
MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24 Page 1

Pub li.shed; 8/14/6 7
Identification

The Working-Process/Device-Manager-Process Interface.
J. F. Ossanna.

,eurpose

This section describes the Request· Queuer and
Device-Manager-Process Driver. The Queuer is c~lled within a
Device Strategy Module (DSM) to queue requests (outer calis)
being sent to a Device Manager Process (DMP). The Driver Is
called by the DMP's Dispatcher to fetch a queued request and
issue the corresponding outer call to the first outer module .In
the DMP 1 s iopath. The Driver also plays various supporting roles
In general 1/0 System operation; a complete understanding of
these roles requires an understanding of Sections BF~2.23 and
BF.2.25.

General

Typically, an iopath includes a Device Strategy Module (DSM)
which calls a Device Control Module (DCM) which calls the GIOC
Interface Module (GIM). For reasons detailed in Section BF.l.04,
independent and a~ynchronous operation of a lower portion of this
iopath is desirable. Such operation Is accomplis~ed by Including
the independent lower portion in a separate process, known as the
Device Manager Process (DMP). Inasmuch as program-device
synchronization (i.e. read-ahead and write-behind) is Implemented
by the DSM, the process boundary must occur effectively inside
the DSM at what might be called the synchronization point. The
two functions which must straddle the boundary are queueing calls
to the DCM and forwarding queued calls to the DCM. The specific
implementation consists of Incorporating all DSM functions except
the call. forwarding function Into a DSM in the user's working
process, and of Incorporating the call forwarding function in a
module known as the DMP Driver in the DMP.

The DSM's per-ioname segment (IS) is the common data base between
the working process and the DMP. Thus all data communication
between these two processes can only involve data In the IS.

The queueing function is implemented in a procedure, known as the
Request Queuer, which is called by the main part of the DSN
whenever a call is to be queued. The queuer calls resemble outer
calls; the call names correspond to outer call names and the call
arguments include the necessary outer call arguments. Additional
arguments are included to control the response signaling from the
driver. The queuer returns to the main part ·Of the DSM after
queueing a request and signaling the DMP. Any waiting necessary
for synchronization purposes Is done by the main part of the DSM.

As a result of the signal set by the queuer, the DMP's Dispatcher
calls the driver. The driver fetches the next request,

Page 2 MULTICS SYSTEM-PROGRAMt.1ER 1 S MANUAL S1~ction BF.2.24

reconstitutes the corresponding outer call, and issues the outer
call to the first module (usually the DCM) in the DMP portion of ~
the iopath.

The queuer communicates requests to the driver using the
auxiliary transaction block chain based In the DSM 1 s per-ioname
base (PIB) (see Section BF.2.20). The per-request data is kept
In transaction block extensions (TBEs). There Is a one-to-one
correspondence between these blocks and the call transaction
blocks in the DMP corresponding to the forwarded outer calls.
The driver updates the request block status using the call block
status at every opportunity. Certain status conditions
(controllable by the DSM) cause the driver to signal response
events to the DSM.

The driver calls described in this section are the following.

driver$inlt
driver$1ocall
driver$quit
drlver$restart
drlver$hardware
driver$detach

The drlyer$joca11 call Is the call used to cause the driver to
fetch queued requests. The functions corresponding to the other
calls are detailed later In this section.

Regye§t Oueuer Call§

The Request Queuer Is a subroutine called by the main part of the
DSM Hhenever an outer call Is to be passed to the Dt>l P. Ca 11 s to
the queuer to queue requests have the following general for111.

call rq$name(pibp, ... , status_mask,
c::»tatus)

comp_event,

del pibp ptr, /•PIB pointer•/

error_event, tbx,

statusJnask bit (18), /•response control status mask•/
comp_event bit (36), /•completion event•/
error_event bit (36), /•error event•/
tbx bit (18), /•transaction block index•/
cs ta tus bit (18); I* rq ca 11 status* I

11 name 11 In rg$name represents the outer call name of a queuable
outer call. Not all outer calls can be queued; see discussion
later below. The arguments between ~ and cstatus are the
corresponding outer call arguments In the regular order, except
that the first and last outer call arguments, joname and status
are omitted. For example, the call to queue a read call Is as
fo 11 OHS •

call rq$read(pibp, status_mask, comp_event, error_event, tbx,
workspace, nelem, nelemt, cstatus)

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24 Page 3

.Q..1Jw. is the pointer to the DSt.1 1 s PIIJ. status mask Is an 18-blt
comparison mask used ultimately by the driver to decide when
£OiilP event Is to be signaled; the exact mechanism Is explalnerl
later below. error event Is an event signaled by the driver
under conditions explained later below. ~ is returned and Is
the transaction block index of the block allocated by the queuer
for this request. cstatus is the status returned for this call
itself. All the arguments except ~ and cstatus represent
information provided to the request queuer. The outer call
arguments are defined and declared In other sections of Sectior
BF.

