
DATE:

TO:

Ff\Ol\1:

AUGUST 22, 1969

REPOSITORY DISTRIBUTION

C. T .CLINGEN

00090

The attached imrking paper ·entitled "Program Naming Problems in

a Shareo. Tree-Structured Hierarchy" is to be delivered at the

Conference on Techniques in Soft1-~are Engineering in Rome,

October 27-31, 1969.

WORKING PAPER ON

PROGRAM NAMING PROBLEMS

IN A SHARED TREE-STRUCTURED HIERARCHY

C. T. Clingen

INTRODUCTION
;
;

G0090

~che recent proliferation of d ired-access systems with large amounts of

on-line secondary storage has greatly increased t~e capab~lity of programmers

to share information easily. On system$ such as CTSS, M~ltics, TSS/360,

etc,, the ability for a programmer to incorporate procedures written by . . .
others into his own programs has become increasingly attra~tive as a way

to save programming time and labor, to stimulate creativity, and to

encourage the solution of problems that would not otherwise be solved.

However, environments which encourage controlled sharing have given rise

to a new set of technical issues centered primarily around the implemen~a~

'lion bf·acc'ess control and information protection mechanisms. The topi:cs' "',

of acce~s control and information p~otection contain many difficult problems

and have received considerable attent.ion. On the other hand, certain topics

:! . ~···'

relevant fo program synthesis in an environment typical of a growing number· ..

of larg~ ~i~ect access systems seem to have enjoyed relatively little

,exposure. Multics experience with program synthesis, however, has shown

that the associated problems are easily underestimated and that solutions

considered adequate for contemporary problems will not be adequate for

~omplex informat1on manag~ment problems anticipated in the near future.

This working paper covers program synthesis problems arising from the

apparent duplication of program component names~~procedure names and data

base names--encountered when complexes of components are synthesized into

potentially large programs, Some solutions to these problems are outlined.

Also, a mechanism which permits a user to selectively replace components

of a subsystem, shared concurrently by other users, with private components

of his own is described and the value of such a mechanism is discussed • ..

. ,,.,. ;

. .

! ~,. 'I

- 2 -

The paper indicates at a fairly general level the approach taken by Multics

to solve the nam·ing problems associated with the synthesis and maintenance
' .

of shared subsystems residing in a tree-structured hierarchy . .
THE ENVIRONMENT

1 2 3 . Some systems ' ' with large on-line storage capabiliti~s permit their

~ontained files or segments to be arran~ed into a tree-itructured directory

hierarchy consisting of non-te_rminal directories and terminal, non-directory

files or segments. See Fig. 1. Each directory contains directory entries

describing the attributes, such as 1 ength, location, access rights, etc.,

of all directly inferior directories or non-directories. Associated·

_wiHt.each .directory entry is a .name .called an entry name, uniquely identifying·.

that eDtry among all other entries in the directory. Typically, each

directory or non-directory in the directory hierarchy can be uniquely located.-. _,­

, oy a mtil t'rpre..:.component path" name ccinsi sting of an ordered 1 ist of diredori'

entry names, starting from the source or root of the hierarchy and leading to-

the item of interest. It is convenient to regard a directory as a dev~ice--

for:groupi:ng or 11 packa~ing 11 sets of related procedures into subsystems. . ---·

Usually each system user will be assigned a single .b!.2.§L directorx, In which-·

all his files are described. In some systems, the user may also be

permitted to add inferior directories containing descriptive information

for additional files (or directories).

Note that, in such an environment, the entry name of a file does not

uniquely identify or locate the file in the hier:.archy; the path name, or ...
some equivalent representation, Is required instead.

PROGRAM SYNTHESIS

In most systems the synthesis of programs from their constituent data and

procedure components consists of ~wiog images of procedure and data files -

into a "core image" private to the user (relocating internal addresses if

necessary), and of linking re~erences between pai~s ~f the ~omponent copies.

In systems permitting the us6 of pure, shared procedures and shared data,

..
I

i
•· I

3

copytng and internal address relocation is unnecessary, but linking is still

required by each user. 5 . In .either case, it is necessary to be able to

establish a one-to-one correspondence or association between the procedure
-and data components required by a program and the named files in the

system directory hierarchy. The establishment of an association between

program component names and file path names is non-trivial and requires the

cooperation of the prograrrrner who must observe system co.nvent ions regarding

this association.

If an external reference from a procedure, say a call to another procedure,

1s to uniquely specify the called procedure in a tree-structured directory

hierarchy at Linking time, then some way of determining the path name of

the procedure to be linked to must be possible. One approach is to n

actually embed the path name of the called procedure in the calling

procedure. Although this approach does have the advantage of resolving

any possible ambiguity between name and object, it also suffers from

several drawbacks. First, one must know the actual or intended path names

of all procedures referenced by a procedure when coding the program.

