

relevant to program synthesis in an environment typical of a growing number
'of'largé”difect acceéélsystems seem to have enjoyed relatively little - ;—‘V-WA:.
“exposure, Multics experience with program synthesis, however, has shown:‘/~
.that the associated problems are easily underest imated and that solutions --
considered adequate for contemporary problems will not be adequate for

complex information management problems antfcipated in the near future,

This working paper covers program synthesis problems arising from the
apparent duplication of program component namesiiprocedure names and data
base names--encountered when complexes of components are synthesized into
potentially large programs. Some solutions to these problems are outlined.
Also, a mechanism which permits a user to seleétively replace components

of a subsystem, shared concurrently by other users, with private components

of his own is described and the value of such a mechanism is discussed.

-2 -

The paper indicates at a fairly general level the approach taken by Multics
to solve the naming problems associated with the synthesis and maintenance

~of shared subsystems residing in a tree-structured hierarchy.

THE ENVIRONMENT

152:3 yith large on-line storage capabilities permit their

Some systems
contained files or segments to be arranged into a tree-structured directory - = -

hierarchy consisting of non-terminal directories and terminal, non-directory.

files or segments. See Fig. 1. Each directory contains directory entries
describing the attributes, such as length, location, access rights, etc.,

of all directly inferior directories or non-directories. Associated

with each _directory entry is a name called an entry pame, uniquely identifying.: .
that entry among all other entries in the directory. Typically, each

directory or non-directory in the directory hierarchy can be uniquely located - .

* By d miltiplefcomponent path pame consisting of an ordered list of directory” -

entry names, starting from the source or root of the hierarchy and leading to

‘the item of .interest. It is convenient to regard a directory as a device - . ..

. forigrouping or "packaging" sets of related procedures into subsystems.-.

Usually each system user will be assigned a single user directory in which- ! - -

all his files are described. In some systems, the user may also be
‘permitted to add inferior directories containing descriptive information ~---
for additional files (or directories).

Note that, in such an environment, the entry name of a file does not
uniquely identify or locate the file in the hierarchy; the path name, or .

some equivalent representation, is required instead.

PROGRAM SYNTHES1S

 In most systems the synthesis of programs from their constituent data and
procedure components consists of copying images of procedure and data files -
into a "core image" private to the user (relocating internal addresses if
necessary), and of linking references between pairs of the component copies.

In systems permitiiné the use of pure, shared procedﬁres and shared data,

.

copying and internal eddress'relocation is unnecessary, but Iinking is still

 required by each user. > In either case, it is necessary to be able to - o

establish a one-to-one correspondence or association be{ween the procedure
and data components required by a program and the named files .in the

system directory hierarchy. The establishment of an association between
program component names and file path names is non-trivial and requires the
cooperation of the programmer who must observe system conventions regarding -

this association.

If an external reference from a procedure, say a call to another procedure,
“is to uniquely specify the called procedure in a tree-structured directory
hierarchy at Iinking'time,.then some way of determining the path name of
the orocedune to be linked to must be possible. One approach is to o -
actually embed the path name of the called procedure in the calling
procedure ~- Al though this approach does have the advantage of resolving
—any possible ambiguity between name and object, it also suffers from
several drawbacks. First, one must know the actual or intended path names
of all procedures referenced by a procedure when coding the program.

Secondly, if any procedures or data files are moved from one directory to

U TR I

another, or from one installation to another, special actions must be iaken, St

such as recoding and recompilation of all procedures referencing the moved
components. Thirdly, the substitution, by one user, of "private" replace-
ment components for some of a collection of standard, shared components -. .

becomes extremely difficult.

An alternative method, and the one used in Mulfics, involves the more ‘
traditional approach of referencing external procedures and data using the... .

usual single-component names. However, these names, called reference names,

do not uniquely identify files in the directory hierarchy and hence are
insufficient, taken by themselves, to locate files. The use of reference
names rather than path names results in an apparent ambiguity which must =
somehow be resolved. In Multics, a set oF'eyqtem conventions is provided

by which reference names are expanded to path names, thereby removing the

ambiguity.