The call to queue an order call is an exception to the preceding
rule. Instead the following call is used.

call rq$order(pibp, status_mask, comp_event, error_event, tbx,
request, argptrl, argptr2, sizel, size2, cstatus)

del sizel fixed bin, /•argument structure sizes In bits•/
slze2 fixed bin;

request, argotrl, and argotr2 are the order call arguments.
sizel and §l~e2 are the sizes In bits of the argument structures
pointed to by argotrl and argptr2 respectively. The DSM is
expected to verify all order calls received by it; either the
driving table or code u~ed for this purpose must contain the size
va 1 ues.

The status bit strings returned by the DMP are not stored in the
usual locations in the auxiliary transaction blocks (for a reason
discussed later below); Instead, the status for each request is
kept in each block's first transaction block extension. The
following call is provided to be used instead of tbm$get cbain
when chasing down chains which include auxiliary blocks.

call rq$get_chain(tbindex, type, orig, cnt, listptr, cstatus)

The arguments are Identical to those described for tbm$get chain
In Section BF.2.20; ~can only be 1 or 2. The queuer calls
tbmSget cbain and then copies the status bit strings from the
corresponding transaction block extensions into the status
locations in the array pointed to by llstotr before returning to
the main part of the DSM.

Other queuer calls are provided to
DSM. The receipt of an iowait
alteration of the status mask
corresponding queued request. The
this purpose.

assist the operation of the
call to the DSM may imply
and completion event for a
following call is provided for

call rq$new_event(pibp, tbx, status_mask, comp_event, cstatus)

~ is the Index of the block corresponding to the request whose
mask and event are to be replaced. The DSM obtains this Index by

Page 4 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24

chasing the down chain based In the call
provIded by the ol dst.~ argument of
Section BF.2.20).

block whose
the lowa!t,

During error handling and restart operations It may be
to reissue a previously queued request. The following
provided for that purpose.

call rq$relssue(pibp, tbx, cstatus)

Index Is
call (see

desirable
ca 11 Is

~is the index of the auxiliary block corresponding to the
request to be reissued. The queuer reuses the same block and TBE
and appropriately relnltializes certain data before signaling the
DMP. The position of the block in the auxiliary chain Is not
altered.

Beqyest Queuer 0Deration

When the queuer receives a call to queue a request for a DMP, it
calls the TBM to allocat~ a new transaction block In the DSM's
auxiliary chain. That Is, the chain base pointer used is
computed from addr(pibp->plb.chain_base.alindex). The queuer
does not set any hold bits at this or any other time. It is the
DSM 1 s responsibility to ~et hold bit holdl and/or arrange for
appropriate down-chain-Inclusion. Then the queuer allocates one
or more transaction bloc~ extensions (TBEs), all chained together
in the normal manner and based in the new block. The TBE chain
based In any block holds the arguments for that request; in
certain cases only relative pointers are kept pointing to
arguments elsewhere in the DSM's per-loname segment (IS). In
addition, the TBEs contain the status bit string, the status
mask, various events, and other data needed by the driver. Once
the TBE chain for a request Is fully prepared, the TBM is called
to store a relative pointer to the first TBE in the block, and
the locall event is signaled.

Since the auxiliary transaction block chain Is used by both the
queuer and the driver, which are In different processes, certain
uses of this chain require it to be locked to prevent
simultaneous access. The queuer locks the chain only when
acces~ing TBEs. The TBM lock on the Transaction Block Segment
(TBS) suffices during block allocation and modification· and
during chain chasing. The locking Is accomplished by calling the
Locker (see Section BY) with the auxiliary chain's lock list,
which Is located in the ICB.

