Maspachusetis Tnstitute of Techoology
Projeci MAG

T34 Hemovandum MAC-M-205

November 25. 1964

MADBUG: A MAD DEBUGGING SYSTEM
by Robert §. Fabry

MADBUG is a system under which the user can create and
detug programs written In the MAD progfamming language .
MAGBUG aliows the user to input and edit symbolic prozrams
and to execute In a controlled way and interrogate the
derived machine 1language programs, The most important
consideration in the design of !MADBUG was ease in learning
and using, both for the beginner and for the advanced
programmer. iMADBUG Is wunusual in that it wutilizes
information which has beerr previously lignored, This
Information comes from: (1) the sequence in which the wuser
types his requests, (2) the flles avallable in the wuser®s
fiie directory, (3) the expanded information content of the
naw MAD symbol table fliles developed for 'ADBUG, and (&) the
informatlion inherent in the very.lfmited, styllized set of
coding sequences generated by a compiler, The use of this
additional information manifests itself In two wavys: (1) the
user need provide very little information to accomplish a
siven task, and {(2) the user does not have to understand

assembly tanguages, machine languages, octal numbers,

s farly research on the form of the HMADBUG system was
sponsored by the Advanced Research Projects Agency under
contract number SD=162 with Information Internationzl Inc.
of Cambridge, ass; later research and programming was
carried out as a special project for credit under Professor
F. J. Corbato; and the remaining work was carried out wilth
no sponsorship.,

HALBUG November 25, 196k PAGLE Z

relative or absolute addresses, symbol tables, machine
representations of constants, or any of a host of similar
items, The MADBUG requests of CHANGE, DELETE, [INSERT, and
APPEND demonstrate the influence of the "Expenslve
Typewriter® program written for the PDP=1 by Steve Piner,
The "nDT™ program written for the PDP~1 by Robert Saunders
and the "FLIT" program written for the TX=0 by Jack Dennis
and Thomas Stockham have Influenced the OPEN, VERIFY, BREAK,

and KiLL requests,
AN INTRODUCTION TO MADBUG

A simple hypothetical session with [ADBUG will provide a
useful backg round for the detalled description which
follows., Conslider a user who is writing a function which
returns the smallest factor of the number given to it as an
argument. The function returns zero if the argument Is a
prime, (Lines will be prefixed with a U for the user, 1 for
MADBUG, S for CTSS, or P for the user's program, Typing |is
assumed to be on a 1050 consoie, which means that the user
types In lower case and the machine types 1In upper case,
“"M:", by itself, means a blank line typed by 1,) Flirst, the
user will tell the system he wishes to use MADBUG:

U:madbuy

S:W 1812.2

e
MADBUG is now waliting for the user to glve his first
request, The user tells "1ADBUG that he is working on a

subprogram in a file called FACTOR MAD:

1MADBUG November 25, 1964 PAGE 3

Uswork factor
MACBUG makes no response unless the request calls for
information. The user wants tc input the program, which
doesn’t exist yet. He chooses to request !MADBUG to append
some input to the (now empty) symbolic program (introducing,
for the demonstration, a syntactlc error in the third card

and a bug In the Initialization of the index "“i"):

Uzappend .

Us external function (arg)

Us normal mode is integer

Us entry to factor

Us through loop, for i=1,1,I*i.g.arg

Usloop whenever (arg/i)vi.e.arg,function return i
Ue function return 0

Us end of functlon

Us

The blank line signals the end of Iinputing cards and Implies
that the user will type a request next, The user requests
that his program be translated Into machine language:
Ustranslate
M: TRANSLATING FACTOR, ..
M: #eee« ERROR 17025 IN STATEMENT BEGINNING OM CARD 003
Me "t LLEGAL FORMATION OR PUNCTUATION.
e TRANSLATION ERROR
Me
He asks MADBUG to print the offending third card:
Usprint 3
Ms ENTRY TO FACTOR
Me '
and recognlizes that he omitted the period., He corrects his
ervor:

Uschange 3
entry to factor.

as e

U
and re-translates his program, abbreviating the request name

by its first letter, as Is always allowed:

MADEUG November 25, 196& PAGE &

Uzt

M:TRANSLATING FACTOR. ..

MsSUCCESSFUL.