-4 -

These conventions, célled search Lulg§5, exist in some Fofm.in most systems
and must be understood by the programmer if his programs are to be properly
synthesized from referenced components located in the directory hierarchy.

s
L]

SEARCH RULES--REFERENCE NAME EXPANSION

Perhaps the simplest example of search rules is to be found in batch systems
in which card decks are read 1nto the system to be combined subsequently

with system library routxnes as approprlate . The search rules in this case
are trivial: (1) for each external reference name, check to see if the
reference name corresponds to one of the procedures read in from the card
reader; if so, link to it. (2) Otherwise, search the system library for the

referenced name.

An analogous set of search rules can be implemented for a directory hierarchy,
‘wheré the card deck is replaced by a user directory. In this environment, .-

a user program would consist of components described in his user directory

~(but not inFéFiar directories) plus, as a default, components in the system -:

11brary The search rules in this environment are implemented as follows. .
(1) For a glven reference name lndlcatlng a procedure to be linked to,
prefix the path name of ihis user's user dlrectory to the reference name.
If the file located by the resulting path name exists (in the user directory), -
complete the linkage. If not »(2) prefix the path name of the system library
1o the reference name and using the resulting path name, locate the

indicated file. If no such file exists, the referenced file is considered

to.be non-exislent.
r'd
4

This scheme has the drawback that it does not permit procedures in the
user's directory to reference components in some other directory, with the

exception, of course, of the system library.

The sharing or feferencing of components deseribed in a directory other than
that containing the referencing procedure has been facilitated in some systems

by the use of the file link. * In Multics, a file link is a named directory

-5~

entry which contains a path name to a file or segment described in some
other directory rather than containing the attributes of some file or
segment4. In Fig. 1., the file link with entry name d in the directory
with path name root>wdy "points to" the file with path name root>x>z>d.
Operationally, a file link has the property that when it is referenced by
its path name, the reference is redirected to the file described by its
contained path name and hence can be regarded as a form of indirect address-
ing. This indirect addressing capability provided by @he file link permits
the scdpe of the above search rule to be extended beyond the user directory -
and the system library. By.placing a properly named link in the directory
of a proéedure referencing a program component in another directory, the
attention of the search rules can be appropriately directed to-the other

directory.

For éxémplé (see Fig. 1), the procedure with entry name a in subsystem 1
d in subsystem 2 with the help"

=3

A;of {he Flle link to root>x>z>d stored in the directory named root>w>y

can reference the component with entry name

Assumlng that the user directory is named root>w>y, the user dlrectory =
search rule, during the establishment of program linkage from a to d,

* would generate the path name root>w>y>d. This path name, spec1fy1ng a Ghaeooodiog
file 1inK,” would then be replaced by the value of the file 1iﬁk~—root>x>z>d—wq by
"reéuiiihg in a search in subsystem 2 and the subsequent location of entry d

in directory root>x>z as anticipated.

" Designating the:direetbry containing the referenced component as the

larget directory, we see that the use of file links is adequate unless a
referenced procedure in a target directory in turn references further .
program components. |f these further components do not reside in the
original user directory or in the system library, the search rules thus
far stated will fail to locate a component with the desired reference
name or worse yet, may find by accident incorrect componenis which by

coincidence have the required reference names.

-6 -

An example of incorrect component selection arises when "duplicate"
reference names exist. Continuing the above example, assume that
procedureAg in subsystem'Z,calls procedure a, also in subsystem 2.

See Fig. 1. The searchtrule, as ourrehtly stated, however, is based in
the user directory, or in this case, subsystem 1 dirébtory named root>wly.
Thus the search rule will generate a path name by prefixing root >wdy to
a, thereby locating the wrong component. That is, the file with entry -
name @ in subsystem 1 will be located and linked to Fro@:procedure d

rather than the correct file with the "auplicate" eniry.name‘in subsystem 2.
Clearly an‘improvement or extension over the user directory search rule is
required if packages or subsystems of program components are {o be properly

synthesized into a single program.

One such extension is the caller directory search rule. The caller

"direotsry'Search rule states that the entry name for a referenced component

“should first be searched for in the directory containing the procedure

~originating the reference. In short, by convention, reference name scope., .7

“is defined as being within the directory containing the "calling" procedure
- (except for the default scope of system library). The file link
" provides an Mescape" mechanism to other directories or subsystems while’

still respecting the caller directory convention.

