"

Applications Program Series
AP-41 Revision 1
November 15, 1981

MULTICS WORD PROCESSING USING RUNOFF

This two-part memo tells how to use runoff and other
word-processing programs on Multics. Part 1 is a
primer, intended to introduce a person who has little
or no knowledge of computerized text-formatting to the
basic material needed to produce documents with the
computer, (If you have had no experience using a
time-sharing system, you should first read Section I of
IPS Memo MS-1 and Sections 1 through 4 of New Users'
Introduction to Multics--Part I, cited below.) Part 2
is a complete reference description of the runoff text
formatter.

This memo combines the previous AP-41 and AP-42 memos.

The following documents are referenced in this memo and
useful for further information.

VENDOR DOCUMENTATION

New Users' Introduction to Multics--Part I (CH24)

Emacs Text Editor Users' Guide (CH27)

gedx Text Editor Users' Guide (CG40)

Multics Programmers' Manual: Commands and Active Functions

(AG92)
Multics WORDPRO Reference Guide (AZ98)

IPS MEMOS
IPS User's Guide
MS-1 Multics at IPS

AP-40 Word Processing at IPS (forthcoming)
AP-52 Author-Maintained Library: Application Software

—— - — — -~

Copyright ¢ 1981, Massachusetts Institute of Technology

are

AP-41-1

CONTENTS

II.

III.

Iv.

VI.

VII.

VIII.
IX.
X.

XI.

PART 1: RUNOFF PRIMER
INTRODUCTION
CREATING INPUT FILES FOR RUNOFF
Logging In
Creating Files with Emacs
Creating Files with gedx
INVOKING RUNOFF
AN ANNOTATED EXAMPLE
Example

Example
Summary

of Using Emacs and runoff

of Using gedx and runoff

of Control Lines Used in This Section
FILLING
CONTROL LINES FOR PAGE LAYOQOUT

Double- and Single-Spacing

Beginning Output on a New Page
Right-Margin Justification

OTHER CONTROL LINES FOR FORMATTING TEXT
Indenting

Offset Output Lines
Tabs

UNDERSCORING
FOOTNOTES

HEADERS AND FOOTERS
GETTING SPECIAL EFFECT WITH CONTROL ARGUMENTS
Printing Documents on Typewriter Paper

Running Off Portions of Documents
Hyphenating

AP-41-1 Page 4

XII. PRODUCING A DOCUMENT ON THE OFF-LINE PRINTER
XIII. DETECTING SPELLING ERRORS

Looking for Typos

Using Dictionaries

PART 2: RUNOFF REFERENCE DESCRIPTION

NAME
SUPPORT LEVEL
SYNTAX AS A COMMAND
NOTES
TERMINOLOGY

Fill and Adjust Modes

Line Length

Break

Spacing Between Lines

Page Eject

Margins

Page Numbers

Headers and Footers
EXPRESSIONS AND EXPRESSION EVALUATION
DEFINITION AND SUBSTITUTION OF VARIABLES
ACTIVE STRINGS
HYPHENATION

Hyphenation Procedure Calling Sequence
TABULATION
CHANGE MARKERS
TERMINAL ESCAPE SEQUENCE

Suggested Procedure for Use of Escapes
DEFAULT CONDITIONS
CONTROL WORD FORMATS

SUMMARY OF CONTROL ARGUMENTS

AP-41-1

SUMMARY OF CONTROL WORDS
BUILT-IN SYMBOLS
EXAMPLES
Sample Session
Tabulation Example

Change Marker Example
Escape Sequence Example

Page 5

AP-41-1 Page 7

| PART 1: RUNOFF PRIMER |

I. INTRODUCTION

Word processing is the use of computer programs to help you
produce memos, reports, letters, and other documents. On IPS's
Multics system, the main word-processing program 1is runoff.
Using runoff to turn out a document can be much easier than using
a typewriter. This is because runoff automatically formats and
types text. Repetitious typing is eliminated (such as typing the
body of a form letter many times). You can correct errors or
make changes without manually retyping large parts of the
document. In addition, you need not concern yourself with the
pagination of the document. Runoff automatically prints what it
can on each line (and on each page), and continues on a new line
(or new page) automatically. Unless you specify otherwise,
runoff enforces top, bottom, and side margins, and smoothes out
("justifies") the right margin.

Although you do not have to carefully type the formatted pages
that will make up the final version of your document, you do have
to enter the input file from which runoff produces the final
output. The input file contains text 1lines (the sentences of
your document) and formatting directions. To create an input
file for runoff, you use a text editor. On Multics, the two main
text editors are gedx and Emacs. Either can be used to create,
change, and store files in the computer's memory.

The process, then, of producing documents using runoff involves
the following steps:

® using a text editor to enter text lines and
formatting directions into an input file;

& issuing the runoff command to format the text of the
input file.

® repeating the above two steps 1in sequence--i.e.,
using the text editor to change or correct the input
file, and reissuing the runoff command to format the
corrected or revised document. You repeat this
process as many times as needed. Once you have
created the 1input file, you enter only changes or
additions into it. You do not retype parts of the
document; runof £ itself does the reformatting
required to accommodate changes.

The part of the process that requires the most work and attention
on your part 1is the placing of text 1lines and formatting

1

AP-41-1 Page 8

directions in the input file. The formatting directions you put
in this file are called control lines. A control 1line begins
with a control word, composed of a period (.) followed by two or
three 1lowercase letters. For example, the control line used to
center a line of text is ".ce".

You intersperse control lines throughout the text. (Each usually
appears alone on a line of the input file just before the text it
is to affect.) Control lines do not appear in the final document
(i.e., the output produced by runoff).

Text lines contain material that will actually appear 1in the
finished document. Text lines may be up to 256 characters in
length, It is convenient, when using the text editor to create
an 1input file for runoff, to end input-file text lines at the
ends of sentences where possible. (This makes inserting new
sentences easier.) You should not "measure" text lines, divide
words, or worry about text "fitting" onto a page; runoff does all
such formatting automatically. Normally a text 1line may not
begin with a period.

Runoff control lines permit extremely sophisticated formatting.
Equations can be formatted; space can be allowed for diagrams;
footnotes can be automatically generated, numbered, and
positioned. You can control indentation, pagination, and
margins. If you wish, you can have formatted text printed
page-by-page. (Runoff will wait to allow you to insert and
position separate sheets of paper.) You can direct the output
text to a file and have it printed on the high-speed printer.
Runoff can produce right-justified text (like that you are
reading) or a "ragged" right margin, and can be told to hyphenate
words automatically. Many other features provide extensive
control over the processing of text.

Part 1 of this memo introduces the simplest methods of wusing
runoff, and refers (where possible) to the description of the
runoff command in Part 2 for information on runoff's more
sophisticated capabilities. Part 2 contains more detailed
information about the use of (and restrictions on) control 1lines
described here.

II. CREATING INPUT FILES FOR RUNOFF

Before you can use runoff, you must create an input file by using
a text editor, The two main text editors on Multics are Emacs
and qgedx. Emacs 1is a screen editor. It can only be used with
video terminals. Many people find it the most natural editor to
use: you see portion of your file before you at all times;
changes and additions are immediately reflected on the screen.
Perhaps the only drawback of Emacs is that it is greedy in its
use of system resources and therefore responds very sluggishly

AP-41-1 , Page 9

when a lot of people are using Multics at the same time. Qedx,
on the other hand, is a line editor. You type requests that
operate on a line (or group of lines). To see the effect of any
change you make to a line, you must explicitly ask gedx to print
the line. Qedx can be used with any sort of terminal.

Although a text editor is a necessary adjunct to the wuse of
runoff, we can only touch briefly on the two editors in this
memo. To learn more about Emacs, read the Emacs Text Editor
Users Guide (Honeywell document CH27). Qedx 1s described in the
gedx Text Editor Users Guide (CG40).

There are, by the way, other editors you can use on Multics. To
find out what they are and how they compare with Emacs and gedx,
give the Multics command "help editing.gi”.

LOGGING IN

Before you can use the word-processing software on Multics (or
any of the software on Multics), you must "log 1in"., See
Section I of IPS Memo MS-1 and Section 2 of the New Users'
Introduction to Multics--Part I for information on how to log
into Multics. :

CREATING'FILES WITH EMACS
To begin creating a file with Emacs, type:
emacs

The command "emacs" invokes the Emacs text editor. Wait for the
screen to clear. When it does, Emacs is ready for you to type in
your input file, Type in text or control lines, followed by
carriage returns.

After you've typed in your file, you have to tell Emacs to
"write" your file, i.e., make a permanent copy of the file in the
Multics storage system. To do this, you issue an Emacs request.
However, since anything you type 1in the conventional manner
becomes part of the file, there are special ways of entering
Emacs requests. One way is hold down the key marked CONTROL (or
CTRL) while you press another key. (The usual notation for this
is a circumflex character "A", signifying the CONTROL key,
followed by the character associated with the other key.) For
instance, you issue "X"W to write a file--that is you hold down
the CONTROL key while you press the "X" key once, and then hold
down CONTROL and press the "W" key.

When you issue ~XAW, Emacs prompts you for a name for the file.
Type a name, followed by a carriage return; the name must end in
".runoff" so that you can use runoff to format the file.

AP-41-1 Page 10

After you've written the file, exitf from the editor. Type the ~’
AXAC request. Multics prints a "ready" message. The computer is
again "ready" to accept commands. This is called command level.

CREATING FILES WITH QEDX
To begin creating a file with gedx, type the lines:

gedx
a

The command "gedx" invokes the gedx text -editor. Multics does
not print a response. The request "a" tells gedx you want to
append lines--i.e., to enter input mode.

The gedx editor has two modes: input and edit. When you add
lines to a file (or when you first begin to create a file), you
use input mode. At other times (e.g., when you change, print,
delete, or manipulate lines, or when you save files or prepare to
leave the editor), you use edit mode.

You may now enter a text or control line, followed by a carriage
return, You may then enter another text or control line, and
continue in this way until you have entered all of the 1lines of

your document--or enough so that you feel it's time to rest. ~’
When you want to stop, type "backslash f£" (\f), to tell gedx you

are "\finished" entering lines. The "\f" tells gedx to leave

input mode and enter edit mode. For example:

gedx

a

These are a few lines we are typing into a file.
Normally we might make some mistakes,

but we'll assume we're perfect for now,

and get into that later.

\f

Now type a "w" (write) request to gedx, to tell the computer to
store the document in a file. Give the file a name on the "w"
line; the name must end in ".runoff" so that you can wuse the
runoff command to format the document:

w littlewords.runoff

If you have not finished entering the document, give another "a"
(append) request to reenter input mode and begin entering lines
again. If you have finished entering the document, type a "g"
(quit) request, to tell the computer you are done editing and
want to leave the editor. Multics prints a "ready" message. The
computer is again "ready" to accept commands. This 1is called
command level. ~’

AP-41-1

g
r 1651.4 0.053 2.704

Typing the "w" (write) request tells Multics to save the
work you have done in the computer's storage. Always
type a "w" just before "quitting"” from the editor; if you
do not do this you will lose the work you have done since
you last typed "w". When creating or editing 1long
documents, it is a good idea to "write" often--say, every
10 minutes--to protect additions or corrections that you
make from being lost in case you forget the final "write"

"~ or the system should crash unexpectedly. After you have

done your first "write" on a file, you can (and should)
"write" subsequent times by typing just the "w" (in edit
mode) on a line by itself. (Do not retype the file
name.) For example:

gedx

a
<---(Line of text)
<---(Line of text)
<---(Line of text)

\f

w junk.runoff

a
<---(Line of text)
<---(Line of text)
<---(etc.)

\f

w

a
<---(Still more text)
<---(etc.)

\f

W
<---(And so on.)

Page 11

AP-41-1 . Page 12

IIT. INVOKING RUNOFF

To format a document, you invoke runoff by typing the command's
name (runoff), followed by the name of the file to be formatted.
If, for example, you gave the name "goodgrief.runoff" to the
input file when you created it using Emacs or gedx, you could
type:

runoff goodgrief

Note that you can omit the file's ".runoff" suffix; runoff
searches for a file with the suffix ".runoff".

Runoff formats the text of the 1input file according to the
directions (control 1lines) in the input file, and prints each
output line at the terminal. If you have given runoff a control
line it cannot understand, an error message about it is usually
printed after the document is finished.

There are a number of options you can give along with the name of
the file when you give your runoff command. These are called
control arguments. They are optional, and are used to modify the
way runoff formats the file. A few runoff control arguments are
discussed in Part 1 of this memo (see page); complete
information 1is given'in Part 2. While you are first learning to
use runoff, do not worry about using command options.

IV. AN ANNOTATED EXAMPLE

The previous two sections have introduced the two basic steps
involved in word processing using runoff: you use an editor to
prepare an input file and then you give the runoff command to
generate formatted output. This section comprises two sample
terminal sessions (one featuring Emacs, the other gedx) that show
how you can use a text editor and runoff together to produce the
following short memo:

Notice:

To: Mr. Elmer Shorthair
Date: May 1, 1982

As of today I quit your beastly job. Working for you has
been pure torture. I wish you'd go back to Acme Skunk
Farm or wherever you came from.