The manner in which the queuer handles request arguments Is
Influenced by whether an argument is forward-only information or
is information to be returned by the callee in the DMP. In the
following discussion these two classes of arguments will be
referred to as "forward" and "return" arguments respectively.
Further, in the case of return arguments the behavior of the ~
queuer depends on the location (segment) of the return argument.

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24 Page 5

The following discussion treats the handling of the following
classes of arguments.

1. Fixed- and variable-length forward arguments.

2. Fixed- and variable-length return arguments located In the
DSM Is Is.

3. Fixed- and variable-length return arguments not located In the
DSM Is Is.

4. Two-way arguments (forward and return>.

5. Delayed-use arguments (read/write workspaces).

6. Order call argument structures.

The treatment of forward arguments Is as follows.

1. Fixed-length, forward arguments are copied into the first TBE,
which is designed to hold same for all queuable requests.

2. Variable-length, forward arguments are copied
additional TBE allocated expr~ssly for the argument. A
pointer to this TBE is stored In the first TBE, which
specffic places for these relative pointers. The actual
the argument is also stored In the first TBE.

into an
relative
contains
size of

The t~eatment of return arguments which are determined by the
queuer to reside in the DSM's IS is as follows.

1. Fixed-length, return arguments in the IS have only a relative
pointer to them stored in the first TBE.

2. Variable-length, return arguments in the IS have both a
relative pointer to them and their size stored in the first TBE.

This treatment allows the DMP driver to store the returned value
into its final IS location immediately upon return from first
module in the DMP 1 s lopath. Two constra lnts should be noted.
First, the returned argument cannot be updated subsequent to the
original return to the driver. Second, it is the DSM 1 s
responsibility to see that the storage in the IS for the argument
is not prematurely deallocated.

The treatment of return arguments which are determined by the
queuer not to reside In the DSM's IS is as follows.

1. Fixed-length, return arguments not in the D~M 1 s IS are
allocated storage in an additional TBE, and the relative pointer
stored in the first TBE is set to point to the freshly-allocated
space.

Page 6 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24

2. Variable-length, return arguments not In the IS are handled as
above except that the size is also stored in the first TBE.

Inasmuch as the driver, does not know that the returned value is
being stored into a temporary location rather than Into the final
location, it is the responsibility of the queuer to copy the
value from the temporary location Into the final location. Under
these circumstances, the queuer does not return to the main part
of the DSM, but \'Ia its for a return response event from the
driver.

Two-way arguments are treated exactly like return arguments
except for the follo~ing: (1) after temporary space (an
additional TBE) is allocated by the queuer, the queuer must copy
the original value into the temporary space; and (2) the driver
must provide this copy in the reconstituted call. At the time of
this writing, no two-way arguments occur among any of the
queuable calls.

Delayed-use arguments are ones which may be used (read or
written) by a callee subsequent to the return of the original
call. The only arguments presently admitted to this class are
the \'IOrkspaces in the L~, write, readrec, and urfterec calls.
Strictly speaking the actual arguments are pointers to the
~~orkspaces; herein the data pointed to wi 11 be loosely referred
to as the argument. When the queuer Is called to queue a
read/write call, the workspace~ be located In the DSM's IS.
The queuer will store a relative pointer to the uorkspace In the
first TBE. The driver will reconstitute the pointer and pass it
to the cal lee In the DMP. It is the responsfblll ty of the DSM
not to cause premature deallocatlon of the workspace.

The order call contains two pointers, argptrl and argotr2 which
point to a forward data structure and a return data structure

·respectively. The forward structure Is treated like a
variable-length fon-1ard argument and the return structure 1 Ike a
variable-length return argument. The OSM must provide the
structure sizes In bits to the queuer. The queuer and driver
Internally treat these structures as bit strings. It is presumed
that the DSM screens order calls and accepts only those which are
relevant; the table or procedure which Implements this screening
can contain the sizes.

aueuable Oyter Calls

Not all outer calls are appropriate calls to send to a DHP vla
the queuer. For example, calls relating to read and write
synchronization are intended for the DSM and need not be
queuable. The yostate call need not be queuable because the
status available In the DSM's auxiliary (queuer) transaction
blocks is as up-to-date as is possible. A complete list of
queuable outer calls is given in Table 1, attached to this1
Section.

