
MULTICS SYSTEM-PROGRM,1HERS' t~1ANUAL SECTION BX.12.01 PAGE 1

Published: 01/26/67
(Supersedes: BX.12.01 1 02/01/66)

Identification

The representation of options in storage
C. fv1arceau

.Eurpose

This. section describes the representation of options in
the options stack and the permanent options list. The
user does not have to read this section which is concerned
solely ltJith implementation~ in order to use the options
facility as it is described in BX.12.00.

The representation of options described here is designed
to enable ready reference of options by name and by frame,
and to minimize storage requirements.

Options in the file system hierarchy

Options are recorded for each user~ since each user has
his own options. For each user there is a permanent options
list (the perm_op_list segment) in his user profile (see
BQ.4.03). Perm_op_list is created by a procedure called
create_op_list (not yet documented). Each time that the
user logs in, a copy of his permanent options 1 ist 5.s

·made. The copy~ called the op_stack segment, is an entry
in the process profile directory which contains the profile
of the interactive Working Process (for a description
of logging in~ see BQ.3.02). Op_stack is "'/here the actual
stacking of options takes place. The options stack in
op_stack is pushed and popped as described in BX.12.00.
The permanent options list is not pushed or popped. It
records the permanent values of options (values in frame
one). Thus if a user logs in twice, he has two option
stacks. His permanent options list determines the initial
form of each stack. Thereafter the stacks are independent
of each other.

F.evj_m~ of term5noloay

An option is a binary switch which may be set on or off.
An option may also have a specification, a character string
which provides additional information when the switch
is on.

The com~ination of an onloff value and a specification
is the yalue of the option.

,.

MUL TICS SYS TEt·1-PROGRAMMERS' MANUAL SECTION BX.12.01 PAGE 2

An option is set if some value for the option is recorded
in either the permanent options list or the options stack.
An option is unset if neither the permanent options list
nor the options stack records a value for the option.

The stacking of options

A frame of the options stack is created when the stack
is pushed and deleted when the stack is popped. Frames
are numbered 11 2 1 3 1 ••• Frames 1 and 2 have special
significance: frame 1 is called the permanent frame and
frame 2 the session frame. Values recorded in frame 1
of the options stack are recorded in the perm_op_list
segment as well as in the op_stack segment; these values
are valid from one session to another. Values recorded
in frame 2 are valid for the duration of a console session
(or until logout); the pop_opt procedure (see BY.9.02)
does not pop the options stack (op_stack) beyond frame
2.

An option is said to be set in frame n if it has a value
in frame n. An option is unset in frame n if it has no
value in frame n 1 i.e. 1 if it has not been set in any
frame up to and including frame n.

When the stack is pushed 1 a nevJ frame is created., and
all options vJh ich v.1ere set in the previous frame are now
set in the newly-created frame as well. Clearly it would
be inefficient to represent., for every frame., all of the
options which are set in the frame. For example., the
user may set no new options in frame n1 yet the frame
might have to record the values of 100 options set in
frame n-1.

To avoid such inefficiency~ not every option which has
a value in frame n is represented in frame n. In general~
an option is represented only in those frames in which
the user explicitly set it.

When the user sets an option., he creates an explicit settina
of the option in the options stack 1 in the permanent options
list~- or both. A setting is an explicit record of the
value of an option in a frame.

After an option has been set in a frame., its value in
that frame remains valid in all later frames., until it
is set again. Thus the option has a value in all later

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.12.01 PAGE 3

frames~ but it may not, and probably will not, have a
setting in all later frames. The value of an ootion in frame n
is the value of the option in frame m, where m is the
largest nuniDer <n such that the option has a setting in
frame m.

Accessing the oermanent options list and the options stack

When any option handling procedure accesses perm_op_list
or op_stack, it treats the segment as internal data; namely,
a PL(I controlled structure called option_seg. The statement

call generate_ptr (pathname, ptr);

returns a pointer (ptr) to the origin of the segment pathname.
The pathname of perm_op_list is

>user_profile_dir > ~.projid > perm_op_list

The pathname of op_stack is

pdirdir > p > pprofile > op_stack,

where name and projid are the name and project ID of the
user, and Q is the name of the process directory for this
process.

Structure of the ootions stack

The options stack and the permanent options list each
have the same structure. They consist of -

1) a frame.table to record frames of the stack,

2) a hash table for hashing option names,

3) headers for options which the user has set,

4) settings for options.