Me
FACTOR is syntactically correct and the user turns to wrlilte
a short main subprogram to test Its operatlon:

Uswork test

Uzappend

Us normal mode is Integer

U:z:loop print comment $type.$

Us read data :

Us fac=factor.(num)

Us print results num,fac

U: transfer to loop

Us end of program

Uz .
The user is ready to test hils programs. He tells MADBUG
what programs to load, This does not cause 1loading,
however, He then asks MADBUG to start his program. Since

he does not specify a starting point, and since the program
has not been loaded and run before, the program will be
started at the beginning of the malin subprogram. MADBUG
will know that TEST must be translated and that loadling must

occur at this point:

Ususe test factor

Us:go

M: TRANSLATING TEST. ..
M:SUCCESSFUL.

M: LOADING FRESH CORE IMAGE, ..,
M:SUCCESSFUL.

MsUSER IN CONTROL.,

P:TYPEO

The user Is now talking to his program:

Usnum=25 =«

Pe NUM = 25, FAC = 1
P:TYPE,

Usnums7 =

Pe NUM = 7, FAC = 1

MADBUG Movember 25, 1964 PAGE 5

PsTYPE.
The user realizes his program has a bug, studies his
program, and discovers that he should have inltialized the
index to 2. He could simply edit the correctlon into his
program and GO again, but an alternate stratagy will also
aliow the user to discover additional bugs In his program,
if any, without requiring re-translation and re=-loading.
The user iIntervupts hls program and returns control to
MADBUG:

U:(the user hits the break button once,)

S:INT, O

M:MADBUG IN CONTROL,

M: INTERUPT WHILE IN PROGRAM !/RFLXA AT 10 RELATIVE OCTAL.

Ms
WRFLXA is one of the lowest level subroutines for console
Input and output. 'In this case, the user's program was hung
there walting for input, The user inserts a breakpoint at
statement LOOP and returns control to his program., Since he
~ does not specify a starting point, and since his program has
been executed after the previous loading, the program will
be restarted where it left off. The user then types another
value of NUM to his program:

U:work factor

U:break loop

Uzgo

MzUSER IN CONTROL.

Usnum= 5 w=

M:MADBUG IN CONTROL.

M:BREAKPOINT ENCOUNTERED AT STATEMENT LOOP.
. The user fixes the initialization of the index by hand,
usling the open request, removes the breakpoint, and lets his

program calculate the factor:

MADBUG November 25, 1964 PAGE &

Usopen 1
Mel= 1 (U:)2
U:kill loop

Usgo

M:USER IN CONTROL.

P NUM = 5. ' FAC = 0
P:TYPE,

and then repeats the process for the other case:

U:(the user hits the break button once.)
S:INT, O

M:MADBUG IN CONTROL,

M INTERUPT WHILE IN PROGRAM WRFLXA AT 10 RELATIVE OCTAL,
Ms

U:break loop

Usgo

M:USER IN CONTROL,

Ustnum=25 =

M:MADBUG IN CONTROL.

M:BREAKPOINT ENCOUNTERED AT STATEMENT LOOP,
Usopen |

Mel= 1 (Uz)2

Uskill loop

Usgo

MsUSER IN CONTROL,

P: NUM = 25, FAC = 5
P:TYPE()

The user is satisfled that there are no more bugs. He does
now what a less conservative user would have done as soon as
the bug in the initialization of the 1Index had been
discovered. He edits the correction iInto the symbolic
program using the MANIPULATE request. This request will
reptace all occurances of the first string, "I=1", by the
second string, "I=2"., MADBUG will 1ist the cards on which
the replacement Is performed. (Editing a symbollec program
whose machine language translation was used for loading will‘
destroy the current user core Image. Thds the user could
not have made the change and then continued to Jlook for

additional bugs Iin the old core image,)

MADBUG November 25, 196% ' : PAGE 7

Us(the user hits the break button once.)

S:iNT, O

M:MADBUG IN CONTROL,

M: INTERRUPT WHILE IN PROGRAM WRFLXA AT 10 RELATIVE OCTAL.
Mz

Usmanipulate /i=1/i=2/

M:LOOP-1

M:THAT'S ALL,

M:

The user, being conservative, makes a test of his program in
its final form:

Us:go

M:TRANSLATING FACTOR...

M:SUCCESSFUL.

M:LOADING FRESH CORE IMAGE...

M:SUCCESSFUL.

M:USER IN CONTROL.

P:TYPEO

Usnuma3 «

P: NUM = 3, FAC = 0
P:TYPE.

Uznum=125 »

P: NUM = 125, FAC = 5
Pe TYPEO

Us(the user hits the break button once.)

S:INT. O

M:MADBUG IN CONTROL.