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24 Page 7

comoletlon Response Control

When the DSM calls the queuer to queue a requt!S t, the OS~1
supplies a status mask, a completion event, and an error event.
The mask Is used by the driver to determine when the completion
event should be signaled. The driver sl.gnals · the ·error event
Instead, If the driver determines that the completion condition
can never occur. If the completion event Is zero (event not
~upplled), the mask Is used to control trtggerlng of the error
event.

' '

~~hen the return to the driver occurs following the fon1arding of
the.outer call, the driver copies the status returned by the
callec Into the corresponding DSM auxiliary transaction block.
Every time the d~lver receives a return on subsequent call's the
driver updates the status of all outstariding calls by copying the
status from the b·locks In the callee's call transaction block
chain lnto the corresponding blocks In the DSM's auxiliary block
chain.

The status mask is an 18-blt string whose bits correspond to the
18 primary bit~· (1·18) of the retu·rned status bit string. Every
time the driver stores -a new status. bit ·string, the driver
compar,es the new primary bits against the status mask. The
following describes the signaling. algorithm •. :o~ce elther: event·
is signaled, no .further events will ordinarily ·be signaled for
that request.· The status mask Js saJd to match the status If all
the bits equal to one In the mask are also equal to one In the
primary status bits Cl.e. (mask) & (primary) • (primary)).

1. lf.the mask does not match the status and status bit S·ls zero
and the completion event Is nonzero, no signal Is s~t.

2 •. If the mask does not. match and status·bit 5 is one (no more
status change) and both. the completion and error e'vents are
nonzero, the error event Is signaled~

3. If .the mask matches the s-tatus and the completion· event Is
nonzero, the completion event Is signaled.

4. If the. mask matches the st.atus and the. completion
zero and the erro~ event Is nonzero, the error event Is
The mask can be used to control error signaling
completion signal .Is required.·

5. Under any other condlt(ons no events are signaled.

event is
signaled.

when no

The driver keeps an event-signaled flag In the first TBE. This
flag is reset by the queuer upon receipt of an rgSnew eyent ot an
rq$relssue for a prevlously-queue.d ,request. Table 2 attached to
the end of this S.ec~ion summarizes· the primary status bits for

~ convenience. It should be noted that bl ts 11-13, and 18 will
never be set to one hy the driver.

Page 8 MULTICS SYSTE~1-PROGRAMMER 1 S MMJUAL Section BF.2.24

The DSI·:l norma 11 y s pee If I es a nonzero comp 1 e t I on and error event
~'lhen it in tends to subsequent 1 y ca 11 the waIt coordInator to \'Ia it
on the event(s). See Section 8F.2.21 for a general discussion of
the behavior of a generic DSM.

Norma 11 y the queuer returns to the DSt1 prompt 1 y after queuing the
request and signaling the DMP. Upon said return the DSM may or
moy not choose to wait on events. In an earlier discussion of
request queuer operation, a situation was revealed under which
the queuer did not promptly return. Uhen confronted \~lth a
request having a return argument not located In the DSM 1 s IS, the
queuer must itself wait for the returned value. A third event,
called the return event, Is defined for this case; this event Is
created only by the queuer. If this event Is nonzero at the time
the driver gets the original return from the callee, the driver
signals the return event. If conditions are also met for
signaling either the completion or error event, that event is
also signaled.

Begyest Oueuer ~ Bases

The request queuer utilizes the name of the "loca11 11 event, the
DMP's process fdentfflcatlon, and the auxiliary chain's Jock list
from the lnterprocess Convnunication Base (ICB); it also uses the
auxiliary chain base Indices and the allocation area In the DSM's
PIB. Except for the foregoing, the queuer uses only per-request
data bases.·. The pol nter to the ICB is computed from:

icbp • ptr(pibp,ptr(pibp,O)->hdr.relp.lcb);

See Section BF.2.40 for declarations of the loname segment header
(HDR), the ICB, and the PIB.

The primary per-request data base Is the first TBE allocated for
the request. This TBE contains all the items needed for general
queuer and driver operation and has Items corresponding to all
fixed-length, forward request arguments. This TBE also contains
the sizes of variable-length· arguments and relative pointers,
when necessary, pointing to varlab'le•length arauments or to
return arguments not located In the DSM 1 s IS, all of which are
located in addItIonal TBEs.. These add It loha 1 TBEs are allocated
expressly for each such araument.

