
Section I. 

This design notebook is. a first tentative attempt~ to define an 

operating time-sharing system for the Project MAC modified G.E. 635 

computer. Even though the notebook will usually be written in a definiti:ve 

style, it should be understood that it is really meant to stimulate 

discussion, clarification, and improvement as well as to r•:lveal the 

hidden problem areas. Throughout the design~ even though it may not 

be realized on the present equipment, there should also be understood the 

long range goals as well as the contemporary compromises. 

These long· range goals are·: 

1. To operate a computer utility system on a continuous basis, 

7-days a week~ 365 days a year much like the phonE! or power 

companies. This definitely means that system failures must be 

< . infrequent and of short dura.ti on (e.g. few seconds). 
~. 

2. The system must be able to accomodate large numbeiS not only of . 
typewriter users, but of a spectrum of termi.nals s:uch as scopes~ 

plotter tables~ etc. 

3. The. system must be able to "baby-sit" real-time experiments or 

equipment with definite guaranteed. response times (e.g. a few 

microseconds) with definite levels of processor ac.tivity (e.g. a 

few milliseconds) with a definite duty cycle (e.g. a few seconds). 

4. The system must be capable of partitioning such that 

a.) each part of the system can do preventive maintenance and 

checking on the other part, 



--.. 

2 

b.) extra reliability can be programmed by doing· duplicate 

o'r checking calculations on different processors .and 

c.) ,the processors can be applied to separate and distinct time

sharing systems. On_e example would be a sub-syst•em operating 

the tracking of a radar antenna while another sub-system main

tained normal time-sharing. Another example would be the system 

programmers trying out a new supervisor for an improved or 

different time-sharing system than the one in normal use. As 

much as possible, system operation and partitioning should be 

automatic. 

5. The system programs should be as modular as possible in order to 

enhance clarity, maintainability and upgrading. There should be 

as little user context as possible in the central supervisor. 

(It is doubtful that this should change until there is a widely 

accepted universal language). 

6. The system must have symmetric use of multiprocessors, effective 

multiprogramming such that no individual user must concern himself 

with concurrency and the ability to smoothly write programs which 

are pure procedures capable of being operated siill:ultaneously by 

many users. 

7 •. An important objective is 'to develop a system prergramming language 

which is truly machine-independent. In particular, the bulk of 

the system programming and all user programs would be expressed 

in this language so that the system could be trartsferred f~om one 

computer to another without changing more than, s:ay, 25K to 50K 

of code. The transferred• system would only have to run at a few 



3 

percent of the effectiveness of a subsequently "tuned'~ version 

of the system for this independence to be invaluable. In other 

words the user would be able to count on indefinj~te growth of 

his programming developments without periodic catastrophic 

destruction of all his programming tools. Present-day algebraic 

compilers already approach this goal but fall short in the data 

representations (i.e. the user is quite aware of and the programs 

are dependent on the word size and frequently on a few other 

idiosyncracies of the machine).· The data-represemtations for 

machine independence can obviously be done and the on-ly !issue 

will be comparative efficiency with hand coding. Efficiencies 

of as little as 50 percent. or less would sti 11 be~ of great use 
' 

for most of the system especially if sensitive modules were done 

by hand coding. 
. . 

8. Further goals a:te incremental compilers and fully symbolic debuggers 

such as MA.DBUG. 

9. Finally, the entire system will be written in the~ form of program 

segments with all programs, with perhaps a few ell:ceptions, written 

as pure procedures. 

Many of the above ideas are already contained in the necessary back-

ground material to this notebook. Essential references are: 

1. The CTSS programmer's guide and all current operating systems 

bulletins, etc. as revised by P. Crisman. 



4 

2. MAC Technical Report TR-3 by F. J. Corbato, giving the view-

point of a multi-user, multi-processor, multi-programmed system. 

3. MAC Technical Report TR-11 by J. Dennis giving the structure and 

philosophy of program segments. 

4. MAC memo M-182 by E. Glaser giving a complete first-cut at the 

modifications to be made to the GE 635. 

5. An informal note by J. Couleur of Nov. 20, 1964 giving the 

revision II description of the 635 modifications. (This note 

is somewhat incremental to M-182.) 

6. CC memo 241 by R. O~ley 1 R. Creasy and R. Graham, giving the 

specifications of the new disk and I/O control programs. 

---··· 7. Programming Staff Note 32 by M. Bailey and R. Daley, giving the 

broad specifications of disk editing and maintenance. 