Mz INTERRUPT WHILE IN PROGRAM WRFLXA AT 10 RELATIVE OCTAL,

Me
Satisfled, the user deletes the main program written for
testing, and requests MADBUG to retuvn him to CTSS:

Uswork test

Usdelete

Usqulit

S:R 93.556+79,350

Sz
CTSS is listening to the user, and the user may LOGOUT or
issue any other CTSS command,

A DESCRIPTION OF MADBUG

MADBUG Is instructed by requests, typed one per line,

A request line is made up of the name of the request

foliowed by Its arguments, with one or more blanks for

MADBUG November 25, 1364 PLGE &

separation. Request names may be abbreviated by their flrst
letter. In request 1lines, tabulation characters are
equlivaient to blanks, There may be blanks before the
request name and after the last argument; biank request
lines are Ignored., Since blanks are used as dellimiters, the
arguments, which may be as complicated as “a(l)+l,..b-3",
must ba typed without internal blanks. A request which
operates on varlables will operate on single variables or on
blocks of varliables, specifled In the usual MAD manner as
“"alpha...beta"; a request which operates on cards will
operate on single cards or on blocks of cards. For example,
“verify alpha beta(l)...beta(3) k(1,1,1)" would verify, in a
sense described later, the variables ALPHA, BETA(1l).,
BETA(2), BETA(3), and K(1,1,1).

MADBUG requests can be classified into four groups: the
edit requests which are PRINT, ODELETE, [INSERYT, CHANGE,
APPEND, MANIPULATE, and TRANSLATE; the core requests which
are GO, OPEN, VERIFY, LINKAGE, BREAK, KILL, SAVE, and
RESTORE; the requests for returning to CTSS which are QUIT
and EXECUTE; and the declarations which are WORK, USE, and
FORCE. These requests will be discussed iIn the next few
sections,

The Work Request

The MADBUG requests are carried out in the context of a
single MAD subprogram. The WORK request allows the user to
declare which subprogram is of Interest. For example: "work

prog"” sets up MADBUG to work on the program iIn file PROG

MADEUG November 25, 1964 PAGE 9

MAD, The file PROG MAD does not have to exist. As
ittustrated In the sample session, If the user adds lines to
a non~existant file, MADBUG will create the file. Thus, Iif
the user Is working in the context of a subprogram PROG, and
wishes to print a subprogram ROOT, he must flirst request
"work root" and then may request “print".

Edit Requests

MADBUG uses a different technique for editlng than the
CTSS EDIT command. Neither the user nor MADBUG supplies a
line number for a card Image. Instead of Indicating a card
image by giving Its assoclated line number, the user has
three options: (1) the statement label on the card, If any;
(2) the card's position relative to another card which has a
statement label (the thivrd card before ALPHA is ALPHA-3; and
{3) the number of the card in the deck (the 17th card in the
deck is simply 17). In counting for (2) or (3), the user
must count all physical card Images Iincluding remark and
continuatlon cards. MADBUG interprets the arguments of a
request before executlng the request; thus, If a }deck
consisted of three cards, "delete 1 2" would leave the third
card, but "delete 1" followed on another line by "deiete 2"
would leave the second card.

In unusual situations there may be a long section of
program with no statement tabels, The user 1Is free to
Insert remark cards with statement labels in such a case.
MADBUS, but not the MAD translator, will alilow references to

statement labels on remark cards.,

1ADBUG November 25, 196 PAGE 10

Three special conventions exist for specifying
statement labels: (1) the "«" |g always taken to mean the
previous card referred to by the user, so that a "print #+3"
after a "print 6" would print the 9th card, and so that a
"print alpha...#+2" would print three cards starting with
ALPHA. (2) the "/"™ is always taken to mean the last card in
the deck, so that, in a five card program, "print 1 3 5" 1Is
identical to "print 7 3 /". (3) Requests which operate on
cards will operate o) every card in the subprogram {f no
cards are specified, so that "print" Is identical to "“print
) PO AL

MADBUG observes; the standard conventions of horizontal
spacing: the characters after a tab wlll be moved to column
12 and the charact:rs after a tab-backspace will be moved to
column 11,

The descript on of several of the editing requests will
-refer to input 1/1e blocks., An Input line block conslsts of
all the lines the user types before typing a biank llne,
The editing requ:sts are defined as follows:

PRINT wil! print all cards mentioned as arguments,

Thus, "brint a(l)+l...b=3" would print a block of cards

starting vith the card after the card labeled A(lL) and

ending with the third card before the card labeled B;

"print 1 6 b.,.*+1" would print the first and sixth

cards aud a block of two cards starting at the card

labele: B; "print" would print all of the subprogram

being wsorked,

MADBUG November 25, 1964 PAGE 11

DELETE will delete all cards mentioned as arguments.
Thus, "delete" would delete all of the cards of the
subprogram being worked, and "delete 1 3,,.6" would

delete the first and the third through sixth cards.