The declaration for the first (primary) TBE follows.

del 1 rqtbe based. (p),
2 chain,

3 next_tbe bit (18),
3 last_relp bit (18),

2 call_type fixed bin,
2 status bit (144),
2 b i ts,

3 status_mask bit (18),

/•request queuermaln TBE•/
/•standard TBE chaining•/

/•call type Index•/
/•queued-call status•/

/•response control status mask•/

MULTI CS SY$TEM-PROGRAMI4ER 1 S MANUAL Section BF.2 .. 24 Page 9

3 dmp_tbx bl t (18), l•callee call block index•/
3 event_s I & .bl t ·:(1), l•event s I goa 1 ed ·.f 1 ag; 1•s I goa 1 ed•/

2 comp_event bl t (36), /•completion event•/
2 error_event bl t (36), /•error event.•/
2 return_event bit (36), l•return event•/
2 proc_ld bit (36), /•calling process ld•/

/•.request argLment .data•/
2 (al,a2) char (32), /•flxed•length .forward ltems•/
2 b 1 b I t . (144 >, I * " •l ,
2 (c1,c2,c3,c4,c5,c6) fixed bin (35),' /• ·",·also varf.able ttel'71 si..:.es•/
2' re 1 p,

3 (r1,r2,r3) bit (18); /•relative pointers to variable Items•/

AnY items In the preceding declaration which have not. yet been
discussed are discussed later below. The number of each kind of
I tern Is determ~ned by the needs of · the queuab le ca 11 s; the
addition of new calls may r.equlre extension of this primary TBE.

The declaration for the additional TBEs required for variable or
return argLille.nts depends •on the specific .call being queue·d. For
example, the attach can has .a variable-length JllQds: argument; it
requires the·followlng.extra TBE.

del 1 rqtbel based (p1),
2 chain,

3 next_tbe bit (18),
3 last_relp bit (18),

2 model char (N);

/•attach TBE•/
~ i,

The Jength of IJlQ.SI&. Is stored In (p->.rqtbe.cl). · ~and· iopame~
are s·tored ill . (p->rqtbe.al) . and • (p"">rqtbe.a2). respectively;
ptr$rel(addr(pl->rqtbe1.model)l is stored ln (p->rqtbe~rl).

As another example, consider the ~readrec call. N •· reccoynt Is
stored,tn (p~>rqtbe.c1). The following extra TBE Is al16cated.

del 1 rqtbe2 based (p2), /•readrec TBE•/
2 chaIn,

3 next_the bit (18),
3 last_relp bit (18),

2 nelem1 (N) .fixed bin (35), t•N•reccount•/
2 re 1 p,
3·workspacel (tJ) blt (18); /•workspace relatl·ve pointers•/

If the return argument ne1emt lsnot l·n the.DSM 1 s IS, another TBE
\..Ould need to beallocated for lt. Relative pointers to all
three of these variable Items are stored In the primary TBE.

'x .. ' ,, .. ' '

The call· t:ype · indl,~es, mapping, d:etails, and extra TBE
declarations for .atl th~~ucuabl~ calls are given In· Appendix 1
(to be attached to a later version of this Section).

lha Deyice-Manager-Proccss prlyer

Page 10 t·1ULT I CS SYSTEM•PROGRAf.·IMER 1 S MANUAL Section BF.2.24

The DMP Driver Is called only by the Dt-1P Dispatcher (see Sections
RF.2.23 and BF.2.25). Much of the operation of the driver when
forwarding calls has already been mentioned tn earlier
dl scuss ton. The fo II owl ng dl scuss I on descr lbes the dr f ver
operation upon receipt of various calls.

The driver's primary data bases are
allocated by the queuer. The driver also
chain base Indices from the DSM 1 s PIS. In
stores return ar gurnents Into the DSt·t 1 s IS.
are directly accessed.

the per-request TREs
needs the auxiliary

addition, the driver
No other data bases

The following Is a declaration for some arauments used In most
calls to the driver.

del loname char (32), I* callee 1 s loname •I
ptbp ptr, I* ptr to OSM 1 s PIB *I
cstatus bit (18); I• driver call status •I

The jgname of the module to be called Is created by the
dispatcher at attachment time and Is n.ot supplied by the user's
DSM. ~ Is a pointer to the DSM's PIB. cstatys Is used
pr imar II y to report the status of the lopath to the dl spatcher.
The path conditions reported Include: (1.) Internal quit
detected; (2) device absent from channel; (3) lopath detached;
and (4) function not performed.

