CC-183 CC-i93

COMPUTATION CENTER
Bassachuseits naiituts of Technology
Cembridge 3%, Massachopoiis

March 30, 1962

To: Al} Programmers
From: Marjorie M. Daggett, F. J. cﬁrbut5, and J. R. Sseinberg

Title: MITMR, an FMS subprogras for using the IEM
Interval Timer clock

Purpoge: MITMR is a general purpcse subprogram that supplies the neces~
sary cco-ordination of the use of the IBM 7090 interval timer clock
by the Fortran-FAP Monitor System and use by the individual monitor
Jjobs and, as such, should be the only FMS programmer method of using
the interval timer clock, It provides the user, during his execution
time, with the ability to use the interval timer clock as either z
stop watch or an alarm clock or both, Another entry to MITMR allows
the user to interrogate the cicck and determine the amount of time
used since the start of his job. This subprogram has been co-ordina-
ted with the system sc that 2 run is terminated approxircately n min-
utes after initiation, where n is the maximum running time as speci-
fied on the I.D. card. (See Procedures Handbook for 1.D, card des-

criptien,)
Description: The MIT-FMS system sets the clock to go off n minutes after

the start of the job, where n is the maximum Job time as specified
on the I.D. card. An initializing entry from SETUP to MITHR at
the beginning of user execution time sets the time left for the Job
to run in a table with the entry location of the EXIT subprogram
as 1ts assoclated entry. When the clock goas off, control i3 trang-
forred to EXIT and the job is terminatsd, Thus, in the normal case,
oven though a user’s lob time is up, 2 post-moriem can be taken.

The IBM clock increments in Goths of a second. This time

unit is used in the calling ssquences for both setting the cliock and
reading the clock |

CC-193

Calling Sequences:

a, Two eatries are provided to allow using the clock as a
stop watch in order that sections of 2 program may be timed.

To reset the stopwatch to zero -

CALL RSCLCK in FORTRAN, or
EXECUTE RSCLCK. in MAD,

To read the time in GOths of a second since the last call
to RSLCK =~

CALL ST@PCL(I) in FORTRAN, or
EXECUTE ST@PCL,(I) in MAD,

where I is an integer variable that will contain upon exit from the

routine the time used in 60“’s of a second,

b. At any time, a user may ask for the time since the begin-

ning of the job in Goths of a second by using the cail:

CALL J@BTM(J) in FORTRAN, or
EXECUTE JPBTM.(J) in MAD,

where J 18 an integer variable that upon exit from the subprogram
contains the time used since the start °2f the job in Soths of a
second,
The amount of time left for a job to run can be found by
issuing:
CALL TIMLFT(J) in FORTRAN, or
EXECUTE TIMLFT. (J) in MAD,

where J is an integer varia“le that upon exit from the subprogram

contains the time left for the job to run in 60ths

of a sécondo
c. The interval timer clock may a2l1ls0o at any time be used
as an alarm clock, The FORTRAN calling sequence for this 1is:
ASSIGN S T8 N

CALL TIMER(I , N}

where I is an integer variable that specifies the time for the clock
to run in 60ths of a second and S is the statement to which control
is sent when the clock goes off., N. B. Due to the logic of the For-
tran compiler, there must be a "'seeming” path of flow to statement S.
See Example 2 in section e,

CC~-193

Method:

The MBAD calling sequence is:
EXECUTE TIMER.(I , S)

where 1 is as above and S is a statement label to which control will
transfer when the clock goes off.

There may be no more than nine (9) active calls to TIMER
at any time,

After control has been sent to location S at the end of
the timer interval and after examination of certain conditions,
the user may desire to complete the set of instructions (or pro-
cess) that was interrupted,

This may be done by issuing:

CALL RSTRTN in FORTRAN, or
EXECUTE RSTRTN, in MAD,

The effect of this call is to restore the machine conditions
to the state they were when the timer went off and to return to the
ingtruction interrupted. Specificaily, the only machine conditions
disturbed and preserved are the AC, the MQ, the three index registers,
and the AC overflow light.

' d. If a TIMER call has been set up as a protective measure,
it may be desired to turn off the alarm signal., This can be done by:

CALL KILLTR in FORTRAN, or
EXECUTE KILLTR, in MAD.

It should be noted that this kills only the current alarm
trap-tine set up, uniess the current alarp trap-time is the job

shut-off time. The job shut-off setting cannot be killed even with
repesated cails to KILLTR,

Both the FMS system and the user are making use of the inter-
val timer for various purposes; hence, it is desirsble to have one
program in core at all times co-ordinating the use of the clock.