Best wishes,
Dinky Doppler

AP-41-1 Page 13

EXAMPLE OF USING EMACS AND RUNOFF
After you log in, enter the Emacs editor:
emacs

When the screen clears, begin entering runoff control 1lines and
the text of the memo. For text line, put as many words on a line
as you want; runoff will rearrange them evenly later,.

.ce

Notice:

.Sp

To: Mr. Elmer Shorthair

.br

Date: May 1, 1982

.Sp

As of today I quit your beastly job.
Working for

you has been pure torture.

I wish you'd go back to Acme Skunk Farm or wherever you
came from.

.Sp

.in 40

Love,

.br

Dinky Doppler

At this point, you save what you've 3just typed by giving the
Emacs "write-file" request (“X"W). When Emacs prompts you for a
name at the bottom of the screen, you type:

emancipation.runoff

Before you leave the editor, you decide some of the language is a
little too fawning, so you make some changes. You move the
cursor, which was positioned at the end of the memo, up two lines
by entering AP twice, and then move to the beginning of the line
reading "Love," by entering A~A. You delete everything on the
line with 2K, and then insert your correction by typing:

Best wishes,

Since you want the permanent, "saved" version of the file to
reflect the changes you just made, you save the file again, but
this time, to prevent Emacs from prompting you again for the name
you've already assigned, you wuse the "save-same-file" request
(AXAS). Then you enter ~XAC to leave the editor. Multics prints
a ready message when you're back at Multics command level.

Now you give the "runoff" command:

AP-41-1 Page 14

runoff emancipation
The formatted version of your memo appears at your terminal:
<---runoff provides a top margin of six lines
Notice:

To: Mr. Elmer Shorthair
Date: May 1, 1982

As of today I quit your beastly job. Working for you has
been pure torture. I wish you'd go back to Acme Skunk Farm
or wherever you came from.

Best wishes,
Dinky Doppler

<---runoff prints blank lines to fill out a 66-line page
r 15:39 1,134 933

Of course, as an Emacs user, you've Jjust watched the final
product scroll across your video screen: Probably you want the
formatted memo on paper. One way to do this is to log in on "a
printing terminal and give the runoff command. Alternatively,
you could have the formatted output printed on one of 1IPS's
high-speed printers (see page).

EXAMPLE OF USING QEDX AND RUNOFF

In the example that follows, lines that you type are preceded by
an arrow (=>). Do not type the arrow.

After you log in, invoke gedx, type "a" to enter input mode, and
type 1in runoff control lines and the text of the memo. For text
lines, put as may words on a 1line as you want; runoff will
rearrange them evenly later.

=> gedx

=> a

=> .ce

=> Notice:

=> «.SpP

=> To: Mr. Elmer Shorthair

=> ,br

=> Date: May 1, 1982

=> .sp

=> As of today I quit your beastly job.
=> Working for

=> you has been pure torture.

=> I wish you'd go back to Acme Skunk Farm or wherever you

AP-41-1 | Page 15

=> came from.

=> ,sp

=> ,in 40

=> Love,

=> ,br

=> Dinky Doppler

Now return to edit mode and write the file into a segment.
Specify "emancipation.runoff" as the filename.

=> \f
=> w emancipation.runoff

Now you can print all or part of the file and make changes. To
print the all the 1lines, type "1,3p". Let's say that after
printing the file and reading through it, you decide that you
don't like the closing, so you locate the offensive line, use the
gedx reqguest "s" (substitute) to alter the line, and use the "p"
request (print) to verify the change:

=> /Love/
Love,

=> g/Love/Best wishes/p
Best wishes,

Now you write the file again. You omit the name of the file
because you want gedx to use the same name you specified last
time. Then you give the "g" request to leave the editor.
Multics returns you to command level and prints a ready message.

>
>

W
q
r 1:34 2.21 102
Now you give the "runoff" command:

=> runoff emancipation
But before you press the carriage return after the name of the
file, you align the paper in your terminal at the top of a page.
Then press return, and watch the formatted memo print at your
terminal:
<---By default, runoff provides a 6-line top margin

Notice:

To: Mr. Elmer Shorthair
Date: May 1, 1982

As of today I quit your beastly job. Working for you has
' been pure torture. I wish you'd go back to Acme Skunk Farm
or wherever you came from.

AP-41-1 Page 16

Best wishes,
Dinky Doppler

<---Enough blank lines to fill out a 66-line page
r 15:39 1,33 111

SUMMARY OF CONTROL LINES USED IN THIS SECTION

CONTROL
LINE MEANING TO RUNOFF

.br (break) causes the preceding text line to be
printed without £filling 1in words from the
next text line.

.ce N (center) centers the next N lines. If N is
not given, ".ce 1" is assumed. A .ce control
line also acts as a break. (See the
description of the .br control line.)

.Sp N (space) prints N blank lines. If N 1is not
given, ".sp 1" is assumed. You can also
input a blank line (i.e., a line consisting
only of a carriage return) instead of a .sp
control line. A .sp control 1line causes a
break.

.in N (indent) indents all following text lines N
spaces until the next ".in N" control line.
If N is not given, ".in 0" is assumed--i.e.,
indentation returns to the 1left margin.
A .in control line causes a break.

Part 2 of this memo lists the most commonly-used runoff control
lines with a brief explanation of their functions.

AP-41-1 Page 17

AR KAKEAEAKIKRKAKRAEARAARA I A A AR A IR A A ATk kA hhhkhkhhkhhhhkdkhkdhk
* % * %

** Try the example on your terminal. Use either Emacs or **
** gedx. Enter the text and control lines; name and store - **
** your file; correct andy errors; "write" your changes; **
** and leave the editor and return to command level, *x
% Then, when you have a ready message, invoke runoff to **
** format your file. * %
* % * %
* % The remainder of this memo describes more sophisticated *%
* % runoff control lines and introduces some runoff command **
**% options. If you do not understand the example, reread *%
** gSections 2 through 5 of the New Users' Introduction to **
** Multics--Part I (CH24), and reread this memo up to **
** here. If you are still confused, do not continue; **

* % contact an IPS consultant for help. *%
* % * %

hhkkhkhhhkhkkhkhhkkhkhhhhkhkhkhhkhkhkkhhhkhkhkhhhdkhkhkhhhhhkhhhhhhkkhhkhbhkhhhdhhkkkhkhx

V. FILLING

Unless you tell it otherwise, runoff formats text by moving the
words of the input file from 1line to line to even the right
margin, and pads the line with blanks to justify it exactly. In
fill mode, runoff attempts to completely fill the current output
line by inserting words from the next input-file text line(s),
and avoids overshooting the right margin by moving words from the
current input-file text line onto the next output line. When the
current output line will not hold the next word to be formatted,
runoff justifies the output lines (inserts extra blanks between
words) unless you have used .na to prevent it.

Sometimes you will not want runoff to perform "filling"--e.g.,
when formatting a table or a long list of one-line items. To
turn off filling, use the .nf (no-fill) control line before such
a block of text.[1] To restore filling afterward, use a .fi
(fill) control line. For example, the lines:

Shopping List---
.Sp

.in 5

.nf

milk

bread

peanuts

junk food
broccoli

o . — - —— . A G e e e S A RS TSt R R W G T tme M G e M GAL S G SR S e - S SV G G T W M S e T G e 8 M S we i —

[1] NOTE: Turning of f filling automatically turns off
right-margin justification.

AP-41-1 Page 18

carrots
mangoes
paper towels
.in 0

i

produce output like this:

Shopping List---

milk

bread
peanuts

junk food
broccoli
carrots
mangoes
paper towels

See also the description of runoff tabs on page and in Part 2.

VI. CONTROL LINES FOR PAGE LAYOUT
DOUBLE- AND SINGLE-SPACING

Unless you tell it otherwise, runoff prints text single-spaced.
To double-space text, use the control line:

.ds

before the text to be double-spaced. (If the whole document is
to double-spaced, put the .ds control line at the top of the
input file.) Runoff will continue double-spacing the text until
it finds a .ss (single space) control line.

BEGINNING OUTPUT ON A NEW PAGE

Runoff normally fills each page with text before going to the
next page. If you want to continue printing on a new page, even
if the current page is not full, use a .pa (page advance) control
line to eject the current page.[2] This is useful in a document

[2] You can also control page ejection "conditionally", according
to how much space 1is left on the current page. (See the
description of the .ne control line in Part 2.) Or you can eject

AP-41-1 Page 19

that has several sections, each of which must begin on a new
page. For example, the input-file lines:

.ce
Section I
.Sp
The information in this document is
for internal use only.
.pa
.ce
Section I1I
<---(text and control lines for Section II)

produces two page of runoff output--the first containing only the
title "Section I" and one sentence, and the second containing the
title "Section II" and the remaining text.

RIGHT-MARGIN JUSTIFICATION

Unless you tell it otherwise, runoff automatically
right-justifies text 1lines by inserting extra blanks between
words until the text is aligned at the right margin. (The text
of this memo is right-justified.) A line printed just before a
control line that causes a break (i.e., .br, .sp, .ce) 1is not
right-justified.

To turn off justification, use the .na (no adjust) control line.
(If the whole document 1is to be printed without right-margin
justification, put the .na control line at the top of the input
file.) Runoff still "fills" text lines, but does not pad lines
with extra blanks to justify exactly. This produces a "ragged"
right margin.

If you have turned off justification and want to restart it, use
the .ad control line.

————— e —— o T —— - ———————— —— ——— —————— — ———————————————— —————————

the current page and force the new page to be odd-numbered. (See
the description of the .op control line in Part 2.)

AP-41-1 Page 20

VII. OTHER CONTROL LINES FOR FORMATTING TEXT

INDENTING

To indent text, use the runoff control line:
.in N

This control line indents all following lines N spaces from the
left margin wuntil a new ".in N" 1is encountered or until an
indent-zero control line (".in 0", or simply ".in").

Consider the following example, part of an input file for a
document 1in which a quotation is set off (indented five spaces)
from the main body of the text:

Since the following material is a quotation,

it is indented five spaces.

.in 5

.Sp

Four score and seven years ago, our forefathers
brought forth on this continent a new nation,
conceived in liberty...
.Sp

.in 0

After the quote, the text should
resume at the left margin.

Runoff would format the text like this:

Since the following material 1is a quotation, it is
indented five spaces.

Four score and seven years ago, our forefathers
brought forth on this continent a new nation,
conceived in liberty...

After the quote, the text should resume at the left
margin.

Because .in 0 (turning off 1indentation) acts as a break
(preventing filling), the only way to indent the first line of a
paragraph is to begin the text line with the required number of
spaces. NOTE: A text 1line beginning with one or more spaces
causes a break.

AP-41-1 Page 21

OFFSET OUTPUT LINES
Runoff has a special control line:
.un N

which can be used to create offset ("hanging-indent") or tabular
output. The ".un N" control line causes the next output line,
and only the next output line, to begin N spaces to the 1left of
the current indentation.

For example, the lines:

.ce 2

THINGS TO BRING WITH YOU

WHEN YOU MOVE TO CAMBRIDGE

.Sp

.in 6

.un 3

a) three rooms' worth of furniture for a
studio apartment

.Sp

.un 3

b) enough police locks to repel
the entire population of Australia
.Sp

.un 3

c) a small fortune to spend on
rent, groceries, and insurance

produce output like this:

THINGS TO BRING WITH YOU
WHEN YOU MOVE TO CAMBRIDGE

a) three rooms' worth of furniture for a studio
apartment

b) enough police locks to repel the entire population
of Australia

c) a small fortune to spend on rent, groceries, and
insurance

AP-41-1 Page 22

TABS

Use the .htd (horizontal tab define) control line to <create and
name a pattern of tab stops--e.g.,

.htd tableA 10 25 45

Turn on this tab pattern, and define a character you will input
instead of a real tab (and which runoff will turn into a tab

during formatting) with the .htn (horizontal tab on) control
line:

.htn tableA §

Then enter tabs into the input file with this special character.
For example, the control lines:

.nf

.htd tableAa 10 25 45

.htn tableA 3§
$NAMESRESIDENCESAGE

.Sp

sJoe Shmo$Boston$l9

SMary Nerdg$New York$32
SPeter Pang$Neverneverland$90
i

.htf tableA

would produce the following output:

I I
| NAME RESIDENCE AGE |
I I
| Joe Shmo Boston 19 |
| Mary Nerd New York 32 |
| Peter Pan Neverneverland 90 |
I I

As shown, you should precede lines used to produce a table with a
.nf (no-fill) control line, to tell runoff not to move words from
line to line to even the right margin. After the table, restore
"filling" with a .fi control line and turn the tab pattern off
with a .htf (horizontal tab off) control line, as shown in the
example. Note that, since the actual tabstops are specified only
in the .htd control line, you can experiment with the spacing of
the table just by changing that one line (using gedx) and running
off successive versions (using runoff). For more information on
using tabs with runoff, see Part 2.

