
RESOURCE MA~GEMENT AND ACCOUNTING FOR MULTICS

T. Van Vleck

March 23, 1966

I

Resource Management and Accounting

I. Motivation and design goals

II. Definitions

A. Person

B. Account

c. Process

D. User

E. Metering Unit

F. Cost

III. Plan of attack

A. The accounting procedure and data segment

1. collection and meter-reading

2. conversion

3. thresholds

4. unique interface

B. Metering

1. requirements

2. quantities to be metered

3. calls to CHARGE

4. calls from outside the process

c. Conversion

D. Thresholds

IV. Accounting Structure

A. Account files

1. location

2. contents

3. control

B. Creating a process

~- same data segment

2. withdrawal

c. Destroying a process

v. Other Thoughts

A. Books must balance

B. Protection

c. Daemon processes

D_. Reliability in event of crash

E. Utility daemons

F. Extra accounting-procedure entries

G. Rate control

VII. Pricing Policies

A. Overview

B. Policy objectives

C. Saturation

D. Side effects

E. Example - the o~resource system

RESOURCE MANAGEMENT AND ACCOUNTING FOR MULTICS

If Multics is to become a utility system capable of meeting computation

needs of business as well as universities, service centers as well as in-

house operations, it must posses an extensive resource-management facility

which includes capabilities for charging for resources expended, rggulating

the use of resources, and evaluating the demands made on the resources

available. Such a facility must be precise enough to satisfy the strictest

auditor; must be clearly and flexibly designed so that different installa-

tions needs and policies may be accomodated; must be tamper proof, as far

as possible; and must be reliable in the event of trouble elsewhere in

the system.

~ck~~<tct.C
As explained in this paper on System Metering, the ~~ for measuring

use of the Multics sytem computes the consumption of system resources in

arbitrary units on a per-process basis. This paper conrerns itself with

the problems encountered in accumulating these units and translating them

from multiple usage measures attributed to a single process/into a single

cost attributed to an account.

Definitions of Terms

A person is just that, a human being/ who may sit at a terminal and

communicate with the system; he possesses a name, a social security

number, and a thumbprint, etc.

An account is an administrative entity which receives bills for system

resources expended.

-2-
(I

~ ~ '\.c. r}-4/'
I' b-....

A process_ is the usual Multics concept, with a descriptor segment and so

forth •. Every process is associated with some account, and resources used :..t
~~

by a process cause charges to be made to the process'~ account. .-to-~
~ .,._. .

A~ consists of one or more processes, all of which have certain data
1.

V)U. •

segments (such as the user profile) in common. A process may be under

the direction of a person. The identification of a user consists of a
t>"-~

project number and a person's or daemon's id~ntification.

A metering unit is a number representing the quantity of a resource

which has been expended by a process in some period. The dimensions of

a metering unit reflect the kind of resource being metered and the way

in which it is measured. For example, secondary storage residence might

be measured in "block-seconds".

A~ is a number expressing, in administration-oriented units, the usage

of the computer system attribut·ed to an account. Cost is in identical

units for all resourc,~s; dollars (or "micro-pennies") is an exa.rnp le of

a unit of cost.

Plan of Attack

Within Multics, each process has an accountin~ procedure and an accounting

~ segment, whose responsibilities include

. 1. collection of metering units which represent the resources

used.by the process.

2. conversion of these metering units into coft units, and the

updating of the balance maintained in the accounting data
l

segment. ______---
_ • ..,... -,J;.- • I'

-·------------- _ ---·-··--~·
~ , I 1 _i

-3-

The accounting procedure maintains a balance of cost units which the

process may expend. This balance is a single number, not a vector.

Each time that the accounting procedure is informed that the process

has used some resources, it computes a total cost as a function of the

metering units, and decreases the balance by that amount.

The accounting procedure will be the only interface to the accounting

data segment. Thus, all questions of format and structure of the data

segment are localized, and, indeed, changes in format require no expensive

reformatting.