Because the driver Is concerned with the DSM 1 s auxiliary blocks
In the user's TBS, the TBM must be called to switch to using the
user's TBS. This call Is made by the Dispatcher prior to calling
the drIver; the drIver will ca 11 the TBM to reset the TBS to
normal prior to calling the first outer module In the DMP lopath.
Upon return, the driver makes no calls to the TBM requiring the
user's TBS. Another function performed for the driver by· the
Dispatcher Is the locking and unlocking of the DSM's auxiliary
chain.

The following steps summarize the Dispatcher functions performed
for the driver.

1. An attempt Is made to lock the DSM 1 s .auxiliary chain; the
Locker is called wlth the auxiliary chain's lock Jist (In the
ICB) and with an event. If the attempt .falls, the Locker returns
having stacked the event In the lock list, and the Dispatcher
does not call the driver. Followln& a subsequent wake•up due to
the event, the Dispatcher repeats the lock attempt.

2. After the auxiliary chain Is locked, the Dispatcher calls the
TBM to switch to using the user's TBS (see Section BF.2.20). An
event Is provided for the TBM to use In Its calls to the Locker.

3. The driver Is called.

' .

..
/

MULTICS SYSTEM-PHOGRAMMER'S MANUAL Section BF.2.24 Page 11

4. If the driver returns Indicating· that It could nc>t perform Its
function because the user's TBS was In use, the Dispatcher
arranges to call the driver again later, when the unlocking of
the user's TBS causes a wake-up associated; with the event
provided the TBM.

5. Upon return from the driver, the auxiliary chain is unlocked.

When the r~quest queuer signals· the iocall event, the DMP
Dispatcher wakes up and calls the driver with the following call.

call driver$iocall(ioname,pibp,cstatus)

The driver then performs the following functtons.

1. Using ..Q..[.,b,Q., the DSM 1 s auxiliary chain base indices are
obtained. tbm$get chain is called to chase the auxiliary chain.
The oldest queued request which has not yet been forwarded Is
located and becomes the current request.· If the· TBM r~turns
indicating that the TBS was locked, the drfver returns to the
Dispatcher indicating that the call could not be performed for
that reason.

2. An outer call corresponding to the current request is
reconstituted. The TBM Is called to switch the TUS back to
normal, and the outer:.call is issued using ion·ame.

3. upon return a lJ.Q.l.sl cqll is issued to the JBN to hold the
callee's call transaction block •. ·tbmSget chain is called to
chase the entir.ecallee c~ll chain and obtain aH the :block
lndice5 and available status.

4. By matching these .call block indices against those
each first TBE, the auxiliary and corresponding call
be correlated. Any unmatched call block Is released
release. Any call block yielding a status bit string
equal tg one Is rel~ased.

stored in
blocks can
by calling
with bit 5

5. Any return argument handling required .by this ·request Is
performed. The corresponding call block Index Is stored in the
first TBE for future correlation.

6. The status bit strings of the current and all older matched
(to call blocks) requests are updated~ Each request's status bit
string is stored in the request's primary TBE rather than in the
auxiliary block,. to avoid using a poss·ibly locked TBS. In each
case ·the status mask Is compa reo with . ,the status to determine
whether anY events~need to be si~naled~ .

1. If the current return event is nonzero, the return event is
signa 1 ed.

8. The driver returns to the Dispatcher. Only one request is
fonJarded at a time; existing additional requests result in

Page 12 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24

subsequent calls to the driver.

When an lopath Is to be created In the DMP, the Dispatcher Issues
the following call.

call drlver$1nlt(loname,plbp,cstatus)

This call Is handled Identically like drlyerSiocall, except that
only an attach call can be forwarded. If the current request Is
not an attach call, the driver returns to the dispatcher with
~status Indicating that the path Is not attached.

When a real or simulated hardware Interrupt event occurs for the
iopath, the Dispatcher Issues the following call.

call drlver$hardware(loname,plbp,cstatus)

This call Is handled similarly to drlyerSfocaJJ except that any
current request Is Ignored and an Internally generated uostate
call Is Issued Instead. All status updating and event signaling
occurs normally.