In order for subsystems, grouped by directory, to be unambiguously linked
together during program synthesis it must be possible to redefine the

current value of the caller dlrectory each time the attention of the program

linking facility is redirected to another directory. In Multics, the value

of "the caller directory is guaranteed current by being re-evaluated each time
an external reference is linked by the program linking facility. Such
frequent re~evaluation is required in Multics because program linkages

are built dynamically at run time upon first reference to a program

component. In a less dynamic environment, such as encountered when batch

- linking is utilized, the value of the caller directory might be redetermined

only when the llnkape facility encounters and follows a file link.

-7 -
fhe search rules as so far described may be summarized as: (1) search the
current caller directory; if this search fails, (2) search the system -
library. By the use of file links pointing to other subsystems, programs
of arbitrary complexity can be synthesized. The caller directory search
rule, minimizes the need for programmers and users of ‘mutually interacting .
subsystems to be concerned about the apparent duplication of reference names
of components in different directories. With the exception of the
procedures used to interface among the jnteractfng subsystems, internal

subsystem component names can be chosen with no fear of -mutual conflict.

COMPONENT REPLAGEMENT

Modification, upgrading and debugging of subsystems in an environment ‘
encouraging sharing have interesting implications. In some instances, the
.peréon pérforming the changes can make a private copy of the subsystem of

interest and then work with the now unshared copy. In cases where the

‘subsystem being modified is large, as are complicated language processors,im3:~ﬁ;\3i.w

-comprehensxve appllcatlons systems, or the operating system itself, copying -

is impractical. To permit system programmers to extend and maintain largq,fg v

“shared subsystems easily, the supervisor must prov1de a facility whereby
each programmer can uniquely specify individual components to replace . - --

other uniquely identified components.

Initially, a partial solution to the substitution problem was implemented in
Multics by introducing a third search rule to a user-specified directory

called the working directory. This search was inserted between the caller

directory search and the library search. By placing substitute versions - . -
of a library procedure in his working director§, the programmer receives

his own private versions rather than the standard library versions.

~ ‘Such an approach does substitute working directory components for library ~-:-- (o0

components required by procedures in the user's user directory; however,

it also performs the same substitution for library procedures referenced

from other subsysteme incorporated into his.program. The latter substitutions
introduce an undesirable element of uncertainly into the program since the

user may well not be aware of the (perhaps invalid).subsii{utions per formed

-8 -

on behalf gf these "foreign" subsystems. Furthermore, the additional

search rule does not permit substitution for non-library componen{s.

An alternative "solution" to non-library substi{ution, consisting of inter-. . .

changing the caller directory search rule and the working directory search
rule, is quickly dispensed with upon considering the potential problems
caused by components in "foreign" subsystems being replaced by working
directory components. Since the working direcfory fulé:would precede and,
“therefore, override, the caller directofy rule for all subsystems, any
chance coincidence between unknown entry names in these other subsystems
with names of user directory components to be substituted would result in

effectively random and unwanted substitutions.

For ekamplé; imagine that a programmer wishes to test a new version of® -~ =
~ procedure a in subsystem 1 (see Fig. 1). To do so, he places this new -
~-version of a in some other directory, the‘hierarchy location of which is
“unimportant to this discussion, designated as his working directory.. . :
. Upon 1linking from, say procedure b to procedurc a in subsystem 1, the ‘
working directory rule is first envoked resulting in the improved versidnj’}
of a'being used. However, when subsystem 2 is envoked in his program,-an : -
entirely unrelated précedure which by coincidence also has the reference -
name a is called, presumably unbeknown to our programmer. . Unfortunately,
the workihg directory i's again used to perform the search prior to program

'iinkage. This time an undesired substitution takes place, and the program

yields erratic results.

- To avoid such indiscriminate substitutions, it_.appears that g useful, ci e e

‘unambiguous way to define each desired substitution is to specify path name
pairs--one path name uniquely locating a:component to be replaced and the

other uniquely locating the replacement. These replacement pairs could, by

convention, be placed in a file known both to the programmer and to the

system-and-accessed by a substitution search rule. The search rules,

during program synthesis, then become: (1) check all replacement pairs to
sec if a substitution is required; if not, (2) use the caller directory

search rule; if this fails, (3) use the defaull search in the system library.