Secondly, ~if any proc~dures or data files are moved from one directory to

another, or from one installation to another, special actions must be taken,

such as receding and recompilation of all procedures referencing the moved

components. Thirdly, the substitution, by one user, of 11 private 11 replace­

ment components for ~ome of a collection of standard, shared components

becomes extremely difficult.

An alternative method, and the one used in Mult""ics, involves the more

traditional approach of referencing external procedures and data us1ng the ..

usual single-componeDt names. ·However, these names, called [§ference names,

do not uniquely identify files in the directory hierarchy and hence are

insufficient, taken by themselves, to locate files. The use of reference

names rather than path names results in an apparent ambiguity which must

somehow be resolved. In Multics, a set of system conventions is provided

by which reference names are ~xpanded to path names, thereby removing the

ambiguity.

__ r· t

- 4 -

These conventions, called search rules 5, exist in some form in most" systems

and most be understood by the programmer if his programs are to be properly

synthesized from referenced components located in the directory hierarchy .

•
SEARCH RULES--REFERENCE NAME EXPANSION

Perhaps the simplest example of search rules 1s to be found In batch systems

in which card decks are read into the system to be combined subsequently

with system library routines as appropriate.:: The search_rules in this case

are trivial: (1) for each external reference name, check to see if the

reference name corresponds to one of the procedures read in from the card

reader; if so, link to it. (2) Otherwise, search the system library for the

referenced name.

An 9-nalogous -set of search rules can be implemented for a directory hierarchy

where the card--deck is replaced by a user directory. In this environment, l,

a user program would consist of components described in his user directory

(but n~t infe~i~r directories) plus, as a default, components in the system

library. Tho search rules in this environment arc implemented as follows._

(1) For a·given reference name indicating a procedure to be linked to,

prefix the path name of this user 1 s user directory to the reference name.

l_f the file lo~ated by the resulting path name exists (in the user directory}, .
. .

complete the linkage. If not,(2) prefix the path name of the system library

to the reference·name and using the resulting path name, locate the

indicated file. If no such file exists, the referenced file is considered

to.be non-existent.
/

This scheme has the drawback that it does not permit procedures in the

user's directory to reference components in some other directory, with the

exception, of course, of the system library.

The sharing or referencing of components dossribed In a directory other than

that containing the referencing procedure has been facilitated in some systems

by tho usc of the_fi_Ls: 1-_ink-=.' In Multics, a file li_r}k is a named directory

- 5 -

entry which contains a path name to a file or segment described 1n some

other directory rather than containing the attributes of some file or

segment4. In Fig. 1., the file link with entry named in the directory

with path name root>w>y 11 points to" the file with path name root>x>z>d.

Operationally, a file link has the property that whe~ it is referenced by

its path name, the reference is redirected to the file described by its

contained path name and hence can be regarded as a form of indirect address­

Ing. This indirect addressing capabil~ty provided by !he file link permits

the scope of the above search rule to be extended beyond the user directory

and the system 1 ibrary. By p'lacing a properly named 1 ink in the directory

of a procedure referencing a program component in another directory, the

attention of the search rules can be appropriately directed to the other

directory.

For example (see Fig. 1), the procedure with entry name~ in subsystem 1·

can·reference the component with entry named in subsystem 2 with the help·
,, ' .

of the file link to root>x>z>d stored in the directory named root>w>y.

Assuming that the user directory is named root>w>y, the user directory

search rule, during the establishment of

waul d · ger\'erate the path name root>w>y>d.

tile .. ! i~k'; 'would then be replaced by the

program linkage from~ to~,·

This path name, specifying a '" r.

value of the file link--root>x>r>d--c.' •·

. resulti~g in a search 1n subsystem 2 and the subsequent location of entry d r

in directory root>x>z as anticipated .

.. D~signafing the:-dire~tory containing the referenced component as the

target directory, we see that the use of file links is adequate unless a

referenced procedure in a target directory in turn ~eferences further

program components. If these further components do not reside in the

original user directory or in the system library, the search rules thus
far stated will fail to locate a component with the desired reference

name or worse yet, may find by accident incorrect components which by

coincidence have the required reference names.

; I

.,.

. ,_

.... 6 -

An example of incorrect component selection arises when "duplicate"

reference names exist. Continuing the above example, assume that·

procedure Q in subsystem 2. calls procedure~, also in subsystem 2.