Associating Use With Accounts

The first step in resource-accounting consists in metering the resource
,.. s-.$1~ .. ~'1. l), u.>;A..-·1., LH."'<· ·)

usages of every process. The ~a2~1 on metering covers the plan of attack
• li cc (\ ~

in detail; from the point of view of this paper, the method used does

not matter so long as the metering is ~-~: that is,

1. every use of a resource must be associated with some account.

2. all resource use charged to an account must represent resource

use by a process "belonging to" that account.

. l
Note that dummy accounts are not rule, out, and may be even required by

this scheme to absorb otherwise unchargeable use. Also, cost units may

be .transferred from one account to another.

b

The initial design for the resource-usage meters distinguishes)~uantities
to be measure~

-5-

a subroutine, and that shift differentials or non-linear cost functions

can be implemented easily.

If the accounting procedure sees the balance drop below a preset threshold,

it will call an "out-of-funds" procedure. The action to be taken in such

a case will depend on circumstances and on policy. Some processes may

be allowed to continue working, while others should be stopped. Certain

installations may wish, in the case in which- a user has no more funds

for any processes, to log the user out. Others may wish to allow him to

Begotiate - or to expunge him completely from the system.

Several thresholds may actually be maintained at once, some set by "higher

authorit~and others established by the user himself. These may be in

the form of additional actions to be taken when either the balance, or

the usage of a single resource passes a certain point. Thus an administrator

may say, "don't let user x spend more than half his balance on secondary

storage," or the user may say, "tell me if I spend more than 18 units an

hour on processors~ for my process 6."

The Accountti~ Structure

Each accounting data segment contains a pointer which specifies the

account associated with the process. Accounts themselves are represented

in the machine as files within a special directory, the accounting

directory. Account files contain the follo\..ring items:

1. Information as to the "owner" of the account, where to send

the bill, etc.

2. The total amount of cost units which the account may spend in

a period.

•. .L

-6-

3. The amount unspent.

4. A list of users authorized to charge this account, and, for

each user,

a) history information, showing how much this user has

spent.

b) control information, describing how the user may spend.

The administrator for an account will be able to delegate his authority

to control-w~~~ te the account to several sub-administrators, each

of whom may control the resources of some group of users. In such a case,
tf-~:-.

there is an entry which specifies a subsidiary account;instead of, user;
" J

in (4) above.

When a process is created, there are two possibilities: either the new
.s~M:.t.v .e.. w\ f t,

process can ~ the same accounting data segment ~- sei; the

creating process, and thus charge its use 'to the same account automatically; - .

-vr:
or a new accounting data segment can be created. If the second option is ~ ,-.~ :

~- v
taken, we have a situation like that found when a user ~logs in. An

account number must be specified, in this case, so that an initial balance

can be obtained. The given account identifier is used to find the account

file, and the file is searched for the user's entry. Then subject to the

limitations contained in the account file, a withdrawal of a certain number

of cost units is made: the amount unspent in the account file is decreased,

\ and the .data segment for the process being created has that amoun_t established

L as its initial balance.

-7-

/
Whenever the user destroys one of his processes, or at any other time
~ ..

he chooses, the accounting data segment for a process may have its -
balance set to zero, and the unspent cost units will be returned to

the account file from which they were withdrawn. Sucq a procedure may ~
,,-----·-·------

be used to switch the charges being incurred by a process from one

account to another.

Other Thoughts

All of the system bookkeeping will be multiple-entr~ so that at any ,;'>~ 1
time, all of the use of the system can be accounted for. It is intended

that all resources will be completely charged, whether to a user or to

some idle or shared-overhead account, in order that the books will always

balance. The cost incurred by shared-overhead accounts may be transferred

~ other accounts, if the installation chooses •

. Careful checks must be designed so tha't no user may meddle with the data

-in the accounting data segment,._s without special privilege.