AP-41-1 Page 23

VIII. UNDERSCORING

If you are using gedx, enter text containing underscores in the
same way you would on a typewriter. However, remember that when
you use gedx to change wunderscored text, the wunderscores are
considered part of the text (i.e., you must give both the text
and the underscores in a "s" [substitute] or "//" [locate]
request).,

If you are using Emacs, use the "underline-word" request (press
the key marked ESCAPE and then the "_" key). Since Emacs assumes
your video terminal cannot show an "_" and the character it is
"on top of", Emacs provides a visible indication of the backspace
characters which are part of underscored words. The sequence
"\010" represents a single backspace character. Thus, a word
that would look like this printed on paper:

immature
would be displayed by Emacs as:
~\010i_\010m_\010m_\010a_\010t_\010u_\010r_\O1lo0e

IX. FOOTNOTES

Use the .ft control line to create footnotes in a document. When
you come to a point in the text where a footnote 1is to appear,
enter a .ft control line. Then enter the text of the footnote on
the next line(s). End the footnote with another .ft line. That
is, two .ft control lines delimit a footnote; .ft control lines
must appear in the input file before and after the text of a
footnote.

Runoff automatically saves room for each footnote and prints it
at the bottom of the page.[3]

For example, the following lines:

This is an example of using footnotes.
Lihcoln said that "four score and seven
years ago our forefathers brought forth upon
this continent a new nation...."

JEt

[3] If there is not enough room on the page for all the footnotes
that are "waiting" to be printed, they are continued at the
bottom of the next page. If a footnote would be generated on the
last or next-to-last 1line of the page, runoff automatically
ejects that page and begins a new one before printing the 1line
that generates the footnote.

AP-41-1 Page 24

Abraham Lincoln, Gettysburg Address, 1863,
JEt

The next now resumes with no break.

produce output like this:

This is an example of using footnotes. Lincoln said that
"four score and seven years ago, our forefathers brought
forth wupon this continent a new nation...." (1) The
text now resumes with no break....

(1) Abraham Lincoln, Gettysburg Address, 1863.

The .ft control line does not create a break. Note that runoff
numbers footnotes automatically; you do not enter a number
yourself. You can change the format of the footnote reference
symbol from the default (for 1instance, in this memo we use
numbers in brackets instead of the usual parentheses.

X. HEADERS AND FOOTERS

Use the .he (header) or .fo (footer) control lines to put headers
or footers in a document. The control 1line 1is specified with
four apostrophes[4] which delimit the text to be printed
left-adjusted, centered, and right-adjusted at the top (for
headers) or bottom (for footers) of each page:[5]

.he 'left-text'center-text'right-text'
or
.fo "left-text'center-text'right-text'

For example, to print the heading "XYZ Transistor Corporation" at
the top left of each page, use the control line:

[4] If an apostrophe appears in the text to be included, you can
use any other character not part of the text of the header/footer
to delimit the three parts.

[5] You can also specify different headers or footers for odd-
and even—-numbered pages. For more information, see the
descriptions of the .oh, .eh, .0f, and .ef control 1lines in
Part 2. In addition, you can specify multiple header or footer
lines (.he 1, .he 2, etc.).

AP-41-1 Page 25

.he 'XYZ Transistor Corporation'''
We used the control line:
.he 'AP-41-1''Page %'

to create the header for each page of this memo. The "%" in a
header/footer control line is replaced by the page number.

XI. GETTING SPECIAL EFFECTS WITH CONTROL ARGUMENTS
PRINTING DOCUMENTS ON TYPEWRITER PAPER

You can have runoff print a document on separate sheets of paper
(instead of continuous-form terminal paper) by giving the "-stop"
option when you issue the runoff command:

runoff filename -stop

This tells runoff to stop before each page (including the first)
so that you can insert a single sheet of paper in the terminal.
When the sheet is aligned, type a single carriage return; runoff
will print one page of output and stop, and the process is
repeated. Runoff will also stop after the last page; type one
more carriage return to get a ready message.

RUNNING OFF PORTIONS OF DOCUMENTS

Sometimes you will want to see only part of a document. Give the
page numbers with the "-from" or "-to" options in the runoff
command. Examples:

runoff filename -from 5
runoff filename -from 16 -to 18
runcff filename -to 4

This is useful when you have to stop runoff (by pressing the
BREAK key on your terminal) and restart the document in the
middle--e.g., if your terminal ribbon runs out, you misalign your
paper, or you discover a bad mistake and want to fix it Dbefore
continuing,.

HYPHENATING

To tell runoff to hyphenate a document, specify the "-hph"
control argument when you give the runoff command:

runoff filename -hph

¥

AP-41-1 Page 26

Hyphenation adds to the cost of using runoff, but may improve the
appearance of the document.

Runoff hyphenates by looking up words in a computer "dictionary".
You can create other dictionaries to override the standard
hyphenation or add words specific to your project (which may not
be in the standard dictionary). See page for more information.

. - . - S e N G G e G g Tme A S — Ain W —— — — ——————— o ——

NOTE: You can combine most of the runoff command options (called
control arquments in Multics documentation) discussed above,
depending on what you want runoff to do to your document.
Examples:

runoff filename -hph -segment
runoff filename -stop -hph
runoff filename -hph -to 17 -segment

Runoff has many other options, described fully in Part 2.

- - G T e - - - T TR WML SEE A S N S M e G M e e e e e M S . . —

XII. PRODUCING A DOCUMENT ON THE OFF-LINE PRINTER

Using runoff to print a short document at the terminal is
convenient, but 1if a document is very large, printing it at the
terminal can be time-consuming. Instead of getting runoff's
output at your terminal, you can have it stored in a file
("segment”) and then print it on the high-speed printer in
Building 39.

To have the formatted text of a document put in a segment,
specify the "-segment" option when you give the runoff command.
For example, if your document is named "fatmemo.runoff", give the
runoff command like this:

runoff fatmemo -segment

The "-segment" option stores the printer-ready text in a special
(formatted) file 1instead of printing it at the terminal. This
special file has the same name as that of the input file, but
with a suffix of ".runout". In this case, therefore, the
formatted text would be stored in the file "fatmemo.runout".

Multics will print a ready message when the runoff command above
has finished formatting.[6] You can then have Multics print the

[6] NOTE: Any error messages produced by runoff will be printed
before the ready message. If you get any such error messages, go
back and "repair" the input file (using gedx) and give the runoff

AP-41-1 Page 27

".runout" file on the high-speed printer by wusing the "dprint"
command:

dprint fatmemo.runout

Multics will respond with a message saying that the file is
waiting to be printed, and will then print a ready line:

1 request signalled, 27 already in printer queue 3.
r 1726.4 43.324 2.344

In most cases, you will not want to save the ".runout" file,
since it occupies additional storage and can be easily reproduced
again from the input (".runoff") file, and since any changes you
make the the input file will make the ".runout" file obsolete.
Therefore, you can tell the dprint command to delete the
".runout" segment automatically after it has been printed, by
typing:

dprint -delete fatmemo.runout
instead of the simpler dprint command shown previously.

Output from the IPS high-speed printer (such as the ".runout"
file above) can be picked up at the Output Dispatch Counter (Room
39-260). Ask for it by your Multics "ProjectID".[7]

You can send a formatted ".runout" file to other printers too,
including some intended to produce high-quality output. For more
information, see the descriptions of dprint request types in IPS
Memo MS-1.

command again (as above) before proceeding. Normally you should
not go on to the next step until your runoff command executes
with no errors. ’

[7] To have printer output delivered by courier to the IPS East
Campus Computing Facility (Room E52~083), give the dprint command
with the destination "EAST-CMPS":

dprint -delete -ds EAST-CMPS fatmemo.runout

AP-41-1 Page 28

XIII. DETECTING SPELLING ERRORS
LOOKING FOR TYPOS

Although runoff itself cannot check your document for spelling
mistakes, you can use the Multics dictionary commands to scan a
runout segment for words that are possibly misspelled. The
process involves four steps:

® Issue the "runoff" command with the "-segment" control
argument to generate a ".runout" file. Do not include the
"-hyphenate" control argument because the pieces of the
words that were broken across lines will show up later as
misspelled "words".

® Give the "create_wordlist"” command to produce a list of the
unique words in the ".runout" file. The list of words is
created in a segment whose name 1is the same as the
".runout” file's with the suffix ".wl" appended (for
example, "nickleby.runout.wl").

¢ Use the "trim_wordlist" command to check the words in this
list against words in one or more "dictionary" segments and
remove from the 1list all words thereby verified. The
dictionaries are the same ones runoff uses to hyphenate
words; by default, the publicly accessible "standard"
Multics dictionary is used.

¢ Use the "print_wordlist" command to see what misspelled or
other suspicious words are left. You can then use an
editor to locate and fix the errors in the runoff input
segment.

The dictionary commands are part of the Honeywell WORDPRO
package. For full information on them, see Multics WORDPRO
Reference Guide (AZ98).

A sample session demonstrating the "proofreading" of an input
file named "celibacy.runoff" 1is given below. As usual,
commands you type are distinguished from Multics output by an
arrow (=>); do not type the arrow.

=> runoff celibacy -sm
r 11:13 4.378 309

=> create_wordlist celibacy.runout
total number of words = 33
number of unique words = 31
r 11:14 1.378 311

=> trim_wordlist celibacy.runout
number of words trimmed = 25
number of words remaining = 6

AP-41-1 Page 29

r 11:15 2,378 32

=> print_wordlist celibacy.runout

feeling.* over-powering 1.8
frustratation tht
gerontocracy 1.a

r 11:13 1.234 109

Two words in the list are actual misspellings, "frustratation"
and "tht". Notice, however, that certain things that are
correct also show up, such as sections numbers (like "1.B"),
words with funny punctuation (like the footnoted "feeling.*"),
and real words that are not in the dictionary (like
"gerontocracy"). If you find yourself continually wading
through wordlists full of correctly spelled technical terms or
other specialized words, you may want to create your own
private dictionary and use it in conjuction with the standard
one when you use the dictionary commands. Creating private
dictionaries is discussed in the section below.

USING DICTIONARIES

As we've said in the discussions of hyphenation and
spelling-error detection, you do not have to do anything
special to gain access to the standard Multics dictionary.
Both runoff and the dictionary commands locate dictionaries by
using the "dict" search path, which includes
">unb>standard.dict" by default. You can, however, modify your
"dict" search path to include other dictionaries, including
ones you create.

Suppose you want runoff and the dictionary commands to look up
words in another dictionary as well as the standard one.
Include the pathname of that dictionary in your "dict" search
path. For instance, to add "english.dict", a dictionary in the
Author-Maintained Library, type:

add_search_paths >aml>english.dict

(For a description of "english.dict", see IPS Memo AP-52, For
more information on search paths, see the description of the
"add_search_paths" command in the Multics Programmer's Manual:
Commands and Active Functions, AGS2.)

You can also maintain your own dictionary by using the family
of commands "add_dict_word", "delete_dict_word", and
"list_dict_word". These are also part of the WORDPRO package.
For 1information on them, see Multics WORDPRO Reference Guide

(AZ98).

AP-41-1 Page 31

| PART 2: RUNOFF REFERENCE DESCRIPTION |

A complete reference description of runoff 1is given on the
following pages. This reference section conforms to the format
of the Multics Programmers' Manual: Commands and Active
Functions (AG92) and may be inserted into that document.

runoff runoff

NAME: runoff, rf

FUNCTION: The runoff command produces output in manuscript form
from an input file containing lines of text and control words.

SUPPORT LEVEL:

The support level for runoff is ONE. See the IPS User's Guide
for an explanation of support levels.

SYNTAX AS A COMMAND:

runoff paths {-control_args}

where:

1. paths

are the pathnames of input segments or multisegment
files named entryname.runoff. The runoff suffix must
be the 1last component of each entryname; however,
the suffix need not be supplied in the command line.
If two or more pathnames are specified, they are
treated as if runoff had been invoked separately for
each one. The segments are printed in the order in
which they occur in the invocation of the command.

2. control_args
can be chosen from the following list. Any control
argument specified anywhere in the command invocation
applies to all segments; control arguments can be
intermixed arbitrarily with segment names. Control
arguments must be preceded by a minus sign.

-ball N, -bl N

converts output to a form suitable for an N typeball
on a unit equipped with a selectric-type typing
element. Acceptable ball numbers are 041, 012, 015,
and 963. The default 1is the form of the terminal
device being used. Use of this control argument
overrides any specification set by the -device
control argument (below).

11/06/85 Page 33 AP-41-1

runoff runoff

-character, -ch
flags certain key characters in the output by putting
the line containing the key character 1in a segment
named entryname.chars. The normal output 1is not
affected, Page and line numbers referring to the
normal output appear with each flagged line, and
reminder characters, enclosed by color-shift
characters, are substituted for the key characters.
The default set of key and reminder characters
corresponds to those unavailable with a 963 typeball,
as follows:

Key Reminder
left square bracket <

right square bracket
left brace

right brace

tilde

grave accent

-t~ ~V

The key and reminder characters can be changed by use
of the .ch control line; specifying a blank reminder
character removes the associated key character from
the set of key characters. If a key character would
print normally in the output, it should also appear
in a .tr control line to turn it into a blank in the
output.