INSERT will insert successive input line blocks before
successive cards mentioned as arguments, Thus, one

might see the following sequence:

Mz
Usinsert 1 one
Uza

Usg

Usb

Us
Usprint
Ms A

Ms ZERO
M:B
MsONE
M2

CHANGE will replace successive cards or blocks of
cards, given as arguments, by successive input line
blocks, A block containing any number of cards may be
replaced by an input line block of any length, Thus
one might see the following sequence:

Usp

M:ONE

Mz TWO

M:THREE
M:FOUR

i "

MADBUG Hovember 25, 1964 PAGE 12

M:FiVE
M3
one three...flve

e o 96 ¢ 2o so
[9] (o8- I o]

0 820 60 &0

EIXIXZICCcCccCccacc
ﬁg@i>ﬁ
o

8 e

APPEND wlith no arguments will append the ' input 1line
block which follows the request line to the subprogram
being worked. On the other hand, if the request has
arguments, they are taken to refer to MAD subprograms
which will be appended, in order, to the program belng
worked, The following sequence illustrates using
APPEND to finish writing a "program" and to re-arrange
the "program';

Uswork test
Usprint

MsONE

M:TWO

Mg

Uzappend

Usthree

Us

Usprint

M:ONE

Mz TWO

M3 THREE

14z

Usappend test test
U:de!ete 10032 u 6 8oogg
Usprint

42 THREE

M:TWO

M:sONE

Mg

MADEUG November 25, 1964 PAGE 13

APPEND is also useful for creating a modified version
of a subprogram while keseping the original, To do
this, WORK the new name, APPEND the old name, and then

make modificatlions.

MANIPULAIE is a request for character manipulation
within a card Image. The flrst argument specifies the
manipulation. Arguments after the flrst specify cards
within which the manipulation will be performed, The
first argument has the form: /sea/«2¢/ where the slash
stands for any separation or delimiter character which
must occur exactly three times, and the strings of
asterisks stand for any pair of character strings. The
manipuiation consists of replacing all occurances of
the first string by the second string. Any character
except a tab or space may be used as the delimiter; It
is recognized by its being the first character of the
argument, The two character strings may include any
characters except the delimiter and the carriage
return, and they may be of different lengths. tf the
first string is empty, It will be taken to match a null
string before column one on the card, thus allowing a
simple way of inserting a statement label on a card,
As a conflirmation to the user, MADBUG will print a list
of cards on which the manlfulation is performed, I f
the manipulation is perfornad more than once on a card,
the card will be included In the 1list once for each

time the manipulation occurs. MADBUG does not consider

MADBUG November 25, 1964 PAGE 14

replacing a string by itself tec change the symbolic
program, Thus the user can replace a string by itself
to locate all occurences of the string. One might

cbserve the following sequence:

U:p one

M2ONE THROUGH ONE, FOR 1=1,1,1.G.N,OR.X(1).E,O
M2 '
U:manipulate #*onexloop* one

M:ONE

M:ONE

M:THAT®'S ALL,

Ms:

Usp +»

M: LOOP THROUGH LOOP, FOR 1=1,1,1,G.N.OR. X(1).E.0O
Ms :
Usp toop+l

M: DATA=Y(1)

e

Usm $$1abel$ =

M:LOOP+1

M: THAT'S ALL,

Ms

Usp

M: LABEL DATA=Y (1)

Ms

Us m /i/j/ loop...label

M:LOOP

M:LOOP

Ms LOOP

M: LABEL

Me:THAT®!S ALL,

M:

Usp loop...label

M: LOOP THROUGH LOOP, FOR J=1,1,J.G.N,OR.X(J).E.O
M: LABEL DATA=Y (J)

M:
JRANSLATE has no arguments, and causes the subprogram
being worked to be translated into machine languagev by
the MAD compiler. From the user's point of view MADBUG
is performing the translation, It is not necessary to
translate any subprogram before using it. MADBUG will
request any translatlions that are needed at load time,

The TRANSLATE request is a convenience to the user who

MADBUG November 25, 1964 PAGE 1%

is changing several subprograms at one time, and who

would like to catch any syntactic errors in ons before

turning his thoughts to another.