""'eve..
A daemon process, which is doing work for all user:~ will have a~

~-JJ.- ~ .. ~__.,) .
extensive accounting procedure, perhaps able to reflect char:ges s~to

1\ L

6~\~ it to the ·account for which it is working. These procedures will keep

a complete internal set of records, which must balance. In this way, users

can be charged for the secondary storage backup necessary to keep their

files safe, and so forth.

Reliability of the accounting system is helped by the "multiple-entry"

philosophy on charging, and by a design which. attempts to limit the amount

of information kept in core to an amount we are prepared to lose if core is

·-8-

A User, From the Point of View of the Accounting System

User

Shared

Data

Segment

~;;aJ ·o. Person

Process

A

Process

B

. Account
ing data
segment

1

Account

File

'\
User E':ltrv

Account

File

~ser Entry -

-9-

cleared or scrambled. W~_.IIl.l,lSt have some way of forcing important infor-

mation onto secondary storage at intervals.

In the event of a system crash, there will be tools available for the

administrator to "pay users back" for lost work. [\-t V ~~~ ~-~
~~~~ ..1-~~ 
-~tl-~. 

A number of utility processes will be necessary to produce a coherent 
So~ 

resource-management system. 4!'""""1+11!ilill0f· these will be daemon processes 

which remain blocked for long periods, and then perform various updating 

operations for every user. Automatic billing and other end-of-period 

operations are examples of this, as are statistics - gathering functions 

of various types. Administrative utility functions must also be provided, 

such as creation of accounts, repairs to and searches of the "accounting 

tree," and so forth. 

An auditor process will be one such daemon. It will have the responsibility 

;q of checking the system books at intervals to make sure tha~ they balance, 

and to detect mistakes in or tampering with the accounting system. This 

process will remain blocked for random lengths of time with mean, say, 

2 days, and then Z:,:h;amp4 I B scan the whole system's status. ( -(L._ r ~ 
. . ,1.-o '{\.1"- ~ ~ ~ ~ 

~I '-- "" ~i.l,... \,.- ~:-..-. ~ ...,_ ,......_.. \l A~ -~-1 

An entry to the accounting procedure must be available so that ~-e--p-r~o~~~e~s~-s ~ ~ 

may IT.equest. s.tatus information, such as how much time has been used, what ~ 
the accounting data segment's balance is, and so on. 

Control of the~ at which a process expends resources can be accomplished 

by setting a very low balance in the data segment, and requesting that 

a special procedure be called when the process is out of funds. The 

,. 



.-10-

special procedure would exam·ine the clock, and withdraw more funds 

if the rate was low enough - otherwise, it might print an on-line ( 

commentj. 

Pricing Policies 

As we have noticed in passing, administrative policy touches many phases 

of the accounting system on the programming level. It is hoped that the 

design of the resource-management sytem so far set forth is sufficiently 

flexible to.enable the system administrators to make whatever policy 

decisions they choose without being restricted by the implemOOtation. 

In considering pricing policies, we must first recog;nize that the objec-

tives of a policy may differ from situation to situation. One objective 

might be to distribute the cost .of the system equitably among those who 

derive benefit from it. Another objective, which may conflict with the 

first, might be to use the prices to encourage maximum system effective-

~~;~+~ t~~ 
\-1 '',..#H 1 .. · v ·na ~ .J.-~ ~ .. v- P-"- . <'l "(U"'- 'T"W'<-6 t. .... ..JUI -

v.,.J......~ ,..._ ~. 

ness or perhaps volume efficiency. 

Our next observation is that a policy objective will dictate different 

strategies depending on the degree of demand. If demand exceeds the 

supply of computation resources, the simplest way to satisfy the objective 

"pay for the machine" is to charge each account a fraction of the total 

cost equal to the fraction of total resource use charged to the account. 

But it only a few people use the system, and they use only a fraction of the 

available resources, this strategy results in prices so high that users 

drop out rather than pay - and the policy defeats itself. 