When an quit event occurs, the Dispatcher 1ssues the following
ca 11.

call driver$qult(loname,plbp, lnt_qult,cstatus)

The argument lot gyfl; Is a one-bit string; If one, the lopath Is
already In Internal quit condition. If lnt gylt Is zero, the
driver handles the call similarly to drlyerSbardware except that
an Internally generated abort ca11 Is forwarded with Its
gldstatys argument equal to zero. Status updating and event
signaling occur normally except that the driver adds the
abort-due-to-quit status bit (bit 15) to the status of
freshly-aborted requests. If any unprocessed requests exist In
the auxiliary chain, the driver sets status bits 5, 6, 14, and 15
equal to one to simulate an abort due to a quit. If lot quit Is
one, only the latter simulated aborts need be performed. The
driver then returns to the Dispatcher.

When an iopath Is to be restarted, the Dispatcher makes the
following call.

call driver$restart(plbp,reset,cstatus)

' ' ,

The argument reset Is a one bit strlna Indicating whether or not
the lopath Is to be reset before restarting. The restart
mechanism involves the DSM 1 s observing that some requests have
been aborted due to a quit. The DSM usually reissues such
requests unless the reset status bit (bit· 16) is one. Using
tbmSget chain, the driver obtains the status bit strings for all
the requests In the DSM 1 s auxiliary chain. Any request having
status bits 14 and 15 equal to one (aborted due to quit) now have ~
bit 16 (the reset bit) set equal to reset. Any nonzero error

' ' I r'"

~1UL TICS SYSTEfvl-PROGRAMMER 1 S MANUAL Section BF.2.24 Page 13

events for these blocks (with bits 14 and 15 one) are signaled.
The driver returns to the Dispatcher.

If the Dispatcher needs to eliminate an lopath, it makes the
following call. In this case the Dispatcher does not lock the
auxiliary chain or call the TBM, before calling the driver.

call drlver$uetach(ioname,cstatus)

ln this case the driver calls the TBM to Insure its use of the
nQrmal TBS, and then issues a detach call on Joname to detach the
pa.th. The dlsoosal argument contains the "MAX" detach
propagation mode and other modes necessary to prevent outer
modules in the lopath from disturbing the attached device. A
successful detachment Is reported in cstatus.

Page 14 MULTICS SYSTEM-PROGRAMMER'S MANUAL

Table 1.

List of outer calls queuable by Request Queuer.
Return or delayed-use arguments are underlined.

Qyeyable Oyter Calls

attach(loname1,type,ioname2,mode,status)

detach(lonamel,loname2,dlsposal,status)

changemode(ioname,mode,status)

getmode(loname,bmode,status)

worksync(ioname,wkmode,status)

abort(ioname,oldstatus,status)

format(ioname,epl,epw,tsl,tsw,down,lndent,status)

tabs(loname,tmode,hv,ntabs,tabllst,status)

order(loname,request,argptrl,argotr2,status)

getslze(loname,elsize,status)

setslze(ioname,elslze,status)

read(loname,workspace,nelem,nelemt,status)

wrlte(loname,workspace,nelem,nelemt,status)

Section BF.2.24

setdellm(loname,obreaks,breakllst,nreads,readllst,status)

getdellm(loname,nbreaks,breakllst,nread,,readllst,status)

seek(loname,ptrname1,ptrname2,offset,status)

te11(1oname,ptrnamel,ptrname2,offset,status)

readrec(looame,reccount,workspace,nelem,nelemt,status)

wrlterec(loname,reccount,wgrksoace,nelem,nelemt,status)

...

/

,. . . ,..

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.24 Page 15

Table 2.

Summary of primary status bits.

ill Me an I n g Wuw. .u.l, .t.Q y a 1 u e .::. .l

1 successful logical Initiation (see Section BF.1.04).

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

successful logical completIon (see Section BF.L04).

successful physical initiation (see Section BF.1.04).

successful physical comp 1 et ion (see Section BF.1.04).

transaction terminated (no more status change).

serious or fatal error (nonzero bits In 19-54).

advisory status or nonfatal error (nonzero bits In 55-90).

call-oriented status (nonzero bits In 91-108).

hardware status (nonzero bits In 109-126).

new status bits set (used during status exchange).

unassigned.

unassigned.

unassigned.

transaction aborted.

abort was due to quit condition.

reset condition (transaction not to be restarted).

device absent from channel.

sync control; return condition (see Section BF.2.02).