The Use Request

The core requests, which will be discussed in the next
section, operate in the context of a core image., MADBUG
must have some way of knowing what subprograms to load when
creating a core Image., The arguments of the USE request are
the subprograms to be used, Thus a wuser writing a
subroutine ROOT and a test program MAIN might ‘use main
roct". There are provislions for using FAP programs, special
libraries, and special loader parameters; these provisions
are described later.

Core Image Requests

Some core requests require cards for arguments, and
their arguments observe the same conventions as those of the
edit requests, A core request whlich rafers to a declaration
or remark card will operate on the first executable
statement following the referenced card., Other core
requests require varlables for argumerts., A varlable 1is
zlven as an argument in standard MAD nmtation,. including
muiti=dimensional arrays and COMMON and ERASABLE varliables,
but not the dummy arguments of functions, Three speclal
canvehtiens exlist for variables: (1) the """ ig alway§ taken
to mean the previous variable refered to by the user; (2) If
no variables are specified, the request wil! operate on

avery varlable In the program; and (3) the block notation

Mbnae November 2%, 196k PAGE 16

can be used to incliude several arravs or variables at ance.
Varlables are taken to be ordered alphabetically (with a
blank coming after R. alas,) and then by linear subscript.
The first time the user glves a core request, a core
image must be created by MADBUG. This 1is accomplished by
translating each of the needed subprograms Intoe machine
tanguage, If necessary, loading the subprograms into core,
and finally modifying some of the subprograms in order to
intercept iYlegal references to an array. If an error Is
detacted In this process, the core image will not be formed,
and the core request will be terminated. The user should
correct the error and try the core request again. The core
image will be destroyed when the user Iissues the quit
request or edlits a program occuring In the core Image, The
core requests are defined as follows:
GQ will start the user program., A single card gliven as
an argument for GO will cause the user program to be
started at the named card, If no argument 1Is given,
the user program will be started wherever It stopped
fast, A fresh core image will start';t the beginning
of the main program,

The user program will remain in control until (1)
it terminates by calling DEAD, DORMNT, ENDJ0OB, ERROR,
or EXIT; (EXIT can be {mplicitly called by letting
control reach an END OF PROGRAM or FND OF FUNCTION
card.) (2) a "breakpoint™ Is encountered by the user

program; (3) the user Intarrupts by pushing the break

Moyember 2%, 1964 PACE 17

bution onge; or ti) an array s veferenced with
subscrints poelnting outside of the dimensioned arvray.
{5eme array dimension viclations are not caught; this
Ts discussed in a later section.) On any of these
copasions, contrel returns to MADBUG, and the wuser s
informed of the reason.

infrequently, the user program may have an error
which causes control to return to CTSS. In this case,
rhe user should type two CTSS commands, flrst Ysave
{user)™ to save his own cove image and second '"resums
{mdbg)¥ to return control to the core Image on which
MADBUG saved ltself. Fven 1f the first of these
comnands rasults In an error comment from CT78S, the
user should type the second. This proceedure s called

a manual restart.

OPEN will print the contents of variables mentlioned as
arguments, one by one, and after each, wait for the
user Lo Lype a new value for the variable, f the user
wishes the old value tc remain, he just types a
carviage returm, in typing out the value of a
variable, MADBUG makes use of the declared mode of the
variable and of the current value to decide whether the
vatlue should be presented o the wuser 1In Integer,
aiphabetic, floating=point, Boolean, statement labal,
cr function mode, The user must type a constant for
the new values in a form compatible with the decltared

made of the wvariable. 1t Is possible to change the

#

MAGRUIG dNovember 2%, 1964 PAGE 1&

input/output form associeted with a declared moce
permanently or to overrlde the normal assoclations for
8 single request. This is discussed later,

One special note: because of the way the MAD
compiler works, one may change the effect of a transfer
statement by changling the value the variable which has
the same name as the statement label to whilch the
statement transfers, One may not, however, change the
scope of a THROUGH 1loop in this fashion, even by
changling the value of the variable with the same name

as the THROUGH scope,

VYERIFY will cause the values of variables mentioned as
arguments to be compared with the values of the same
variables in a fresh, unexecuted verslion of core., Each
variable whose value has changed will be printed with
Its present value., Its value In the fresh version of
core will also be printed if it Is non-zero,

An option is avallable with verify; the user may
specify any core Image saved with the SAVE request to
be used Instead of the fresh copy of core discussed
above. Thls Is done by giving the name of the saved
image following the request name and before the llst of
variables to be varified, As the user will discover
beiow, thls name must begin with an asterisk, and can
thus be recognized by MADBUG.