-11-

/. 
! 

A third observation is that any policy will tend to encourage certain 

styles of programming and discourage others. Every programmer is familiar 

w ith the trade-offs possible between program size and program speed: 

many programs were reworked when they-were transferreq from batch to time-

sharing, because of the several advantages of reduced size in the CTSS 

environment. 

A comprehensive charging policy must, therefore, have well-defined objec-

tives,must take into account theeKpected demand for each resource, and 

must consider the kind and quantity of resource use which the policy 

encourages. Several external factors, such as the amount a user is 

willing to pay for a computatio~and the extent to which the user will 

be directed by price~ must be considered in the design of any policy. 

A Policy Example 

An example of a policy which seems workable follows. For simplicity, 

it assumes a system with only one resource,-~~~~~~~e meft~ 

The objective of this policy is to distribute the cost of the system 

equitably among all users, but to protect the user from tising costs 

Vl'\ J.e"' in the event of ~-use of the resource. 

·Let us assume that in the period under consideration the system has a 

total capability of C units. (For example, 60 * 150 minutes of processor 

time in one· week).. Let the resource cost K dollars for this period, and 

suppose that in the period N users use u1 ••• UN units, totally 1f units 

of resource expended per period, Note that 11 is less than or equal to ~, 



The simplest method, obviously, would be to charge user i 

K * ui dollars per month 
1J 

so that he pays for the fraction of the total use which he caused. This 

is the situation we discussed above, which has the drawback that if the 

total use U is much less than the capacity C we are paying f9::;·~sers' 

costs become astronomically large. A worse drawback is that the scheme 

we have suggested for accounting so far requires that \J be known in 

advance, so that we know the price of a resource as it is used. This 

will be true only if we know that the system is saturated, sofuat~=C. 

Then i.f we set 

K' = K/C 

so that K' is the price per unit capabilit~ we have 

cost to user i = K' u1 dollars • 

..5'A~ ,.\1-4>-~ 
1)~(_. . 

ystem the problem is more difficult. If the installa-

seems unreasonable to attempt to make 

users pay for that the administrators can estimate 

the demand which will be resources of the system as some 

figure D. Then it seems 

charge to user i = K' {fn (D~ ... c Uf dollars. 

If our demand estimates are accurate, then we will recover either enough 

to pay for the machine, when the system is saturated, or else .a fraction 

l5 u' 
c.. '" 

1, .. 



-13-

lJ /C of this, when we cannot sell all the machine. 

In order to show where additional revenue may arise, and to bring the 

scheme closer to reality, let us introduce a flat-rate Base charge, B, 

which represents fixed charges such as "cost of keeping an account on the 

books," and a Surcharge factor S greater than or equal to 1. Both of 

these will be applied to all accounts. Our formula becomes 

cost to user i K' (B +SRui ) dollars 

where 

R ::: 
max (_:;,;;m...;.in_.,._(C;;...-...;.B'""','-'"D...L)_ 

c ' 0) 

B will in general be small; it represents the amount of our cost which 

is paid for bysubscription. 

~ With this scheme we may still make a profit or lose money, but what to 
•' J tY""'I\r 

~· i1 . do with this amount becomes an accounting problem. Losses represent 
,\, j'( ~r 

~ • capacity we were unable to sell, and profits represent extra capacity sold 
~ .l .. ~.r\0 

l \~ ~beyond projection, and should perhaps be distributed at 
~ ~, ~~-

~~-
. \~ 

accounting period, or used to buy additional capacity . 

Additional components may be added, in the form of extra charges for future 

purchase, or punitive charges to enforce.a pattern of use (e.g. shifts). 

Further complication may arise through round-off problems if there is a 

mismatch between the units we measure and the smallest amount we are willing 

to bill. These problems, and the estimation of the demand and base charge 

parameters, are administrative decisions, which must be made[after.we have 

some'idea of system capacity~ 