See Fig~ 1. The search rule, as currently stated, however, is based 1n
' the user directory, or in this case, subsystem 1 directory named root>w>y.

Thus ihe search rule will generate a path name by prefixing root >w>y to

a, thereby locating the wrong component. That ,is, the file with entry

name~ in subsystem 1 will be located and linked to fro~·procedure Q
rather than the correct file with the "duplicate" entry name in subsystem 2.

Clearly an improvement or ext~nsion over th~·~ser direct6ry search rule is

required if packages or subsystems of program components are to be properly

synthesized into a single program.

One such extension is the caller directory search rule. The caller

directory search rule states that the entry name for a referenced component

shciUld first be searched for 1n the directory containing the procedure

originating the reference. In short, by convention, reference name .spope.

is defined as being within the directory containing the "calling" pro.cedure

· (exc;ept for the default scope of. system library). The file link

pr~vides'a~ ~escape" mechanism to other ·directories or subsystems whil~·

still respecting the caller directory convention.

In order for subsystems, grouped by directory, to be unambiguously linked

together during program synthesis it must be possible to redefine the

current value of the caller directory each time the attention of the program

linking facility is redirected to another directory. In Mul tics, the value _

of .. the caller directory is guaranteed current by being re-evaluated each tirri_e ~

an external reference is linked by the program linking facility. Such_

frequent re-evaluation is required in Multics because program linkages

are built dynamically at run time upon first reference to a program

co~ponent. In a less dynamic environment, such as encounter~d when batch

linking is utilized, the value of the caller directory might be redetermined
~

only when the linkage facility encounters and follows a file link.

! ., .: : ,_'

- 7

The search rules as so far described may be summarized as: (1) search the

current caller directory; if this search fails, (2) search the system··

library. By th~_use of file links pointing to other subsystems, programs

of arbitrary complexity_can be synthesized. The caller directory search

rul~minimizes the need for programmers and users of)utually interacting

subsystems to be concerned about the apparent dup_l ication of reference names

of components 1n different directories. With the exception of the

procedures used to interface among the _interacting subs(~tems, internal

subsystem component names can be chosen· with no fear of·mutual conflict.

COMPONENT REPLACEMENT

Modification, upgrading and debugging of subsystems 1n an environment

encouraging sharing have interesting implications. In some instances, the

person performing the changes can make a private copy of the subsystem of.

interest a.nd then work with the now unshared copy. In cases where the

subsy~t_em_being modified is large, as are complicated language processor-s,,_,;,.-.-~

co~pr~hens'i've applications systems, or the operating .§YStem jj_self, ~opying~- -~-,

r"' is impradica.'l; To permit system programmers to extend and maintair)large_, +- cY

-sha~ed subsystems easily, the supervisor must pr?vide a facility whereby

each programmer can uniquely specify individual ·components to replace

other uniquely identified components.

Initially, a partial solution to the substitution problem was implemented 1n

Multics by introducing a third search rule to a user-specified directory

called the Yill_rking di...[§..ct~. This search was inserted between the caller

directory search and the library search. By placing substitute vers1ons
/

of a library pro~edure in his working director~, the programmer receives

his own private versions rather than the standard library versions.

·Such an app-rolo:l.ch does substitute working directory components for 1 i brary -.-, -J :

components required by procedures in the user's user directory; however,

it also performs the same substitution for library procedures referenced
' f ' ~ ' •

from other subsystems incorporated into hi s .. program. The latter substitutions

introduce an undesirable element of uncertainty into the program since the

user may well not be aware of the (perhaps invalid) substitutions performed

- 8 -

on behalf 6f these "foreign" subsystems. Furthermore, the additional

search rule does not permit substitution for non-library components.

An alternative "solution" to non-library substitution, consisting of inter-.. ~

changing the caller directory search rule and the wor~ing directory search_

rule, is quickly dispensed with upon considering the potential problems

caused by components in "foreign" subsystems being replaced by working

directory components. Since the worki~g directory rule:would precede and,

therefore, override, the caller directory rule for all subsystems, any

chance coincidence between unknown entry na~~s in these o(her subsystems

with names of user directory components to be substituted would result 1n

effectively random and unwanted substitutions.

For example, imagine that a programmer wishes to test a new vers 10n of

procedure~ in subsystem 1 (see Fig. 1). To do so, he places this new

· version of g_ in some other directory, the hierarchy location of which 1s

\)rdmpodant to this discussion, designated as his working directory.