-device N, -dv N

prepares output compatible with the device specified.
This is usually used when the output is stored in a
segment to be printed elsewhere. Suitable devices
are terminals 2741, 1050, 37, and the bulk output
printers, 202 or 300. Use of this control argument
overrides any specification set by use of the -ball
control argument; if both are used in one invocation
of runoff, the last one encountered prevails.

If neither -device nor -ball was specified, the
default device type 1is that from which the user is
logged in; any unrecognized device type 1is assumed
to support the entire ASCII character set.

-from N, -fm N
starts printing at the page numbered N, 1If the -page
control argument is used, printing starts at the
renumbered page N,

11/06/85 Page 34 AP-41-1

>

runoff runoff

-hyphenate, -hph
When this control argument is used, a procedure named
hyphenate_word_ is invoked to perform hyphenation
when the next word to be output does not fit in the
space remaining in a line (see "Hyphenation Procedure
Calling Sequence", page). Otherwise, no attempt is
made to hyphenate words.

-indent N, -in N
indents output N spaces from the left margin (default
indentation is 0; see also -number below). This
space is in addition to whatever indentation is
established by use of the .in control word.

-no_pagination, -npgn
suppresses page breaks in the output.

-number, -nb, -map
prints source line numbers in the left margin of the
output; minimum indentation of 10 is forced.

-page N, -pg N
changes the initial page number to N. All subsequent
pages are similarly renumbered. 1If the control 1line
.pa 1is wused within the segment, the -page control
argument is overridden and the page 1is numbered
according to the .pa control line.

-parameter arg, -pm arg
assigns the argument arg as a string to the internal
variable "Parameter". (If arg contains blanks,
enclose it in quotation marks.)

-pass N
processes the source segments N times to permit
proper evaluation of expressions containing symbols
that are defined at a subsequent point in the input.
No output is produced until the last pass.

-segment, -sm
directs output to the segment or multisegment file
named entryname.runout. This control argument
assumes by default that the material 1is to be
dprinted, so the segment is prepared compatible with
device 202 unless another device is specified.

-stop, -sp

waits for a carriage return from the wuser before
beginning ‘typing and after each page of output

11/06/85 Page 35 AP-41-1

runoff runoff

(including after the last page of output).

-to N
ends printing after the page numbered N.

-wait, -wt
waits for a carriage return from the wuser before
starting output, but not between pages.

NOTES:

A runoff input segment contains two types of 1lines: control
lines and text lines., A control line begins with a period; all
other lines are considered text lines. A two- or three-character
control word appears in the second and third character positions
of each control line. The control word can take a parameter that
is separated from the control word by one or more spaces.

Text lines contain the material to be printed. 1If an input line
is too short, or too 1long to f£ill an output line, material is
taken from or deferred to the next text line. A 1line beginning
with white space is interpreted as a break in the text (e.g., the
beginning of a new paragraph) and the previous line is printed as
is. Lines that are entirely blank are treated similarly to .sp 1
control lines (see the description of the .sp control word).

Nonprinting control characters in the input segment are discarded
in the output segment. The .tr control word can be used to print
these control characters in the output segment.

When an input text line ends with any of the characters ".", "?",
v, "3, or "M, or with ".", "?", or "!" followed by a double
quote or ")", two blanks precede the following word (if it is

placed on the same output line), instead of the normal single
blank.

The maximum number of characters per input or output line is 361;
this permits 120 wunderlined characters plus the newline
character.

TERMINOLOGY:

11/06/85 Page 36 AP-41-1

runoff runoff

The following paragraphs describe various terms that are used
throughout the runoff description.

Fill and Adjust Modes

Two separate concepts are relevant to wunderstanding how runoff
formats output: fill mode and adjust mode. In fill mode, text
is moved from line to line when the 1input either exceeds or
cannot fill an output line. Adjust mode right justifies the text
by inserting extra spaces in the output line, with successive
lines being padded alternately from the right and from the left.
Initial spaces on a 1line are not subject to adjustment., Fill
mode can be used without adjust, but in order for adjust to work,
fill mode must be in effect.

Line Length

The line length is the maximum number of print positions 1in an
output 1line, 1including all spaces and indentations, but not
including margins set or implied by the -indent or -number
control arguments. :

Break
A break ensures that the text that follows is not run together

with the text before the break. The previous line is printed out
as is, without padding.

Spacing Between Lines

Vertical spacing within the body of the text is controlled by the
three control words: .ss, .ds, and .ms (for single, double, and
multiple spacing respectively). Single spacing is the default.
Multiple spacing is set by the control line .ms N where N-1 is
the number of blank lines between text lines.

Page Eject

A page eject ensures that no text after the control line causing
the page eject (e.g., .pa for "page") is printed on the current
page. The current page 1is finished with only footers and
footnotes at the bottom, and the next text line begins the

11/06/85 Page 37 AP-41-1

runof £ runoff

following page.

Margins

There are four margins on the page vertically. The first margin
on the page is the number of blank lines between the top of the
page and the first header; this margin is set by the .ml control
word. The second, set by .m2, specifies the number of lines
between the last header and the first line of text. The third
(.m3) is between the last line of text and the first footer. The
fourth (.m4) 1is Dbetween the last footer and the bottom of the
page. The default for the first and fourth margins 1is four
lines; for the second and third, two lines.

Page Numbers

As the output is being prepared, a page number counter is kept.
This counter can be incremented or set by the user. The current
value of the counter can be used in a header or footer through
the use of the symbol "%$". A page is called odd (even) if the
current value of the counter is an odd (even) number.

The page numbers can be output as either arabic (the default) or
roman (using the .ro control word).

Headers and Footers

A header is a line printed at the top of each page. A footer 1is
a line printed at the bottom of each page. A page can have up to
20 headers and 20 footers. Headers are numbered from the top
down, footers from the bottom up. The two groups are completely
independent of each other. Provision 1is made for different
headers and footers for odd and even numbered pages. Both odd
and even headers (footers) can be set together by using the .he
(.fo) control words. They are set separately by using the .eh,
.oh, .ef, and .of control words,.

A header/footer control line has two arguments, the 1line number
(denoted in the control line descriptions as "#"), and the title.

The line number parameter of the control 1line determines which
header or footer line is being set. If the number is omitted, it
is assumed to be 1, and all previously defined headers or footers
of the type specified (odd or even) are cancelled. Once set, a
line is printed on each page until reset or cancelled.

11,/06/85 Page 38 AP-41-1

runoff runoff

The title part of the control line begins at the first nonblank
character after the line number. This character is taken to be
the delimiting character, and can be any character not wused in
the rest of the title. If the delimiting character appears less
than four times, the missing last parts of the title are taken to
be blank. The three parts of the title are printed left
justified, centered, and right justified, respectively, on the
line. Any or all parts of the title can be null. Justification
and centering of a header or footer line are derived from the
line length and indentation in effect at the time of the
definition of the header or footer, and are used whenever that
line is output, regardless of the values at the time of use. Any
occurrence of the special character "%" within a title 1is
replaced by the current value of the page counter whenever the
title is printed. To cause a percent character to be printed,
"$%" must be written in the title. (The special character can be
changed; see the .cc control word.) Moreover, symbols also are
automatically expanded--you do not need a .ur control word
preceding header or footer control words.

Omitting the title in the control 1line cancels the header or
footer with that number, including its space on the page (e.g.,
".he 4" cancels the fourth header). A blank line in the header
or footer <can be achieved by a title consisting entirely of one
delimiting character (e.g., ".fo 3 $" makes the third footer a
blank line). Omitting both number and title of a header (footer)
cancels all headers (footers) of the type specified (e.g., ".oh"
cancels all odd-page headers that were specified by any previous
.oh or .he control lines).

EXPRESSIONS AND EXPRESSION EVALUATION:

An expression can be either arithmetic or string, and consists of
numbers and operators in appropriate combinations. All
operations are performed in integer format, except that string
comparisons are performed on the full lengths of the strings.

The order of precedence for the operators is:

A (bit-wise negation), - (unary)

*, /, \ (remainder)

+, - (binary)

=, <, >, #, <, > (all are comparison operators that
yield -1 for true or 0 for false)

& (bit-wise AND)

| (bit-wise OR), = (bit-wise equivalence)

11/06/85 Page 39 AP-41-1

runoff

runoff

Other guidelines in the use of expressions are as follows:

1.
2.

3.

11/06/85

Parentheses can be used for grouping.
Blanks are ignored outside of constants.

Octal numbers consist of "#" followed by a seqguence of
octal digits. Hexadecimal numbers consist of "@"
followed by a sequence of hexadecimal digits.

String constants are surrounded by the double gquote
character; certain special characters are defined by
multiple-character sequences that begin with the *
character, as follows:

*% asterisk character

*" double-quote character

*b backspace character

*n newline character

*t horizontal-tab character

*s space character

*cN character whose decimal value is

N (1 to 3 digits)

Concatenation of strings is per formed by the
juxtaposition of the strings involved, in order, left
to right.
For positive i, k,

string_expression(i)
and

string_expression(i, k)

are eguivalent to the PL/I substr builtin function
references

substr(string_expression, i)
and
substr(string_expression, i, k)
respectively.
For negative i, the substring is defined as starting -i

characters from the rightmost end of the string; for

Page 40 AP-41-1

runoff runoff

negative k, the substring ends -k characters from the
end of the string,

8. Evaluation of substrings takes place after any
indicated concatenations; string operations have higher
precedence than all the binary operations.

9. In any context other than a .sr control line or in a
string comparison, a string expression is converted to
an integer in such a way that a one-character string
results in the ASCII numeric value of the character.

Expression evaluation takes place under the following conditions:
1. In .sr and .ts control lines

2, In all control 1lines that accept an "N" or "+N"
argument

DEFINITION AND SUBSTITUTION OF VARIABLES:

Variables can be defined by the use of the .sr control line;
their values can be retrieved thereafter by a symbolic reference.
Names of the variables are composed of the uppercase and
lowercase alphabetic characters, decimal digits, and "_", with a
maximum length of 361 characters. When a variable is defined, it
is given a type based on the type of the expression that is to be
its value, either arithmetic or string. Variables that are
undefined at the time of reference yield the null string, which
is equivalent to an arithmetic 0.

In substitution of variables, the name of the variable 1is
enclosed by "%"; other occurrences of the character "§"
encountered during substitution of variables are replaced by the
value of the page counter; if a "%" character is to occur in the
resulting output, it must be coded as "%%" (but see also the .cc
control word).

11,/06/85 Page 41 AP-41-1

runoff runoff

Substitution of variables can occur:

1. In control lines that take an expression argument if a
"$" is found as either the first or second character of
the argument (substitution of variables takes place
before expression evaluation)

2. In .ur control lines

3. In all titles ('partl'part2'part3’), whether in
header/footer control lines or as equation lines

Many of the variables internal to runoff are available to the
user (a complete list is given at the end of this description).
These variables include <control argument values (or their
defaults), values of switches and counters, and certain special
functions. However, the user need not worry about naming
conflicts, since an attempt to redefine an internal variable that
is not explicitly modifiable is ignored; while the variable is
reset to the wuser's value and no longer reflects internal
information, the operation of the command is unaffected. .

Two special built-in symbols in runoff are provided for wuse in
footnote and equation numbering: "Foot" contains the value of
the next footnote number available (or the current footnote if
referred to from within the text of the footnote) and "Egcnt" is
provided for equation numbering. The value of "Foot" is
incremented by one when the <closing .ft of a footnote is
encountered. Any reference to "Egcnt" provides the current value
and causes its value to be incremented by one automatically;
thus its value should be assigned to a variable, and the variable
should then be wused in all further references to that eguation
number.

ACTIVE STRINGS:

Multics command-language active strings (see Multics Programmer's
Manual: Reference Guide) may appear in a runoff input file in any
context which permits a symbolic reference. An active string is
identified by a combination of the syntax of a runoff symbolic
reference and the syntax of a Multics active string: the active
string begins with the character sequence "%[" and ends with a
similar sequence, "%]". (If the .cc control word 1is wused to
change the symbol control character, the new character must be
used for active strings also.) But, if an active string contains
other active strings nested within it, only the outer brackets
require the symbol identifier character. For example:

11,/06/85 Page 42 AP-41-1

runoff - runof £

The deadline for this
.ur issue is %[underline [long_date Monday 2weeks] %].

The runoff command passes the entire active string to the Multics
system for evaluation; thus, within the active string the syntax
is that of a Multics command line. The runoff command uses the
value string which the system returns to replace the active
string in the runoff input, just as if it were the value of a
runoff variable.

The active string may contain symbolic references to runoff
variables. The runoff command substitutes values for such
variables before evaluating the active string.