The discussion of output forms used for the values

of variables, which was gziven under the OPEN request,

MADBUC November 25, 1464 PAGE 19

also holtds for the VERIFY recuest.

LINKAGE causes MADBUG to tell the user which statement
made the most recent call to the external function

subprogram currently being worked.

BREAK will modify the machine language program in the
current user core image so that control will return to
MADBUG 1f one of the cards given as arguments Is to be
executed. When MADBUG regalns control from the wuser
program, the name of the statement which is about to be
sxecuted will be printed for the user, At this time
the user will usually examine variables in his program
to datermine what his program is doing., "Breakpoints®,
as these points In the user core are called, belong to
a given core Image, and can vary from one saved core

image to another, (See the SAVE request.)

KILL will remove any breakpoints at cards mentioned as
arguments. It Is nct an ervor to insert a breakpoint
where one already exists nor to remove one which does
ot exist. For example, to kill all the breakpoints In

the subprogram beling worked, “kiil".

2AVE has a single name as its argument and causes a
copy of the current user core image to be saved as a
UT8S File with the primary name given as an argument
and the secondary name SAVED. The name gliven by the

usey must begin with an asterisk, The current user

HADAYS November 25, 196§ PAGE 20

oy

core image was produced by leading, and has been
mudified by sxecution and by MADBUG requests, One may
save the curvent cors image under a name which Thas
already been used for a save request. in this case,
the current vore image will replace the oprevious core
imaga. A1l the core Images saved wusing the SAVE
request will be destroved when the user's current core
image Is destroved., This Es'because the saved flies
created by MADBUG are not normal CTSS saved flles, and

are useless ocut of the context of MADBUG.

RESTORE will replace the current user core image with a
copy of the image whose name i{s gliven as an argument.
The core lmage name must be 3 name under which the user
has saved a core. Image using the SAVE request, or It
must be =FRESH, #FRESH is a byproduct of the loading
process, It Is a completely unexecuted version of core
wfih nc breakpoints and with all vartables at their
inftial values. Except for the special way in which it
is created, *FRESH JIs llke any normal core Image saved
oy the SAVE request.
Getting Back to CTSS
Wnen the user Is finished with MADBUG, and desires o
retuyrn to CTSSﬁ‘he should use the QUIT request, The QUIT
request wili destroy all the files created durlng the
session, except for the modified MAD programs and thelr

assoclated BSS and SYMTAB filles.,

HADBUG November 25, 196% PAGE 21

the EXECUTE request allows the user to return to (7SS
for a single command, without ending his session with
MADBUG. For exampig, the user could effect the CTSS command
“Iistf aa mad" by requesting "execute listf aa mad", These
commands are executed using the command chaining technique
with the sequence: "save (mdbg)", the user's command, and
"resume (mdbg)*". No provision is made for saving a core
image which might result from the user®s command.

SPECIALIZED FEATURES AND TECHNIQUES

Two error conments that the user may get from MADBUG
have speclal signiflicance. One 1§s "TRY AGAIN."™, which
always means that the current request has been terminated.
The ocher Is "CONSULT LISTINGS."™ which can only occur as &
resull of a bug in MADBUG. Any user getting this comment
will please retain as much information in the way of output,
fites, etc, as he can and call Bob Fabry, x2524, so the bug
can be removed promptly. The user can often continue with
more requests In spite of a "CONSULT LISTINGS.," error.

Two types of improper array references are not caught.
First, references with a constant linear subscript are not
chacked. For example, one might DIMENSION A(10) and
A(20)=100., Second, refererices to arrays which are given as
arzuments to functions are not checked, For example, one
could have called for ROOT.(A(K)) where X is 20, This
situvation can sometimes be avoided by placing arrays In

COMMON, and not passing them back and forth as arguments.