Upon 1 inldng from, say procedure b. to procedure g_ in subsystem 1, the

working directory rule is first envoked resulting In the improved vers1on'

()i g_being'used. However, when subsystem 2 is envoked in his program, an;

entirely unrelated pr~cedure which by coincidence also has the referen~e · '

name o. .is called, presumably unbeknown to our programmer. Unfortunately,

the working directory i"s again used to perform the search pnor to program

iinkage. This time an undesired substitution takes place, and the program . '

yields erratic results.

To avoid such indiscriminate substitutions, it .. appears that a useful,

unambiguous way to define each desired substitution is to specify path name

p_air~--one path name uniquely locating a-component to be replaced and the

other uniquely locating the replacement. These replacement pair~ could, by

convention, be placed in a file known both to the programmer and to the

system and accessed by a substitution search llLill· The search rules,

during program synthesis, then become: (1) C:heck all replacement pairs to

see if a substitution is requ.ired; if not, (2) use the caller directory

search rule; if this fails, (J) use the default search in the system library .

. .

.- ,_.) ·- - .

. ;

- 9 -

Neither substitution by replacement pairs or an equivalent method has yet

been implemented in Mul tics. However, as· the on-1 ine upgrading and

debugging of large, highly shared subsystems qecomes a significant activity,

such a facility will be provi?ed.
;

CONCLUSIONS
•

The introduction of program components (procedur~es 'and 9.ata), mutually

referenced by means of single-element r~ference names, .i"nto a tree-structured

directory hierarchy in. which· elements are u~i_quely located by multiple­

element path names allows the 'possibility of ·ambiguous referencing by name.

System conventions must be established whereby reference names are 11 expandedn

to path names when progra~s are synthesized f~om individual components.

~f co~plex·s~bsystems are to be included in a program, sea~ch rules and: ..
. .

packag_i"ng 'conventions must be provided to· properly identify and utilize.

potentially ambiguous reference names.

"'MoYeover·,.; "~in ~-rarge, uti 1 i ty...;l ike systems with many users sharing subsystems .. _, .

;--.. ··or ·the system software itself, means for achieving selective component • · ,..-, ...

sub~titutioni while the system ru~s unchanged for most users, is valuable

·if a s~ooth maintenance and improvement facility is to be provided. This-·_,

capability is extremely useful in shared"-access systems for the on-line

maintenance and extensions, by system programmers, of system components

proper. The need for these capabilities for user-provided subsystem

maintenance will. 1ncr;-ease as shared-access system use becomes more intense·

and wide-spread .

.
Practical experience 1n Mulf.ics has shown that-\vell-implemented, easily-

understood search rules are essential if full advantage i~ to be taken of a

;J:a.rge· hi:er.a.ttchy of program compc~>nen.ts; conversely, poorly-implemented search:.J Y~ :·~·'·

rules can lead to confusion and bizarre accidents.

ACKNOWLEDGMENTS.

would like to acknowledge the helpful comments and discussions of

A. Bensoussan, F. J. Corbat6;R. C. Daley, J. W. Gin±ell and J. H. Saltzer .

. .

- ... -

. ·-

REFERENCES

1.

2..

4.

5.

COMFORT, W. T. A Computing System Design for User Service.
Proc. AFI PS 1965 Fall Joint Computer Conference Vol. 27, Pt. 1,
Spartan Books, New York, pp.619-628.

,
CORBATO, F. J., and VYSSOTSKY, V. A. Introduction and Overview of the·
Multics System. Proc. AFIPS 1965 Fall Joint Computer Conference,
Vol. 27, Part 1. Spartan Books, New York~ pp.185-196.

CRISMAN, P. A. ed. The Comr-atible Time-Sharing Syst~:
A Programmer's Guide, 2nd ed., MIT Press~: Cambridge, Mass., 1965.

DALEY, R. C., and NEWMANN, P. G. A General-Purpose File System for
Secondary Storage. Proc. AFIPS 1965 Fall Joint Computer Conference,
Vol. 27, Part 1. Spartan Books, New York, pp.213-229.

DALEY, R· C.,'and DENNIS, J. B. Virtual Memory, Processes, and
Sharing in Multics. Comm. ACM 11, 5 (May 1968), 306-312 .

.. '

' -

rooi

.ir.ibute
tribute

. .

root>w root>w>y
attributej_-------4~~~~· ~a~1t~t~r~ih~~u~te:d~.

t aHri~

root>x

attribut~--------

I attribute.
: roo-t ,?:x_>_z_>Q.

I 1 ink
• • I
I

... .._. -·-
Subsystem 2

.. &.----.- ... - _.,. __ ..,.c;,llli_- ~ .,._ .. _. --- _.J

•' ..

Figure 1. Directory Hierarchy Structure.