HYPHENATION:

You may have runoff attempt hyphenation when the space available
on a line is less than the length of the next word (including the
attached punctuation, if any). Normally, you enable hyphenation
by giving the "-hph" control argument on the runoff command line.
You may also control hyphenation line by 1line "from within the
input file by inserting .hyn, .hyf, and .hy control lines.

The .hyn (hyphenation on) control line instructs runoff to
attempt to hyphenate words so as to minimize output-line white
space (padding) or the unevenness of the right margin (in
no-adjust mode). The .hyn control 1line may also be used to
specify the minimum space which runoff should attempt to fill
with a hyphenated word part. The .hyf (hyphenation off) control
line tells runoff to stop hyphenating. This 1is particularly
useful for preventing the 1last word of a paragraph from being
hyphenated.

The .hy (hyphenation) control line returns hyphenation processing
to the mode initially specified by the presence or absence of the
"-hph" control argument in the runoff command line. That is, if
the "-hph" control argument was not given, .hy is interpreted as
.hyf; if the -hph control argument was given, .hy is interpreted
as .hyn. Note, however, that the minimum space that will trigger
an attempt to hyphenate may not be specified with .hy; it is
automatically reset to 3 spaces (the default).

Hyphenation Procedure Calling Segquence

The runoff command uses an external subroutine to perform
hyphenation. This routine works in conjunction with the standard
dictionary and 1is accessible through the standard search rules;

11,/06/85 Page 43 AP-41-1

runoff runof £

you do not have to provide the subroutine yourself. However, you
may want to use your own hyphenation routine; 1its PL/I calling
sequence is prescribed below:

declare hyphenate word_ entry(char(*) unaligned, fixed bin,
fixed bin);

call hyphenate_word (string, space, break);
where:

1. string
is the text word that is to be split. (Input)

2. space
is the number of print positions remaining in the
line. (Input)

3. break
is the number of characters from the word that should
be placed on the current line; it should be at least
one less than the value of space (to allow for the
hyphen), and can be 0 to specify that the word is not
to be Dbroken. Thus if the word "calling" is to be
split, and 6 spaces remain in the line, the procedure
should return the value 4 (adjustment 1is performed
after hyphenation). (Output)

TABULATION

You may designate one or more characters to be converted to a tab
on output. It is helpful to put tabs into a document using such
a printable trigger character rather than a real tab (ASCII HT),
since this makes it much easier to edit the (input-file) lines of
a document which include tabs.

Each trigger character may be associated with a different pattern
of tabstops, and each pattern of tabstops may have associated
with it a string of characters (the "fill string") to replace the
white space left by a tab on output (e.g., a line of periods).
Default tabstop positions are 11 21 31 ... 10n+l; the default
fill string is blanks; and the default trigger character is HT.

Trigger characters encountered in regular text lines are expanded
(replaced with fill characters) according to their positions 1in
the resulting output 1line (i.e., after output-line filling and
after any substitution of variables). Otherwise they are treated
in the same way as blanks--i.e., if filling causes a tab to

11/06/85 Page 44 AP-41-1

runoff runoff

appear at the right end of an output line, the tab is discarded
as if it were a blank. Furthermore, if adjust mode is in effect,
tabs are subject to padding (addition of blanks) in the same way
as blanks. Therefore, precede text consisting of tabulated
columns with a .nf control line to preserve horizontal alignment
and stop "filling". Remember to reenable filling (.fi) when you
want to resume normal (filled) text.

Expansion of tabs on output is controlled by the four control
lines .htd, .htc, .htn, and .htf. The .htd (horizontal tab
define) control line allows you to specify a pattern of tabstops
and give it a "name" by which it will be known later in the input
file. Up to twenty such patterns may be defined. You may also
specify a replacement string to fill the white space left by an
expanded tab. The .htc (horizontal tab cancel) control line may
be used to cancel a pattern. The .htn (horizontal tab on)
control 1line associates a trigger character with a particular
named tab pattern. A different character may be designated for
each named pattern, The .htn control line enables the named
pattern; in all text following the .htn control line, the trigger
character is replaced by as much of a tab (or by as much of the
tab™s "fill string") as is required to place the next character
at the next tabstop. This continues until runoff encounters a
.htf (horizontal tab off) or .htc control line for the named
pattern, or a .htn changing the trigger character. Note that
more than one tab pattern and trigger character may be in force
at one time.

Trigger characters encountered in control lines are treated as
blanks except when found within a string expression or a "title"
line (.he, .fo, .eq). Trigger characters in a string expression
are not expanded until used (i.e., in a text line via .ur, or in
a header, footer, or equation line).

Because tabulation is defined in a left-to-right fashion, there
is no way to expand a tab according to its position in a centered
line (.ce) without redefining the notion of a tab. This is true
also for the centered and right-justified portions of "title"
lines. Tab trigger characters 1in such 1lines are expanded
according to their positions in the original specification
string, after any substitution of variables.

NOTE: It is inadvisable to use the terminal's TAB key to enter
real tabs (ASCII HT) into the input file in the absence of a
preceding .htn control 1line; under these conditions, runoff
converts tab characters to the number of spaces required to get
to the next tab position (11, 21, ...) before processing
anything else on the line(s) containing the tabs. This can cause
problems in lines containing, for example, variables to be

11/06/85 Page 45 AP-41-1

runoff runoff

evaluated (via .ur).

CHANGE MARKERS

When a document is revised, the author or publisher frequently
wants to provide the reader with an easy way to find the
differences between the previous editions of the document and the
current revision. This usually is accomplished by placing change
markers in the margin adjacent to those sections of text which
have been amended. Runoff provides this facility via the .bbm
(block-begin for markers) and .bem (block-end for markers)
control lines.

A change block 1is a piece of contiguous text which 1is an
amendment to a document or which contains amendments. A change
marker is a character or set of characters placed in the margin
of a document to call the reader's attention to differences
between the current and previous editions of the document.
A .bbm control line tells runoff to begin a change block; a .bem
control line signals the end of a change block. The change block
is the text between the .bbm and the .bem. The .bbm is said to
open a change block and the .bem is said to close it. An open
block may also be called active. Neither beginning nor ending a
change block causes a break.

You may control the character or characters used for the change
marker and the position of the marker in the margin with the

margin specification of the .bbm control line. A margin
specification contains two control characters and a string of
characters enclosed 1in quotation marks ("). One control

character (1, r, or b) indicates in which margin (left, right, or
both) the change marker 1is to be placed. The other control
character (o, e, or a) allows different change-marker patterns
for odd and even pages (or the same pattern for all pages).
Thus, a .bbm control 1line may contain up to four margin
specifications. The string of characters enclosed in quotes in
the margin specification is placed before (for left-margin
markers) or after (for right-margin markers) each line containing
text from the the change block, e.gqg.,

.bbm er" |" ol"| "
would produce:
(on an even page): one line of a change block |

(on an odd page): [one line of a change block

11/06/85 Page 46 AP-41-1

runoff runof f

The terminals and printers on which runoff output is written
print from left to right. Ordinarily the first character of
output for each line is the first character of the text line, and
ordinarily the paper is positioned so that the leftmost position
of the printing device is to the right of the edge of the paper
by an amount equal to the space reserved for the left margin. 1If
change markers are used in the left margin different conventions
must be used.

On a page with change markers in the 1left margin, runoff must
insert spaces at the left of any output lines which do not have
change markers, so that those lines will line up properly at the
left margin with the lines having change markers. Runoff can do
this only if given warning that change markers may appear in the
left margin somewhere in the document. Such warning is given
with the ".bbm set" control line at the beginning of the runoff
file or after a page-break control line (.pa or .op).

TERMINAL ESCAPE SEQUENCES

Some terminals recognize certain sequences of two or more
characters as controls for special terminal functions. Runoff
can properly format those two-character sequences in which the
first character is either the ASCII ESC character (octal \033) or
the ASCII DC1 character (octal \021) and the second character is
one which would normally print. This is wuseful for formatting
documents containing superscripts and subscripts. The procedure
is detailed below.

Enter the control sequences directly into the ".runoff" input
file where needed. The ESC (or DCl1l) character must be input as
"\033" ("\021") since the terminal may interpret it immediately
(i.e., as a real terminal escape) if the ESC (or DC1l) key is
used. No special runoff control lines are associated with the
use of terminal escapes, but the following .tr (translate)
control line must appear in the input file before the first
escape sequence:

.tr \033\033 or .tr \021\021

The Multics I/0 system currently converts the ESC (DCl1l) character
to the string "\033" ("\021") in terminal output unless you tell
it otherwise. To prevent the system from performing this
"editing” while you are formatting a file containing escapes (and
to reinstate I/0 editing later), use the set_tty (stty) command.
(See "Suggested Procedure for Use of Escapes", below.)

11/06/85 Page 47 AP-41-1

runoff runoff

Telling Multics not to edit output ("raw-output" mode) has other
implications, however. In raw-output mode, the linefeed
character (ASCII LF; octal \012) which Multics treats as a
newline 1is transmitted without the <carriage return character
(ASCII CR; octal \015) that normally accompanies it. To obtain
properly-formatted £final output, therefore, you must runoff the
input file into a segment ("runoff filename -segment"), edit the
".runout” file thus produced (changing all linefeed characters to
linefeed-and-carriage-return), then reguest raw-output mode
(using the set_tty command), and then print the ".runout" file
(using the print command). (See "Suggested Procedure for Use of
Escapes", below.)

There is one further consideration. Since, by default, runoff
formats "-segment” output as if it were destined for off-line
printing, you must give the "-device 37" control argument in the
runoff command, which requests formatting for a (full-ASCII)
terminal.

Suggested Procedure for Use of Escapes

Step 1: Create or edit a ".runoff" file (filename.runoff) in the
usual manner. Enter the ESC character as \033 (or the DC1
character as \021). Include the control line

.tr \033\033 or .tr \021\021
before the first escape seqguence.
Step 2: Invoke runoff to produce a ".runout" file formatted for
a full-ASCII terminal:

runoff filename -segment -device 37
(You may give any further runoff control arguments in the same
command line.)

Step 3: Edit the ".runout" file to change LF to LF CR:

gedx

r filename.runout
1,8$s/\012/\012\015/
w

g

11/06/85 Page 48 AP-41-1

runoff runoff

Step 4: Type commands to (a) set I/0 system editing to
raw-output (rawo) mode, (b) print the ".runout" file, and
(c) reinstate I/O system editing. Type these all on one line
(separated by semicolons) to avoid the confusion that can result
when attempting to type to the system with raw-output mode in
effect:

stty -modes rawo; print filename.runout 1; stty -modes Arawo

(The argument "1" to the print command avoids the name-and-date
header that the print command normally displays.) Before
executing this command line, align the paper so that the printer
will be at the top of the output page.

To print additional copies, repeat Step 4. Repeat Steps 2
through 4 each time you change the input file (filename.runoff).

An exec_com is provided to perform Steps 2 through 4. To use iﬁ,
type:

ec >IML>rfesc path =-args

where path is the pathname of the ".runoff" file, and -args may
be any runoff control arguments except "-device" or "-segment".
Note that this exec_com creates a ".runout" file, in your working
directory, which you may wish to delete afterward, to avoid extra
storage charges.

DEFAULT CONDITIONS

When no control words are given, runoff prints the text single
spaced, right adjusted, with no headers, no footers, and no page
numbers.

I1f page numbers are substituted in headers or equations, they are
arabic.

A page consists of 66 lines, numbered 1 through 66. The first
line is printed on line 7, and the last on line 60, if no headers
or footers are used. If headers are used, there are four lines
of top margin (.ml 4), the headers, two blank lines (.m2 2), and
then the text. 1If footers are used, there are two lines skipped
after the text (.m3 2), footers printed, and four lines of bottom
margin (.m4 4).

A line is 65 characters long; the left margin 1is that of the
typewriter. The output is compatible with whatever is normal for

11/06/85 Page 49 AP-41-1

runoff runoff

the device from which the runoff command is executed. The entire
segment 1is printed, with no wait before beginning or between

pages.

CONTROL WORD FORMATS

The following discussion gives a description of each of the
control words that can be interspersed with the text for format
control, Control lines do not cause an automatic break unless
otherwise specified. Arguments of the control words are in the
following form: '

integer constant
N integer expression
+N integer expression preceded by
optional + or - sign
<expression> arbitrary expression (string or integer)
c character
cd character pair
f segment name

'partl'part2'part3' a title whose parts are to be left
justified, centered, and right justified
respectively.

.ad Adjust: text is printed right justified. Fill mode
must be in effect for right justification to occur.
Fill mode and adjust mode are the default conditions.
This control line causes a break.

.ar Arabic numerals: when page numbers (% variable) are
substituted into text or control lines as a result of
a .ur control line or into a title or equation as it
is printed, they are in arabic notation. This is the
default condition.

.bbm {key} {margin_specifications}
Block-Begin for Markers: if "key" is omitted, open a
change block. A change marker 1is placed 1in the
margin beside each 1line of output containing text
from this block of input. If a change block is
already active the change markers continue, but an
error message is printed.