Each of these items is discussed in this section. Very
briefly, options are hashed by name. When a user sets
an option for the first time, he creates an entry for
it in the hash table. The hash table entry points to
an option header which records the name of the option
and a setting. The header is located in a frame. When
the user sets the option later, in another frame, a new
setting of the option is created in that frame.

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.12.01 PAGE 4

When a option handling procedure (see BY.9.01 - BY.9.05)
accesses either op_stack or perm_op_list, it treats the
segment as a controlled PL/I structure:

del 1 option_seg ctl (ptr);
2 nopt fixed,
2 fno fixed,
2 htsize fixed,
2 ftsize fixed,
2 htptr bit (18),
2 ftptr bit (18)
2 space area ((K));

option seg- the segment referred to may be either op_stack

fno-

htsize-

ftsize-

htptr

ftptr-

space-

or perm_op_list. Q1L is obtained by generate_ptr
(see above).

current frame number. In perm_op_list, fno = 2.
This is so that when perm_op_list is copied as
op_stack, the current frame will be the session
frame (i.e., frame 2), containing settings for the
current session.

length of the hash table. The hash table is
created with length 30, but may be expanded
when necessary. (See BY.9.05)

length of the frame table. The frame table
created with length 20, but may be expanded
contracted (See BY.9.02.)

is
or

relative pointer to the origin of the hash table.

relative pointer to the origin of the frame table.

a PL/1 area, in which option handling procedures
allocate storage. The contents of soace are
explained later in this section. K must be
determined by create_op_list when perm_op_list is
created.

Representation of a frame

The frame table is used to access frames of the options
stack. For each frame in the stack, there is an entry
in the frame table which contains a relative pointer to
the most recent setting in the frame. Each setting in
a frame points to the previous (i.e., next most recent)
setting in that frame. The settings are double-chained
so that any setting may be deleted easily by rechaining.

r

MULTICS SYSTEt~-PROGRAMMERS' MANUAL SECTION BX. 12.01 PAGE 5

The frame table is used primarily for popping the options
stack. Suppose the current frame is frame k. The kth
entry in the frame table points to a setting in frame
k. This setting points back to another, and so on, until
the back frame pointer for some setting is null. When
all these settings are deleted, and the kth entry of the
frame table set null, then the stack has been popped.
Now frame k-1 is the current frame.

The frame table is allocated in option_seg.space when
the segment (perm_op_list) is first created. The frame
table is declared by:

del ft (p~option_seg.ftsize) bit (18) ctl (ftptr);

Ft(i) is a relative pointer to the most recent setting
in frame i. If there are no settings in frame i, ft(i)
is null..

In perm_op_list only ft (1) is meaningful.

Figure 1 shovJs the chaining of settings with in a frame.
The diagram sho'v,/S only the relations of settings within
frame. It is not intended to represent the actual structure
of a setting (see below, option settings).

The Hash Table

Options can be accessed by name or by frame. To pop the
stack one must access options by frame but usually options
will be referenced by name. Since there is no practical
limit to the number of options which the user may set,
hash coding the names of options seems advisable. Further,
it must be possible to discover quickly whether or not
an option Js set, and hashing can provide quick verification
that a given name is not among the names of options which
are set.

The hash table is initially allocated (by create_op_list)
in the area space:

allocate ht in (ptr~option_seg.space) set (p);
ptr~option_seg.htptr = p;

The length of the hash table (htsize) is 30 when perm_opt_1ist
is created. Such a hash table will accommodate 20 options
(the ratio of the number of filled entries to the length-
of a hash table should not exceed 2/3). The hash table

r

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.12.01 PAGE 6

can be expanded to accommodate a larger number of options
(this is done by addoot when the number of options grows
large- see BY.9.05).

The hash table is declared by:

del 1 ht (p~option_seg.htsize) ctl (htptr) 1

2 d bit (1)1
2 v bit (1),
2 pointer bit (18);

d - deletion bit. If an option was represented in this entry
and is then deleted, normally the vacant bit is set to 1
and the d bit left unchanged (=0). However 1 if the next
entry in the hash table is not vacant, the d bit in this
entry is set to 1.

v - vacant bit 1 = 1 if the entry is vacant, = 0 if the entry
is deleted or if the entry points to an option header.

pointer - relative pointer to an option header. If either
d or v = 1, pointer is meaningless. The option header
contains the name of the option (see below).