ABDBRUG Movember 25, 19864 PATE 12

In unusual cases, the user core image may “'Dlow-up’” in
such a way thaiy the information about ccnxre} and aboutl the
vatues of variables is gone or meaningless, in this casa
the user will still find MADBUG a wuseful tool, and nay
approach the problem by an exponential search through time
for the point at which the blow=up occurs., Stated another
way, this amounts to performing a serles of tests in which
each test Is designed to cut by a half the uncertainty about
when the blow=up occurs, When the user knows the exact
point of the blow-up, he can then step through very
cautiously, looking for clues, Such an approach relics
heavily on BREAK, KiLlL, SAVE and RESTORE. At the start, the
user moves a core Image as close to the bilow~up as he knows
he can, SAVEs the core image, and guesses the half-way mark,
in terms of opportunities for bugs, to a place by which the
Eiow=up must have occured. He then uses BREAK and KIiLL to
step hls current core 1image to the haif=way point he
guessed, (1) If the core image blows~up in this process, he
guesses a new half~way point, half way between his saved
image and his old half-way mark, RESTOREs his saved core
Image, and trys hls new guess. (2) If the core Image
doesn”t blow=up In the process, he SAVEs his current core
image for a new starting point, guesses a new half-way mark
between his new core Image and the blow=up, and trvs this
new guess, This process Is falrly simpie to carry out using

HADBUG, and most blow=ups can be readily solved thils way,

MADBUG November 25, 1964 PAGE 21

when loading 135 performed, MADBUS wil] normalliy Yoad »
program named (MDBG), which MADRUG provices, immediately
foitowing the files specified by the USE request, Then
MADBUG will process the core images of all srograms lcaded
into rcore before (MDBG) and insert patches, using an carea
reserved in (MDBG), to attempt to catch any uvser subprogram
when {t accesses an array with an Iilegal subscript. if the
user wishes to Voad programs which were wri.ten in FAP, MAD
programs for which the symbolic programs are not available,
debugged MAD programs which he does not wizh to protect, or
livrary files, he may specify the positio of (MDBG)Y by
typing (MDBG) In place of a file name in tha USE request,
All the files before this parameter w1l te treated
normatliy, and all things after it will be ig ored 2y MADBUG
and just passed on to the loader, Any loawcr parameters,
such as (CFLP) or (LIBE), can also be used aiter (MHBG)., f
the user needs more than elghty characters for his USFE
request, he may type a hypen as an argument :o,fl’ use, when
the hyphen Is encountered, MADBUG wiil immedi. ialy read the
neaxt input line for more arguments for the ISE ‘equest .,
This may be done for several successive lines,

The FORCE request forces certain internal 2gister: In
MADBUG to new values, picked by the user. o FORCL &
parameter, glve the name of the parameter a: the firse
argument of FORCE, and give remalning arguments s requirec

by the parameter being forced:

FEGEOG Huwembes 25, 198k Pace i

[0
.

FORCE FATLH will set the amount of gpateh space

¥

b4

available in the user core images to the decimal numbee
given »% the argument ., Inftlally PATCH is set to 500
The patch space Is used during 1loading and whenever
breakpoints are Inserted. FORCE PAYCH does not change
the available patch space immediately, since the
internai register is examined only during loading. A
user would reduce the patch space If he was squeezed
Far core space, He would Increase 1t {f '4ADBUG
compiains, during icading, that there s not& enough
patch space, or If he exhausted the patch space
inserring breakpoints, (f the patch space Is axhausted
by hreakpoints, however, (¢t is wusually sufficient to
RELL some of the less neccessary breakpoints to ret

space for new ones.

FORGE FURMAT will set the normal Input/output form
associated with each of the possinle modes for
variables, After the word FORMAT, the arzuments are
taken In pairs, the first item of the pair indicates a
mode and the second indicates a form. The modes are
Indicated by a digit from ¢ to 7, standing for
Floating=point, Integer, Boolean. functlon, statement
‘abel, mode 5, mode 6, and mode 7, in that arder. The
Form deslgnation Is one of the following: "5a"™ for
floating polnt with n significant fligures on autpuy,
#egoar ¢

for integer, M“A"™ for alphabetic, "M for elther

‘nteger or alphabetlec with MADBUC picking for output,

MATBUG Nowember 25, 1496& PAG

S
W

"B for occtal, YB™ for Boelean, VST for statement
fabel, and YF"™ for function. Initialiy. FORMAT is5 set
tos D63 Y P 2B3IF S5 & 6 ¢ 7 ¢, {in this

section, "@" is used to denote the letter “0'Y.)

EORCE MODE 2Tiows the wuser to predetermine whether
MADBUG saves itself as a permanant mode file or as &
temporary mode file, The wvalues of MODE are.
correspondingly, "“P¥ and "T". Mode Is originaltly set
to “P". The use% will want to FORCE MODE to temporary
i¥ he is not interested in extreme reVianilicty as much

as in conserving his track aliotment.