11/06/85 Page 50 AP-41-1

runoff

. bem

11,/06/85

runoff

key (optional) may have the value:

set indicates that the margin specifications on the
control line are to be used in any .bbm control
line which does not have margin specifications
of its own, 1f one or more of the margin
specifications on the control line are for the
left margin, ".bbm set" also causes runoff to
add spaces to the beginning of all output 1lines
not 1in a change block so as to align them with
those that have change markers. The number of
spaces 1is equal to the number of characters,
both printing and blank, in the quoted string
part of the 1left margin specifications (see
below). If the "set" key 1is wused without a
margin specification, the default margin
specification (ar" |") 1is restored. A .bbm
control line with this key specified does not
open a change block.

margin_specifications are optional. If they are
omitted the margin specifications from the most
recent ".bbm set”™ 1line (or the default margin
specification 1if no ".bbm set" has been encountered)
are used for the change markers. A margin
specification has the following form:

pm"string_expression"
where

p is the page type. It may be e (even), o (odd),
or a (all).

m is the margin type. It may be 1 (left),
r (right), or b (both).

" is the delimiter character.

string_expression
specifies the characters which are to appear in
the margin adjacent to each line of the change
block, including blanks (see "Change Marker
Example", page); the string expresssion may be
up to 20 characters in length,

Block-End for Markers: The current change block is
closed. If no change block 1is active an error

Page 51 AP-41-1

runoff

runoff

message is produced, but no other action is taken.

.bp Begin page: the next line of text begins

on a newvw

page of output. This control line causes a break.

.br Break: the current output line is finished

as 1is,

and the next text line begins on a new output line.

.cc C Control character: this control 1line changes the
character used to surround the names of symbolic
variables and active strings when they are referenced

to c. The default special character 1is

o n

5" . The

character specified by c must thereafter be used to
refer to symbolic variables and active strings, while

percent signs are treated literally. Either

".cc %"

or .cc restores the percent sign as the special

character,

.ce N Center: the next N text lines are centered.

Control

lines and blank lines are not counted as part of the
N lines being centered. If N 1is missing, 1 is
assumed. This control 1line 1implies ".ne N" (or

".ne 2N" if double spacing) so that

all lines

centered are on the same page. A break occurs.

.ch cd.. Characters: each occurrence of the character c is
replaced in the chars segment (the segment named

entryname.chars) by . the character d, set

off by

color-shift characters. An arbitrary number of cd

pairs can follow the initial pair on the

same line

without intervening spaces. If the d character is
blank, or an unpaired c character appears at the end
of the 1line, the ¢ character 1is not flagged; it

either occurs as itself in the chars segment

or not

at all if no other character on the line was flagged.

.ds Double space: begin double spacing the text. This

control line causes a break.

.ef # 'partl'part2'part3’

Even footer: this defines even page footer line

number #$. If $ is omitted, 1 is assumed.

11/06/85 Page 52

If both §

AP-41-1

runoff

runof £

and the title (parts 1 to 3) are omitted, all even
footers defined by any .ef or .fo control lines are
cancelled. For more information, see the previous
discussion entitled "Headers and Footers", page 38.

.eh 4 'partl'part2'part3’

.eq N

.ex text

Even header: this defines even page header 1line
number #. If # is omitted, 1 is assumed. If both #
and the title (parts 1 to 3) are omitted, all even
headers defined by any .eh or .he control lines are
cancelled. For more information, see the previous
discussion entitled "Headers and Footers", page 38.

Equation: the next N text 1lines are taken to be
equations. If N 1is missing, 1 is assumed. This
control line implies ".ne N" (or ".ne 2N" if double
spacing) so that all equations are on the same page.
The format of the equations should be
'partl'part2'part3' just as in headers and footers.

Execute: the remainder of the control line (text) is
passed to the Multics command processor.
Substitution of variables can occur if the first or
second character of text is "%".

.fh 'partl'part2'part3'’

LEi

11/06/85

Footnote header: before footnotes are printed, a
demarcation line is printed to separate them from the
text. The format of this 1line can be specified
through the title in the .fh control line. This
title is printed in the same manner as
headers/footers and equations. The default footnote
header is a 1line of underscores from column one to
the right margin,

Fill: this control line sets the fill mode. 1In fill
mode, text is moved from line to 1line to even the
right margin, but blanks are not padded to justify
exactly. Fill mode is the default condition. This
control line causes a break.

Page 53 AP-41-1

runoff runoff

.fo 4 'partl'part2'part3'

Footer: even and odd footers are set at the same
time; this is equivalent to:

.ef # 'partl'part2'part3’

.0f # 'partl'part2'part3’
If 4 is omitted, 1 is assumed. If both # and the
title (parts 1 to 3) are omitted, all footers are
cancelled. For more information, see the discussion
entitled "Headers and Footers", page 38.

fr c Footnote reset: this control line controls footnote
numbering according to the argument c. Permitted
values of ¢ are:
t Footnote counter is reset at the top of each
page. This is the default condition.
f Footnote counter runs continuously through the
text.
u Suppresses numbering on the next footnote.

gt Footnote: when .ft is encountered, all subsequent
text until the next .ft 1line 1is treated as a
footnote. Any further text on the .ft 1line is
ignored, If a footnote occurring near the bottom of
a page does not fit on the page, as much as necessary
is continued at the bottom of the next page. If a
footnote reference occurs in the bottom or next to
bottom line of a page, the current page is terminated
and the line with the footnote reference 1is printed
at the top of the next text page.

.gb STR Go back: the current input segment is searched from
the beginning until a line of the form ".la STR" is
found; "STR" in this case means "the rest of the
line." Processing is continued from that point.

.gf STR Go forward: same as .gb, except search forward from
the current position in the input segment.

.he # 'partl'part2'part3'
Header: even and odd headers are set at the same
time. This is equivalent to:
.eh # 'partl'part2'part3'
.0oh # 'partl'part2'part3'
If 4 is omitted, 1 is assumed. If both # and the

11/06/85 Page 54 AP-41-1

runof f

.htc {namel

+htf {namel

.htd {name}

11/06/85

runoff

title (parts 1 to 3) are omitted, all headers are
cancelled. For more information, see the discussion
entitled "Headers and Footers", page 38,

... namen}

Horizontal Tab Cancel: cancel the named pattern(s)
and turn it (them) off. If no names are given, all
patterns are cancelled and turned off.

... namen}

Horizontal Tab Off: stop treating the trigger
character for each specified pattern as a tab on
output. If no names are given, all
currently-enabled tab patterns are turned off.

{string_expression} {tl t2 ... tn}

Horizontal Tab Define: define (or redefine) a tab
pattern and (optionally) the fill string used to
replace the trigger character for that tab pattern.

where:

name

(optional) is the name by which this pattern of
tabulation is to be known in subsequent .htn and
.htf control lines. The name may be up to 32
characters in length. One unnamed and up to 20
named tab patterns may be defined. A name
composed of a single asterisk (*) also may be
used to refer to the unnamed tab pattern.

string_expression
(optional) is the fill string to replace tab
trigger characters (see "Tabulation Example",
page .). It is a runoff string expression
(i.e., it may include SUBSTRs and
concatenations). If it 1is omitted, the £fill
string 1is not changed. The default £fill string
consists entirely of blanks. The default fill
string can be restored by specifying the null
string ("") as the fill string. If the fill
string 1is shorter than the number of characters
needed to replace a given trigger character, it
is replicated as necessary. If longer, the last
m characters are used to fill m spaces. If the
number of characters is not an even multiple of

Page 55 ApP-41-1

runoff

runoff

the length of the fill string, the partial
string is truncated at the left and placed at

the beginning of the tabspace. The
string_expression should not contain
overstrikes.

ti is an integer expression giving the position of
the ith tabstop (i.e., the position of the first
character after the tab) in the pattern being
defined. The default tab pattern is
11 21 31 ... 10n+1. The ti's must be separated
by blanks. For trigger characters occurring in
the output line beyond the last tab position set
by the .htd control line, the default tabstops
remain 10i+1. The default tabstops may be
restored by a .htd line specifying no tabstops
(for example, .htd or .htd name "").

.htn name {c}

Jhyf

.hyn {n}

11,/06/85

Horizontal Tab On: associate a trigger character, ¢,
with the named tab pattern and start treating that
trigger character as a tab on output. If the trigger
character 1is omitted, the tab character (ASCII HT,
octal \011l) is used for the trigger character.

Hyphenation (Return to Initial Mode): The 1initial
hyphenation mode 1is determined by the presence or
absence of the -hph control argument on the command
line wused to 1invoke runoff. The .hy control line
returns runoff to that initial hyphenation mode and
resets the smallest space that will trigger an
attempt to hyphenate to the default value of 3.

Hyphenation Off: stop hyphenating. The
minimum-space parameter n (above) is not affected by
this control line--i.e., it will retain 1its most
recent value 1if hyphenation 1is enabled again by a
.hyn control line without an n specification.

Hyphenation On: start attempting to hyphenate words
whenever n or more spaces are needed to fill a line.
If n is not given, use the value given on the most
recent .hyn line. 1If n has not been specified on any
.hyn 1line, or 1if a .hy line occurs after the most
recent specification, use the default value of 3.

Page 56 AP-41-1

runoff

runoff

.if f <expression>

.in *N

.la STR

.1i N

.11 *N

11/06/85

Insert file: the segment specified by f is 1inserted
into the text at the point of the ".if f" control
line. The inserted segment can contain both text and
control lines. No break occurs. The effect is as if
the control 1line were replaced by the segment.
Inserts can be nested to a maximum depth of 30. The
argument f is the entryname of a runoff input
segment; f must not include the .runoff suffix
(although the name of the segment itself must have
the suffix). If a second argument is provided, it is
evaluated in the same fashion as the expression in
.sr, and its value and type are associated with the
identifier "Parameter"; if no second argument is
provided the value of "Parameter" remains unchanged
(or wundefined). (In either case, "Parameter" is not
reassigned its prior value when processing of the
insert file completes.)

The input file is located by use of the runoff search
list (for more on search lists, see the
"add_search_paths" command in the Multics
Programmers' Manual: Commands and Active Functions,
AG92). If the wuser does not have a runoff search
list, the translator search list is used.

Indent: the left margin 1is indented N spaces by
padding N 1leading spaces on each line. The right
margin remains unchanged. By default N 1is 0. The
margin can be reset with another ".in N" request.
Either .in or ".in Q0" resets the original margin. If
N is preceded by a plus or a minus sign, the
indentation 1is changed by N rather than reset. This
control line causes a break.

Label: defines the label STR for use as the target
of the .gb or .gf control word.

Literal: this request causes the next N lines to be
treated as text, even 1if they begin with a period
(.). If N is not given, 1 is assumed.

Line length: the line length is set to N. The left
margin stays the same, and no break occurs. If N is
not given, 65 is assumed. If N is preceded by a plus

Page 57 AP-41-1

runoff

.ms *N

.ml +N

11,/06/85

runoff

or a minus sign, the line 1length 1is changed by N
rather than reset.

Margins: top and bottom margins are set to N lines.
If N is preceded by a plus or a minus sign, the
margin is changed by N rather than reset. The margin
is the number of lines printed above the first header
and below the last footer. If N is not given, 4 is
assumed. This control line is equivalent to:

.mi +N

.mé4 +N

Note: Care should be taken in using a top or
bottom margin of less than three lines if
output is to be directed to an off-line
printer (-sm). Such printers typically
are set up to skip automatically the
first and last 3 lines on each page.
Runoff takes this into account by putting
out fewer newlines to compensate for the
printer; the compensation cannot work for
.ml or .mé¢ less than 3. It 1is possible
to get around this problem by using the
-device 037 control argument when
invoking runoff and special control
arguments to the command that set up
requests for the off-line printer
(dprint).

Multiple pages: format the output text so that it
prints on every Nth page (i.e., skips N-1 blank
sheets of paper between printed pages). This control
line is valid only for output intended for the bulk
printer. If N is not given, 1 is assumed.

Multiple space: begin multiple spacing text, leaving
(N-1) blank 1lines between text 1lines. If N is
preceded by a plus or a minus sign, the spacing is
changed by N rather than reset. If N is not given, 1
is assumed. This control line causes a break.

Margin 1: the margin between the top of the page and
the first header is set to N lines, or changed by N
if N 1is signed. If N is not given, 4 is assumed.
See note in description of .ma.

Page 58 AP-41-1

runoff

.m2 +N

.m3 +N

.mé4 +N

.nla

.ne N

.nf

11/06/85

runoff

Margin 2: the number of blank lines between the last
header and the first line of text is set to N, or
changed by N if N is signed. 1If N is not given, 2 is
assumed.

Margin 3: the number of blank lines printed between
the 1last line of text and the first footer is set to
N, or changed by N if N is signed. If N 1is not
given, 2 is assumed.

Margin 4: the margin between the last footer and the
bottom of the page is set to N lines, or changed by N
if N is signed., 1If N is not given, 4 1is assumed,
See note in description of .ma.