Having roughly estaBlished the goals, and the background, it remains 

to discuss broadly the short range goals. It should be understood that 

the present CTSS system is the standard of reference and that most ideas 

will be discussed incrementally. 

1. As a basic minimum the first version of the new system will be 

at least externally to the user similar to the present CTSS system. 

That is, these will be all the usual commands with the same names, 

etc. However, this system must have the following essential changes 

made: a) all typewriter I/O should be in terms of a single, full 

character set (i.e. 8-bit code); b) all programs, system or user, 

must be in the form of program segments; c) all new (i.e. not 

just receded or borrowed).programs will be in pure procedure form 

and as efficiently segmented as possible; d) public libraries 



5 

and corm:nands will be operated from the start as pure procedures; 

e) automatic segment-turning (and possibly automc:•tic page-turning) 

will be done from the start for all programs (i.E!. user or system) 

so that efficient multiprogramming· will result; f) the initial 

system will handle n (where na2) processors as a symmetric pool; 

g) accurate system usage accounting will be done from the start; 

and finally h) monitoring will be built-in for system performance. 

2. As much of the standard GE software as possible will be used in 

the system. In particular consideration should be given to 

absorbing code for the control of terminals, the disk control, 

the general loader, as well as adapting the assetnbly program1 

Fortran IV and Algol. 

3. The CTSS programmer 1 s guide which is .currently .bdng 

revised should be a direct antecedent of the new manual. 

Descriptions of· all programs (i.e. 1-page writeups of subroutines 

and commands or their equivalent) should be a part of the complete 

manual. 

4. Although the new system should be self containedJ. i.e. the only 

background is Foreground-initiated-background (FIB) with central 

tapes and cards controllable from the consoles, provision should 

be made so that GECOS will operate as an independent background. 

This will ensure rapid acceptance of our system by GE users who 

are only able to start time-sharing as a pilot operation while 

they persuade and educate their users as to the benefits of 

conversion. This compatibility however must not introduce any 



6 

serious comprimises or delays into the development of the new system. 

5. The 7094 compatibility mode of the GE 635 will not be allowed 

under time-shared operation. (The special equipment required 

to do this will not be installed at MAC.) 

6. The GEM assembly program will be modified to allow pure procedure 

and data region outputs. Until alternatives exist, the system 

will be programmed in this language. 

7. In. order to have a useable operating time-sharing system by 

Oct. 1965, there will. only be a single time-sharing system prepared, 

possibly by editing over to GEM programs manually the current 

CTSS modules, basic commands and subroutines which are still 

pertinent; better languages should be used whenever available. 

The procedures should be pure procedures if ~t all possible. Up 

to April 1965 a 635 simulator should be available (under batch 

process I;BSYS) on the 7094 for checkout. From April to Oct. 1965 

a standard !-processor, 2-bank memory GE 635 will be available. 

In Oct. 1965 a modified 2-processor, four-bank memory system will 

be installed. 

III. Things to do in the new system 

To further delineate the new system, an 'attempt will be made to 

partition the tasks into more manageable areas. A partial list of categories 

which are not particularly in the order of importance or difficulty are: 

1. Segment structure and format convention specifications 

la. Subroutine Linkage 



2. Specification of overall operating system strategy 

2a. Segment and page turning management_ 

3. Disk file I/O control, 

4. Disk file editing, maintenance and restart procedures 

5. Y~gnetic tape, card reader, punch I/O control 

6. Typewriter I/O control 

7. Hi-speed line I/O control for the ESL console, the PD?-6, 

and the 1620. 

7a. Real-time controller 

8. Modifications to GEM for segment compatible output 

7 

9. Modification to GE Fortran IV for GEM output as segment compatible 

10. ~ootstrap loader for the system. 

11. Resource allocation (i.e. sched. and storage) 

12. Accounting of usage 

13. Monitoring of system performance 

14. Foreground initiated background 

. 15. Interconsole messages 

16. Magnetic tapes controlled fromconsoles 

17. Macro commands 

18.. Off- line nianua1s. and ,-documentation 

19. On-line documentation 

20. Development of specifications for a machine independent system 

programming language 

21. Basic commands 

22. Basic subroutine library 



8 

23. Recoding the MAD translator 

24. Specifications for partitioning multiple systems and for 

multiple processor use by a single user. 

25. Specify subprogram binder (i.e. loader) for segm.ents 

26. Specify conventions of data files. 

27. Debugging tools 