-9 -

Neither substitution by replacement pairs or an equivalent method has yet
been implemented in Multics. However, as the on-line upgrading and
debugging of large, highly shared subsystems hecomes a significant activity,

such a facility will be provided.

CONCLUS 1ONS

The introduction of program components (proceduQesland data), mutually
referenced by means of single-element reference names, ﬁhto a tree-structured
directory hierarchy in which elements are uniquely located by multiple-

element path names allows the.possibility of ambiguous referencing by name. ..
System conventions must be established whereby reference names are "expanded" ..
to path names when programs are synthesized from individual component s.

- If complex subsystems are to be included in a program, search rules and.
packaging conventions must be provided to'properly identify and utilize

potentially ambiguous reference names.

"Moreovér}”ihflarge, utility-like systems with many users sharing subsystems - . - -

“or ‘the system software itself, means for achieving selective component : .-
substitution, while the system runs unchanged for most users, is valuable
if a smooth maintenance and improvement facility is to be provided. This -
capability is extremely useful in shared-access systems for the on-line
maintenance and extensions, by system programmers, of system components .
proper. The need for these capabilities for user-provided subsystem
maintenance will increase as shared-access system use becomes more intense --

and wide-spread.

" Practical experience in Multics has shown thai’@ell—implemented, easily-

understood search rules are essential if full advantage is to be taken of a

~large hierarchy of program components; conversely, poorly-implemented search.iv, -

rules can lead to confusion and bizarre accidents.

ACKNOWLEDGMENTS

| would like to acknowledge the helpful comments and discussions of
A. Bensoussan, F. J. Corbatb,”R. C. Daley, J. W. Gintell and J. H. Saltzer.

BEFERENGES

1. COMFORT, W. T. A Computing System Design for User Service.
Proc. AFIPS 1965 Fall Joint Computer Conference Vol 27, Pt. 1,
Spartan Books, New York, pp.619-628.

2. CORBATO, F. J., and VYSSOTSKY, V. A. Introduction and'Overviéw of thé
Multics System. Proc. AFIPS 1965 Fall Joint Computer Conference,
Vol. 27, Part 1. Spartan Books, New York, pp.185-196.

3. CRISMAN, P. A. ed. The Compatible Time-Sharing Svs£em
A Programmer s Guide, 2nd ed., MIT Press,: Cambrldge, Mass. , 1965

4. DALEY, R. C. ; and NEWMANN, P. G. A General-Purpose File System for
' Secondary Storage. Proc AFIPS 1965 Fall Joint Computer Conference,
Vol. 27, Part 1. Spartan Books, New York, pp-R13-229.

5. DALEY, R. C., and DENNIS, J. B. Virtual Memory, Processes, and
Sharlng in Multics. Comm ACM 11, 5 (May 1968), 306-312.

P e B e e I -.-—-o.-c-...-—.o.--..t

Subsystem 1 'root>w>y>a:

root>wdy root>w>y>b

root>w

l‘h-m -_—‘—‘.-T

{
|
|
|
!
t
|
t
[lattributed “hlattributed : :
i blattributes ; >y t
t klattributes ' 1
: dlroot>x>z>q; l
t
: link {
H root>w>y>c |
i \ |
| o {
] {
[} [}
root t 1
] |
Nwtqmms quw_m»”“w‘ ~~~~~~~~ I
I {altributed ,
ru-'"—-vn-vurm-vm«-'n*-vn—-nd»’w»—r.
: . Subsystem 2 root)x}z)d‘ :
' .
t
f
t
{
]

Wroot>x

S S " e G PR " S S G G Shw gon gy~ b

root>x>z ’”’//,/,,zzzi>
L |attributes—T Vp[attributesy
: 2! attr1butes\\\\\\\\\\\\\\root>x>z>a
i T
t
{
|
- ‘L.‘-.-'-*w """"" ER O e PN Set e &Y ST e e o® pem per -J

Figure 1. Directory Hierarchy Structure