Representation of a single option

An option is represented in the options stack by a setting
in each frame of the stack in which the user has set the
option. The first setting of the option (i.e. 1 the setting
in the frame with lowest frame number) is called the ootion
header. The header also contains the name of the option.

All settings of an option are double-chained to the header
of the option by relative pointers. The header, in frame
n1 , points to a setting in frame n2, which points to
a setting in frame n3, and so on, wnere n1 < n2 < n3.
The last setting in this series is known as the current
setting. The value of the current setting is the current
value. Note that the current settin~ does not necessarily
lie in the current frame. However, 1t does determine
the current value, which is the value in the current frame.

Figur~ 2 represents a single option in the options stack.
The diagram shows only the relations of settings within
a single option. It is not intended to represent the
actual structure of a setting (see below, Option settings).

r

r

MULTICS SYSTEr-1-PROGRAjv\MERS' r~ANUAL SECTION BX.12.01

To find the current value of the option, it is necessary
to find the current setting. The header points directly
to the current setting. Suppose the header is in frame
1, the next setting in frame 2, and the third (current)
setting in frame 4. Suppose further that the current
frame is 5. To find the value of the option in frame
3: the header points to the current setting (frame 4).
The current setting points back to the setting before
it (frame 2) .. Since the option is not set in frame 3~
the value in frame 2 holds in frame 3.

Option Settinos

A setting of an option (except for the header) has the
following form:

del 1 setting ctl (setp),
2 lset bit (18),
2 nset bit (18),
2 lopt bit (18),
2 nopt bit (18),
2 fno fixed,
2 set,
3 sw bit (1),
3 spec bit (18);

PAGE 7

lset relative pointer to the previous setting of this option.

nset - relative pointer to the next setting for this option.
In the current setting, nset is null (i.e., all zeros).

l6pt - relative pointer to the previous setting (of another
opt ion) in the same frame. 1 opt is nu 11 in the first

t t-' ' f se ~1ng 1n a rame.

nopt - relative pointer to the next setting (of another option)
in the same frame. nopt is null for the last setting
in the frame.

fno -number of the frame in which this setting lies.

set this substructure records the value of the option for
this setting.

sw switch for the option.

spec - relative pointer to a specification for the option.

r

r

r

MULTICS SYSTEM PROGRA~1MERS' MANUAL SECTION BX.12.01 PAGE 8

The specification for an option is an adjustable character
string:

del 1 spec ctl (specptr),
· 2 nochar fixed binary (9),

2 string char (specptr~spec.nochar);

nochar - the number of characters in the specification.

string - the character string representing the specification.

The header for an option has the following form:

del 1 header ctl (headp),
2 nochar fixed bin (9),
2 n~me char (headp~header.nochar),
2 cset bit (18),
2 nset bit (18),
2 lopt bit (18),
2 nopt bit (18),
2 fno fixed,
2 set,
3 sw bit (1),
3 spec bit (18);

nochar nu~ber of characters in the name of the option

name - name of the option

cset - relative pointer to the current setting of this option.
nset is null if the header contains the on1y setting
of the option.

nset - relative pointer to the next setting of this option,
nset is null if the header contains the only setting.

lopt - relative pointer to previous setting in this frame,
lopt is null for the first setting in the frame.

nopt - relative pointer to next setting in this frame. nopt
is null for the last (most recently set) setting in
the frame.

,.

r

,.
•

null for
first

setting

MULTICS SYSTEM-PROGRAMMERS' MANUAL

Figure 1: Representation of a Frame

setting·

ptr to
previous setting

ptr to next
setting

(1st setting
in frame i)

setting

ptr to
previous setting

ptr to next
setting

(2nd setting
in frame i)

SECTION BX.12.01 PAGE 9

ft(i)

pointer to most
recent setting

setting

ptr to
previous setting

ptr to next
setting

(3rd setting
in frame i)

null for
most
recent
setting

MULTICS SYSTEM-PROG~AMMERS' MANUAL SECTION BX. 12.01 PAGE 10

Figure 2: A Single Option

d v pointer
HT entry l o J oj L

header

..
r header (frame 1)

:--t
r---

r ptr to current setting

ptr to next setting
r-

setting (frame 2) ..
-- ptr to last setting

--II ptr to next setting f-

(current) , ,.
setting (frame 4)

- ptr to last setting

ptr to next setting __. null,
no next setting

•