No adjust: the right margin is not adjusted. This
does not affect fill mode; text is still moved from
one line to another. This control 1line causes a
break.

Need: a block of N lines is needed. If N or more
lines remain on the current page, text continues as
before; otherwise, the current page is ejected and
text continued on the next page. The number of lines
remaining is calculated by subtracting from the
current page length the sum of the number of 1lines
already printed and the number of lines reserved for
footers, footnotes, and bottom margins., No break is
implied; if a line is partially formatted but not yet
printed when the .ne is encountered, it is ignored in
the calculation of 1lines remaining (i.e., it is
neither printed nor in possession of reserved space).
Similarly, a footnote or footer defined after the .ne
does not have space reserved at the time the .ne is
encountered. If N 1is not given, 1 is assumed. If
several .ne control lines occur consecutively, the
N's are not added together; only the largest N has
effect.

No fill: fill mode is suppressed, so that a break is
caused after each text line. Text is printed exactly
as it is in the input segment. This control 1line
causes a break.

Page 59 AP-41-1

runoff

runoff

.0of # 'partl'part2'part3'’

0dd footer: this defines odd page footer line number
4. If # is omitted, 1 is assumed. If both # and the
title (parts 1 to 3) are omitted, all odd footers
defined by any .of or .fo control 1lines are
cancelled. For more information, see the discussion
entitled "Headers and Footers", page 38,

.oh ¢4 'partl'part2'part3'

.0p

.pa *N

.pi N

11/06/85

0dd header: this defines odd page header line number
4. If § is omitted, 1 is assumed. If both # and the
title (parts 1 to 3) are omitted, all odd headers
defined by any .oh or .,he control 1lines are
cancelled. For more information, see the discussion
entitled "Headers and Footers", page 38.

0dd page: the next page number is forced to be odd
by adding 1 to the page number counter if necessary.
A break is caused and the current page is ejected.
No blank even page is made; the even page number is
merely skipped.

the current line if finished as 1is (i.e., a break
occurs) and the current page is ejected. The page
number counter is set to N, or is changed by N if N
was signed. If N is omitted, the page number counter
is incremented by 1.

Picture: 1if N lines remain on the present page, then
N 1lines are spaced over; otherwise, the text
continues as before until the bottom of the page is
reached, then N lines are skipped on the next page
before any text 1is printed. Headers are printed
normally; the space resolved is below the headers.
This option can be wused to allow for pictures and
diagrams., If several .pi control lines occur
consecutively, each N is added to the number of lines
pending and the total is checked against the space
remaining on the page. All pending space is allotted
together. 1If the total is greater than the usable
space on a page, the next page contains only headers
and footers and the rest of the space is left on the
following page. If N is not given, 1 is assumed.

Page 60 AP-41-1

.

runoff

.pl *N

.rd

R e)

.rt

.8k N

.Sp N

11,/06/85

runoff

Page length: the page length is set to N lines. If
N is not given, 66 is assumed. If N is preceded by a
plus or a minus sign, the page length is changed by N
rather than reset,.

Read: one line of input is read from the user_input
I/0 switch; this input line is then processed as if
it had been encountered instead of the .rd control
line. Thus it can be either a text line or a control
line; a break occurs only if the replacement line is
one that would cause a break.

Roman numerals: when page numbers (% variable) are
substituted into text or control lines as a result of
a .ur control line or into a title or equation as it
is printed, they are 1in 1lowercase roman notation.
This can be reset to arabic numerals (the default) by
use of the .ar control line.

Return: cease processing characters from the current
input segment. If the current 1input segment was
entered by a .if control line in another segment,
return to the line following the .if control line.

Skip: N page numbers are skipped before the next new
page by adding N to the current page number counter.
No break 1in text occurs. This control line can be
used to leave out a page number for a figure. If N
is not given, 1 is assumed.

Space N lines: 1If N is not given, 1 is assumed. If
not enough lines remain on the current page, footers
are printed and the page ejected, but the remaining
space 1is not carried over to the next page. The N
blank lines are produced in addition to any that may
occur automatically due to a .ds or .ms control line,.
For example, 1if .sp 4 is used with .ss or .ms 1, in
effect four blank lines will appear between two text
lines, with .ds or .ms 2, five lines will appear,
with .ms 3, six lines.

After skipping the space, the equivalent of a .ne 2

is performed 1in an attempt to avoid separating the
first line of a paragraph at the bottom of a page

Page 61 AP-41-1

runoff

runoff

from the rest of the paragraph on the next page. The
.ne feature may be avoided, if the user so desires,
by using a blank line rather than .sp. Otherwise, a
blank 1line 1is treated as if it were a .sp 1 control
line.

This control line causes a break.

Note: A series of .sp control lines such as:
.Sp a
.Sp b
is not always equivalent to a single .sp
control line whose argument is the sum of
the individual arguments:
.Sp a+b
If the .sp a finishes a page, causing a
page ejection, b blank lines are produced
at the top of the new page. If .sp atb
is used, the space does not appear at the
top of the next page.

.Sr name <expression>

-3

11/06/85

Set reference: associates value of <expression> with
the identifier name. The type of name is set to the
type of <expression> (either numeric or string); if
the expression is not provided or cannot be properly
evaluated, a diagnostic message is printed. The name
identifier can be either a user-defined identifier or
one of the built-in symbols that the user can set
(see "Built-In Symbols", page).

Single space: begin single spacing text. This 1is
the default condition. This control line causes a
break.

Page 62 AP-41-1

runoff

.tr cd..

'ts N

.ty STR

.un N

11,/06/85

runoff

Translate: the nonblank character ¢ is translated to
d in the output. An arbitrary number of cd pairs can
follow the initial pair on the same line without
intervening spaces. An unpaired ¢ character at the
end of a 1line translates to a blank character.
(Translation of a graphic character to a blank only
in the output is useful for preserving the identity
of a particular string of characters, so that the
string is neither split across a 1line, nor has
padding inserted within it.) 1If several .tr control
lines are used in a segment, the cd pairs are "added
together." Also a particular ¢ character can be
translated to a different d character by using a new
.tr control line to override the previous
translation. To cancel a cd pair (i.e., have the ¢
character print out as 1itself), wuse another .tr
control line of the form ".tr «cc". A .tr control
line with no cd pair is ignored.

Test: process the next input line if the value of N

" does not equal zero (false). If N is not given, 1 is

assumed,

Type: write STR (i.e., the rest of the control line)
onto the error_output I/0 switch. Substitution of
variables can occur if the first or second character
of STR is "%". 1If STR is omitted, a blank 1line is
written onto the I/O switch.

Undent: the next output line is 1indented N spaces
less than the current indentation. Adjustment, if in
effect, occurs only on that part of the line between
the normal left indentation and the right margin. If
N is not specified, 1its value 1is the current
indentation value (i.e., the next output line begins
at the current 1left margin). This control 1line
causes a break.

Page 63 AP-41-1

runoff

.ur text

.Wwt

11,/06/85

runoff

Use reference: the remainder of the .ur control line
(text) 1is scanned, with wvariables of the form

"%name%" replaced by their corresponding values
(converted back to character string form if they were
numeric), and active strings of the form

"%[af args%]" evaluated. The line thus constructed
is then processed as if it had been encountered in
the original 1input stream (e.g., it can be another
control line, including possibly another .ur). Note
that all white space between ".ur" and the next
non-blank character is discarded. To get such white
space in the output, define a variable equivalent to
the white space you want and include a reference to
this wvariable as the first item after the control
word.

Wait: read one line from the user_input 1I/0 switch
and discard it (see the .rd control word
description).

This line is treated as a comment and ignored. No
break occurs.

This line is treated as a comment and ignored with
respect to the output segment. However, the line is
printed in the appropriate place in the chars output
segment,

Page 64 AP-41-1

runoff runoff

SUMMARY OF CONTROL ARGUMENTS

-ball N, -bl N
Convert output to a form suitable for an N typeball.

-character, -ch
Create entryname.chars, listing page and line numbers

with red reminder characters where certain
characters, normally not printable, must be drawn in
by hand.

-device N, -dv N
Prepare output compatible with device N.

~from N, -fm N
Start printing at the page numbered N,

-hyphenate, -hph
Call user-supplied procedure to perform hyphenation.

-indent N, -in N .
Set initial indentation to N,

-no_pagination, =-npgn
Suppress page breaks.

-number, -nb
Print source segment line numbers in output.

-page N, -pg N
Change the initial page number to N,

-parameter arg, -pm arg
Assign arg as a string to the internal variable
"Parameter".

-pass N
Make N passes over the input.

-segment, -sm
Direct output to the segment or multisegment file
named entryname.runout, where entryname is the name
of the input segment.

-stop, -sp
Wait for a carriage return before each page.

-to N
Finish printing after the page numbered N.

11,/06/85 Page 65 AP-41-1

runoff ' runoff

-wait, -wt
Wait for a carriage return before the first page.

11,/06/85 Page 66 AP-41-1

runoff

SUMMARY OF CONTROL WORDS

The following

control words:

#

c
cd
exp
N
+N

t
t

Reqguest

.ad
.ar
.bbm k m

.bem
.bp
.br
.CC C

.ce N
.ch cd....

.ds
.ef
.eh

.eqg
. eXx

o 2 e
ot ot

ext

.fh

ct

Lfi
.fo # t

LEfr ¢

Jft
.gb
.gf

STR
STR

11/06/85

conventions

are

integer constant

character

character pair
expression (either numeric or string)
integer expression

+ indicates update by N;

segment name
title of the form 'partl'part2'part3’

Break Default
yes on

no arabic
no m=ar" "
no

yes

yes

no %

yes N=1

no

yes off

no

no

yes N=1

no

no line of

underscores

yes on

no

no t

no

no

no

Page

used to

runof f

specify argquments of

if sign not present, set to N

Meaning

Right justify text
Arabic page numbers
Open change block using marker
"m", or define but don't open
if k="set"
Close current change block
Begin new page
Break, begin new line
Change special character from %
to ¢
Center next N lines
Note "c¢c" in chars segment as
"d"
Double space
Defines even
Defines even
Next N lines
Call command
"text"
Format of footnote demarcation
line

Fill output lines
Equivalent to: .ef # t

.of ¢# t
Control footnote numbering:

footer line #
header line #
are equations
processor with

"t" reset each page
"f" continuous
"u" numbering suppressed

for next footnote
Delimits footnotes

"go back" to label STR
"go forward" to label STR

67 AP-41-1

runoff

Request

+he # t

.htc n

.htd n s p...
Lhtf n

.htn n ¢

hy

.hyf
.hyn N

.1f £ exp

.in +N
.la STR

.1i N -

.11 +N

.mp *N
.ms +N
.ml +N
.Mm2 +N

.m3 +N
.mé4 +N
.nha

.ne N
.nf

.0of # t
.oh # t
.0p

.pa *N
.pi N

.rd

11,/06/85

Break

Default

no

no
no

no
no

no

no
no

no

yes
no
no
no
no

no
yes

no
no
no
yes
no

yes

no
no

yes

yes
no

no
no

1}
o

Z02Z 2 Z2Z22Z2Z ZZ2Z Z
oo n nonwonon
el R R R

3

o
+h
Hh

N=1

N=66

runoff

Meaning
Equivalent to: .eh # t
.oh # t

Cancel tab pattern "n"

Define tab pattern "n" with
positions "p", and fill string
"S"

Disable tab pattern "n"

Enable tab pattern "n" using
trigger "c"

Reset hyphenation to initial
mode

Stop hyphenating

Try to hyphenate words if N
space needed to fill line
Segment f.runoff inserted at
point of request; value of
"exp" assigned to "Parameter"
Indent left margin N spaces
Define label STR

Next N lines treated as text
Line length is N
Equivalent to: .ml #N

.mé +N

Print only every N-th page
Multiple space N lines

Margin above headers set to N

Margin
set to

between headers and tect
N

Margin between text and footers
set to N

Margin below footers set to N
Do not right justify

Need N
if not

lines; begin new page
enough remain

Page 68

Do not fill output lines; print
them exactly as entered
Defines odd footer line #
Defines odd header line #

Next page number is odd

Begin page N

Skip N lines if N remain;
otherwise skip N lines on next
page before any text

Page length is N

Read one line of text from the
user_input I/O switch and
process it in place of .rd line

AP-41-1

runoff

Request

.LO
.rt

.Sk N

.Sp N

.Sr Sym exp

«SS

.tr Cdo---

.ts N
.ty STR
.un N

.ur text

Wt

11/06/85

Break

Default

no
no

no

yes
no

yes
no

no
no
yes

no

no

no
no

arabic

-4
It
(Y

N

]
TN

no

left margin

Page 69

runoff

Meaning

Roman numeral page numbers
"Return" from this input
segment

Skip N page numbers before next
new page

Space N lines

Assign value of "exp" to
variable named "sym"

Single space

Translate nonblank character c
into 4 on output

Process the next input line
only if N is not zero

Write "STR" onto the
error_output I/0 switch

Indent next text line N spaces
less

Substitute values of variables
and active strings in "text",
and scan the line again

" Read one line of text from the

user_input I/0 switch and

discard it (for synchronization
with terminal)
Comment line;
Comment line;

ignored
ignored

AP-41-1

runoff runoff

BUILT-IN SYMBOLS

Only those symbols marked yes in the Set column can have values
assigned by the user.