Owing to space limitations in the existing system and the work involved

in changing the system, an adequate but asymmetric way of dealing
with the timer has been worked out that is compatible with the existing

version of the Monitor.

CC-193

. The Monitcr Sign-On record sevs the clock to interrupt ai
the tilme specified on the I.D. card; it alsoc sets the trapping loca-
tion for the clock to transfer to a lower core program that anly
notes the fact the clock went off apd returns to the imstruction
interrupted, This is called the "monitor setting” of the clock,
Thus, if a user’s job time is excesded during anry Monitor phase of
operation, such &8 translation or loading, that phase of operaticn
will be completed before the icb is terminated, During an asxecuticn
Job, .SETUP, which must be in 211 main programs, calls an ipitiali~
zing entry of this subprogram (TIME) to change the trapping locaticn
for the clock t< transfer internally to MITMR. Thus, the subprogram
MITMR as well as .SETUP will be a part of every user’s run. The
initislizing entry (TIME) enters the time left for the fob to run
in the table used by the entry TIMER and enters an associated trans-
fer to EXIT. Thus, if the icb time 18 exceeded during user executicno
EXIT is calied in the normal fashion, (i.e,, before the job time shut

v

off) it will reset the trapping location to the Huh&&or getting so
that even if the clock then interrupte, the normal taking of a post-
mortenm will he completed and the job terminated.

On each entry the user makes to TIMER, the alarm period is
checked against the existing time periods in the tehle and is entered
in the table in proper sorted sequence sc that the tadle is ailwaye
sorted according to ascending values of time pericds, Thus, even

thougk @ user requests a time pericd which exceeds the Job time left,

the sort insures that the Jjob time setting of the clock and 1:s alarm

will precede the excessive rsqQueset, Wheﬁ the alarm clock goass off
tbe pext entry in the table is used as the clock setting and control
is sent (o the location specified in the calling sequence ts TIMER.
The job time entry in the table is alsc marked sé thet repesied
ectries to KILLTR will never kiil that entry in the tabls,

Restrictions: The tabie that TIMER uses is ten (10) registers long; bence,

only pine (9) active entries at any time caen be mede tu TIMER. If

CC-=193

the table is full, TIMER requests will be ignored,

The use of PDUMP and DUMP subprograms destroys any Giming
being done by the TIMER subroutine (except the job time), 1f PDUMP
is entered, the trapping location for the timer is changed to the
Monitor Setting and restored to the user setting upen completion,
PDUMP uses KILLTR to remove gll timer entries except the jcb set¥ing
and sets the clock for tbe remaining job time, The use of FTNPM
and FTNBP alsc destrcy any tiking being done by the TIMER subréutine
(excapt the job time}. The procedure followed after a call te
FTNPM or FTNBP 18 the same as that followed by PDUMP,

On cbain jobs, &t the end of a 1ink, CHAIN will change the
setting of the clock trapping locstion to the Monitor getting and

set the clock for the job time that remains, This Mcritor setting

will be operative until the next link is brought in and the main
program goes tc (TIME) via .SETUP. At this time, the Monitor indica-

tor is checked, If the timer went off while the link was being loaded,

control is sent tc EXIT; if the clock did not go off, the procedure
is the same, 1.e., the trapping location is changed for the user
setting for this link and the user may time any sections of his pro=-
gramk in tbis link, Thus, whenever CHAIN i8 entered, all TIMER
settings are cancelled; there is ne carry-over of informaticn from
one link to another,

€C~193

8, Eﬁgles:

(1 Timing a loop
. CALL RSCICK
DO & I = I,N
S A <I) = B(I) * C(I) + ACX)
CALL ST®PCL,(J}
PRINT 3 , J
3 FPRMAT (320 H TIME QF DO LOoeoP IS 16;, 19H GOTHS OF A SECOKRD.)

(2) Using the aljarm clock
C THIS LOOP IS WRONG IF IT TAKES MORE THAN TWO (2) SECONDS.
C THE FOLLOWING THREE (3} STATEMENTS PROVIDE A PATH OF FLOW
C TO STATEMENT 20.

ASSIGN 1 TP N

G¢ TS N, (2, 20)
CHNT INUE

ASSIGF 20 TP N
CALL TIMER (2 * 60, N}
DO 5 I =1,K

DO 5 J=1,L

[

5 AC1,3) = ACL,) 4 Q(I,J) = T(I,J) / B{X,J)
c ERROR IN PARAMETERS IF MORE THAN 2 SECOND LOOP
c PRINT VARIABLES THAT MAY BE OF INTEREST,

20 PRINT 4, K, L

4 FERMAT (22 H DO § 1&@P INTERRUPTED 51I10)