It Is also possibie to override alil the normal 1/0
forms fof the duration of one OPEN or VERIFY reauest, To do
this, use one of the form designations listed abaVe, but
preceded by a stash., Insert it after VERIFY (and the saved
file name, If present) or OPEN and before the arguments,
For example, "open /o alpha®,

MADBUG observes the convention that the first statement
of a main program starts after the call to .SETUP which the
compiier always inserts as the first executable machine
instruction. Another conventicn at this lavel s imposed by
the compiier, A breakpoint on an ENTRY TO statement will
not be encountered when the entry Is called, but will be
encountered If control is transfered to the statement or

falls to the statement.

MADLUE MNMowvenbsr 25003

3 AR .;’ r,
MATDIRUD Creates and desvrovs spepial Fites as it
processes the uses’ & reguasts. They are desproyed cduring

the processing of the same reguesty for which they are
created, Normally, the user will not have to worey aboug
them, but occasionally he may be made aware of thelr
existance. (MDBG! SAVED is the name under which MADBUG
saves ftseif when it chains to otheyr commands . This flic
will vary in length during a session, but will be o the
order of 30 tracks long. [ts mode depends on the value of
MODE, as described earller. (TEMP) (MDBG) s used during
file modification., When a word In a flie must be modified,
the modified file §s Fflirst created as (TEMP) (MDBG), and
then the original fiie Is deleted and {(TEMPY (MDBGY s
renamed. The length of this file depends on the ‘leagth of
the file being modified, The file has permanent mode.
(MDBG) BSS Is created by MADBUG whenever loading s
required. 1[ts pdsition in the new core image was discussed
eariier. 11t contains the bootstrap for 'ADBUG and the patch
area, It is one track long and has temporary mode, {MBG1)
SAVED Is & very short program which processes the input Yine
blocks the user types while editing., 1% processes all the
fnput tine blocks associated with one edit reguest and reads
in the following request before chalning back to “ADBUG. it
s usually one track long and is permanent mode.

A user core image may usé the command buffers, A call

tc CHNCOM will not return control to MADBUG. MADBUG saves

the command buffers and counter initially and restores them

EOAGE Mowembe s 0%, 1964 pany v
when the user gives the QUIT vequest, MADBUG also Ureats

ihe command buffers and counter as psuedo=mactine conditions
aszociated with each core Image. The buffers are oniy lost
on manual restart. A fresh core image has empty suffers.

By editing, the user modifies the MAD subprogram on
which he s working, By inserting and removiog sreskpoints
and by changing the values of variables, the user onodifie:
thae current user core image, (USER} SAVED., MADBUG does not
change external files until the changes are loglcally
needed. |f the user uses EXECUTE to ask CTSS to process
these files, he may want to Insure that these logical
modifications are made physically, To insure that the MAD
subprogram belng worked Is modified physically, give =&
redundant WORK reguest using the name c¢f the subprogram
already being worked. Whenever a WORK request s given, the
tagical modificatlions assoctated with the subprogram
previously belng worked are made physically, To Insure that
the current user core fmage is modified physically, use a
SAVE request. A user who cannot afford the added tracks can
give an "execute delete" on the created SAVED fliie,

This varfation between the bphysical and logical
medifications provides some degree of safety to the user who
carelessly makes gross incorrect modificationz to one of his
programs, !f the user should accidently type a2 "d" as &
request line for example, he should quit by hitting the
break button twice in successlon., This will prevent MABBUG

from actually deleting the file in question.

MADRUG Novembesr 25, 1964 PAGE 28

print

ﬁéi@te
ingert
change

append

SUMMARY OF MADBUG REQUESTS

Arsyments additional Lines (3) pase
subprogram name none &
card names (1) card images by MADBUG 10
card names (13 none 13
card names (1) card Images by user 11
card names (1) card images by user 11
none card images by user 12

{or) subprogram names none

manipulate special, then cards card names by MADBUG L3
translate none . comments by MADBUG 1%
use subp rogram names none ‘ 15
EO cavd name or none comments by MADBUG (&) 1€
open varfables (1,2) values by both (k) 17
verlfy varliables (1,2,5%) values by MADRUG (§) 18
iinkage none linkage by MADBUG (u4) 13
break card names (1) none (&) 19
kit card names (1) none (b4) 19
save save=name none (&) 1%
restore saye-name none (&) 20
quit none none W
execute command and arguments depends on command 21
force parameter, speciai none 23
notes: (1) If none, all are implled, (p, 10, p. 15)

{2) Optional form forcling first argument. (p. 25)

{%) Any request can get ervor comments from MADBUCG,

() Comments by MADBUG If core image I3 created. (p.16}

{53 There is an optional save-name argument., (p., 18)