All symbols are of type Number unless they are specified to be of
type String.

Control words and control arguments that affect the values of the
variables are indicated in parentheses: (x/y) indicates that x
sets the switch to true (-1), and y sets it false (0); (a) or
(a, b, ¢) indicates that it is affected by a or by a, b and c.

Symbol Set Value

Ad Adjust (.ad/.na)

Ce Number of lines remaining to be
centered (.ce)

-CharsTable yes Translation table for chars segment
output (String) (.ch)

Charsw yes A chars segment is being created
(-character)

ConvTable yes Translation table for output.

Product of DeviceTable and TrTable
(String) (.tr, -device)

Date Date of this invocation of runoff;
format is mm/dd/yy (String)

Device yes Type of device output is to be
formatted for (-device, -ball,
-segment)

DeviceTable yes Translation table for physical
device (String) (-device)

Eg Equation line counter (.eq)

Egcnt yes Equation reference counter
(incremented each reference)

ExtraMargin yes Indent entire text this many spaces
(-indent)

Fi Fill switch (.fi/.nf)

FileName Name of current primary input
segment (String)

Filesw True if output is going to a
segment (-segment)

Foot yes Footnote counter (.ft, .fr)

FootRef yes Footnote reference string in
footnote body (String)

Fp yes First page to print (set at the

beginning of each pass to the value

11/06/85 Page 70 AP-41-1

runof £

Symbol Set

Fr
From yes
Ft
Hyphenating yes

In
InputFileName
InputLines
LinesLeft

Ll
Lp yes

Mal

Ma2

Ma3)
Ma4

Ms

MultiplePagecount
NestingDepth

N1

NNp yes
NoFtNo

NoPaging yes

Np yes

PadLeft

Parameter yes
Passes yes
Pi

Pl
Print yes

11,/06/85

runoff

Value

of From)

Footnote counter reset switch
First page to print (-from)
Footnote processing switch (.ft)
True if an attempt to break a word
should be made (-hyphenate, .hy,
.hyn/.hyf)

Indent to here (.in)

Name of current input segment
(String) (.if)

Current line number in current
source file

Number of usable text lines left on
this page

Line length (.1l1l)

Last page to print (initialized
each pass from To)

Space above header (.ma, .ml)
Space below header (.m2)

Space above foot (.m3)

Space below foot (.ma, .m4)
Spacing between lines (ss = 1,

ds = 2, etc.) (.ms, .ss, .ds)

Form feeds between pages to printer
(.mp)

Index into stack of input files
(.if)

Last used output line number on
current page

Next page number (-page, .pa, .op)
True to suppress number on next
footnote reference (.fr)

True if no pagination is desired
(-no_pagination)

Current page number (-page, .pa,
.op, initialized each pass from
Start)

Alternate left/right padding switch
(.un, .ad)

Argument passed during insert
processing (-parameter, .if)
Number of passes left to make (= 1
when printing is being performed)
(-pass)

Space needed for pictures (.pi)
Page length (.pl)

Whether or not to print

Page 71 AP-41-1

runoff

Symbol

Printersw
PrintLineNumbers

Roman
Selsw

Start
Stopsw

TextRef
Time

To
TrTable

Un
Waitsw

11/06/85

n
(13
ct

yes

yes
yes

yes

yes
yes

yes

Page 72

runoff

Value

((Fp < Np < Lp) & (Passes < 1))
Output is intended for bulk printer
(-device, -segment)

True if source line numbers are to
be printed in output (-number)
Roman numeral pagination (.ro/.ar)
True if typeball other than 963 is
being used (-ball)

Initial page number (-page)

Stop between pages of output
(-stop)

Footnote reference string in main
text (String)

Local time, in seconds, since
January 1, 1901,

Last page to be printed (-to)
Translation table for user-supplied
substitutions (String) (.tr)
Undent to here (.un)

Wait for input before printing
first page (-wait)

AP-41-1

runoff runoff

EXAMPLES

Sample Session

The following pages show the creation of a runoff segment and the
result of invoking the runoff command on that segment. For an
explanation of any of the control lines, refer to the respective
control word definition earlier in this command description.
Particularly notice the following:

1. The line length control is given before any headers and
footers. If the wuser wants a line length other than the
default one, he must specify it before he specifies his
headers and footers; if he does not, the headers and footers
on the first page are formatted for the default line length.

2. The .sr control line associates the page number count, at
the time the paragraph on headers and footers is printed,
with the identifier headfoot. Refer to the last line of the
segment (the .ur control line) to see how this reference is
used.

3. The translate character (!) is used both to "count" spaces
(see the a, b, and ¢ items of 2, below) and to prevent an
unattractive line split (see the last line of the segment).

gedx

a

.tr !

.fo 3 srunoff samplegpage %$srunoff samples

. h e ” nw "

+he 2 XrunoffXXrunoffX

.he 3 XdemonstrationXXdemonstrationX

.he 4

.ml 6

.m2 3

.m3 2
6
7

.mé
.Sp
.ce
RUNOFF SAMPLE PAGES
.Sp 2
The runoff command lets
the user format his text segments through
a variety of control words.
The control words specify such things as:

11/06/85 Page 73 AP-41-1

runoff runoff

.Sp 2

.in 10

.un 5

1. Page length and line length (.pl and .1l respectively).
I1f not specified by the user, these control words are given
default values of:

. Sp

.in +5

.1i

.pl 66

.br

.1i

.11 65

.in -5

.Sp

.un 5

2. Headers and footers, for all pages or for just
.sr headfoot %

odd numbered or just even numbered pages. The
control words for

headers and footers are as follows:

.Sp

.in +5

.un 5

a.!!!Headers and

footers on both odd and

even numbered pages (.he and .fo)

.sp 1

.un 5

b.!!!Headers and footers on just odd

numbered pages (.oh and .of)

.sp 1

.un 5

c.!!!Headers and footers on just

even numbered pages (.eh and ,ef)

.sp 1

.in -5

.un 5

3. Margins that control

vertical spacing in relation to the top

of the page, headers, text, footers, and the
bottom of the page.

These margins are defined as follows:

. Sp

.in +5

.un 5

a. Between top of page and first header (.ml)
.Sp

.un 5

11/06/85 Page 74 AP-41-1

runoff runoff

.bp
b. Between last header and first line of text (.m2)

.Sp

.un 5

C. Between last line of text and first footer (.m3)

.Sp

.un 5

d. Between the last footer and bottom of page (.m4)

.in -5

.Sp

If not specified by the user, these margins are given default
values of:

.Sp

.in +5

.nf
.11
.ml
.m2
.m3
.mé
i
.in
.ce
i

NN

wwo

.Sp 2
If you're wondering about the footer below, refer to
.ur the discussing of headers and footers on page!%headfoot%.
\f
w example.runoff

q
<ready message>

rf example -wt

11/06/85 Page 75 AP-41-1

runoff runoff
demonstration demonstration

RUNOFF SAMPLE PAGES

The runoff command lets the user format his text segments
through a variety of control words. The control words specify
such things as:

1. Page length and line length (.pl and .1l respectively).
If not specified by the user, these control words are
given default values of: ~

.pl 66
.11 65

2, Headers and footers, for all pages or for just odd
numbered or just even numbered pages. The control
words for headers and footers are as follows:

a. Headers and footers on both odd and even numbered
pages (.he and .fo)

b, Headers and footers on just odd numbered pages
(.oh and .of)

c. Headers and footers on just even numbered pages
(.eh and .ef)

3. Margins that control vertical spacing 1in relation to
the top of the page, headers, text, footers, and the
bottom of the page. These margins are defined as
follows:

a. Between top of page and first header (.ml)

runoff sample page 1 runoff sample

'~

runoff runoff
demonstration demonstration

b. Between last header and first line of text (.m2)
c. Between last line of text and first footer (.m3)
d. Between the last footer and bottom of page (.m4)

If not specified by the user, these margins are given
default values of:

.m1l 4
.m2 2
.m3 2
.mé4 4

If you're wondering about the footer below, refer to the
discussing of headers and footers on page 1.

runoff sample page 2 runoff sample

runoff runoff

Tabulation Example

Tabs are useful tools for setting up columns. In this example,
two sets of columns, using two different tab patterns, are

produced.
The following control lines:

.htd NUMBERS 10 25 40
.htn NUMBERS $

define a tab pattern named "NUMBERS" and a trigger character,
"$", to be used in the input file as (and converted on output to)
a tab. The following input-file lines:

.nf
$CardinalgOrdinalgNumeral
.Sp

Sonesfirsts 1
$twossecond$ 2
Sthreesthirds 3

will then produce a table in this form:

Cardinal ‘ Ordinal Numeral
one first 1
two second 2
three third 3

A different tab pattern may be defined, with a different trigger
character, and may be in effect at the same time. Furthermore, a
repeatable string of characters (the "fill string") may be
specified in the .htd control line, to replace the tab trigger
character on output. Thus, the following input-file lines:

.htd NUMBERS 10 25 40

.htn NUMBERS $

.htd DAYS ", " 15 30 45

.htn DAYS >

.nf

sonesfirstsl

$twogseconds$?2

Sthreesthirds3

.Sp
Monday>Tuesday>Wednesday>Thursday
Friday>Saturday>Sunday>today

11/06/85 Page 78 AP-42

runoff runoff

would produce output like this:

one first 1
two second 2
three third 3

Monday. . . . Tuesday. . . . Wednesday. . . Thursday
Friday. . . . Saturday . . . Sunday today

Note that, since the fill string has a length of more than one
character, it 1is truncated at the left as necessary when the
length of the space to be filled is not an even multiple of the
length of the fill string. Tab patterns may be turned off and on
repeatedly and independently. If a control 1line reading
".htf NUMBERS" were inserted, say, following the .nf control line
in the input sequence shown above, the output would 1look 1like
this:

sonesgfirstsl
Stwosseconds2
Sthreesthirds3

Monday. . . . Tuesday. . . . Wednesday. . . Thursday
Friday. . . . Saturday . . . Sunday today

The DAYS tab pattern is still in effect, but NUMBERS has been
disabled. It may be reactivated at any time by respecifying a
".htn NUMBERS $" control line. A .htc control line cancels the
specified tab pattern(s), whether they are enabled (on) or
disabled (off). A .htc control line which does not specify any
tab pattern(s) cancels all defined patterns.

11/06/85 Page 79 AP-42

runof £ runoff

Change Marker Example

The following sequence shows an example of the wuse of change
markers:

Smalltown University maintains a Xerox facility in the
Student Center. The copier is located in Room 927, and
is maintained by four work-study students. The Xerox
Room is open Monday through Friday from 8 AM to 5 PM,
The per-copy charge is $.05. During exam periods, the
office tends to be quite busy; to obtain the best
service at exam time, avoid the peak hours (noon to 3
PM).

The paragraph above might be revised, for example, to reflect
changes in costs or schedules. The input file might then look
like this:

.bbm set al">> "

.11 55

Smalltown University maintains a Xerox facility in the
Student Center.

The copier is located in Room 927, and is maintained
by four work-study students.

.bbm

The copying service is available Monday through
Tuesday from 11 AM to 3 PM.

Rates for use of the facility are $.20 per copy

with a $3.00 minimum.

.bem

During exam periods, the office tends to be quite busy;
to obtain the best service at exam time,

avoid the peak hours (noon to 3 PM).

The new document would then look like this:

Smalltown University maintains a Xerox facility in the
Student Center. The copier is located in Room 927, and
>> is maintained by four work-study students. The copying
>> gervice 1is available Monday through Tuesday from 11 AM
>> to 3 PM. Rates for use of the facility are §.20 per
>> copy with a $3.00 minimum. During exam periods, the
office tends to be quite busy; to obtain the best ser-
vice at exam time, avoid the peak hours (noon to 3 PM).

11/06/85 Page 80 AP-42

runoff runoff

Escape Seguence Example

The following short runoff input file (named einstein.runoff)
contains the escape sequences required by a Diablo 1620 terminal
for half-index-up (ESC-U) and half-index-down (ESC-D). (Note
that escape functions often differ from terminal to terminal;
consult your terminal's operating manual for specific codes.)

.tr \033\033

The theory of relativity is written

as E=mc\033D2\033U, which is no more difficult

to format than, say, the common representation for
a member of a two-dimensional matrix (A-sub-i-j),
written A\033Uij\033D.

The command:

ec >IML>rfesc einstein
would produce appropriate output on the Diable 1620.
Remember that this feature works only for on-line output, on a
terminal whose available escape functions include those requested
(and in the form specified for the terminal used). Other devices

(including the off-line printer) will not format the escape as
desired.

11,/06/85 Page 81 AP-42

