Multics Series

RECEIVED
XS;BZtR?Yi%g? 1 AUG 1 4 1981

' J. H. SALTZER
MASSACHUSETTS INSTITUTE OF TECHNOLOGY INFORMATION PROCESSING SERVICES
ACADEMIC AND RESEARCH COMPUTING SERVICES - CAMBRIDGE MA 02139 (617) 253-1793

MULTICS BULLETIN ARTICLE REPRINTS

This memo contains diverse articles, which
have appeared previously in the IPS
bi-monthly newsletter, the Bulletin. Al-
though we selected for reprinting only those
articles which remain relevant and useful on
the current Multics system, we cannot guaran-
tee that all details are still accurate. The
most up to date information can always be
found in current Honeywell and IPS documenta-
tion and in the most recent issue of the
Bulletin.

Copyright <§) 1981 Massachusetts Institute of Technology

CONTENTS (8/1/81)

Things Nobody Told You About Your start_up.ec
Have your start_up.ec set things up for you when you log on

Multics Time-Savers:

A Beginner's Guide to (Personal) ‘Energy Conservation
How to save work with add_names, links and the "abbrev" com-
mand

You Don't Hafta Answer Right Away

What to do when you want to check something before answering
a system query

Writing Multics Commands, Part I
Everything you need to know to create your own commands

Writing Multics Commands, Part II
More on writing your own commands

The New Multics Mail System
"Print_mail" and "send_mail" explained

Multices Tapes from Scratch
An explanation of basic facts about tapes

Notes on Using Multics Tapes
How to use the "tape_archive" command

Hardening Up Your Soft Copy

Turn on the Multics "audit" facility for a running copy of
everything you do

Fun with Read_mail
Using the "read_mail" command

Baffled By Buffers
Here's how to use qedx buffers, with examples from Dante

Mine!
The basics of Multics access controls; who can do what with
your segments '

Multies Backup System

Don't worry, we're backing you up. How to retrieve lost di-
rectories and segments

Ec's and All That
More on start_up.ec's and other exec_com's

Send_mail for Beginners
Basics of the "send_mail" command

- - - - - - - - - —— - —

Active Functions
Learn about active functions and save yourself a lot of typ-
ing

Archives: Live and On Tape
A guide to the Multiecs "archive" command

Wanna Start Something?
Getting more out of Emacs by writing your own start_up rou-
tines :

Excerpts from "Our Favorite Multics Questions"

How to copy someone else's segment

Likely causes of error messages: "storage condition", '"rec-
ord quota overflow", and "stack frame overflowed"

Hold everything; it's an interrupt!

How to join segments together

Help! I'm trapped in a question to the OLC!
Using "tape_archive"

Retrieving a lost segment

What happens if you just hang up

MS-99 Multics Bulletin Reprints

THINGS NOBODY TOLD YOU ABOUT YOUR START_UP.EC

by Richard Scott
reprinted from the March 1978 Bulletin

.

There are certain operations--such as adjusting printout to suit your particular termi-
nal's characteristics, checking your Multics mail, and opening up the lines of communica-
tion to other Multics users--that you want to have performed just about every time you log
in. To save you the effort of remembering to type (and typing correctly) the required
commands each time, Multics permits you to put them into a segment in your home directory
(the one where you find yourself immediately after logging in) and have the system auto-
matically execute them for you. This segment must be named "start_up.ec".¥

The start_up ec is usually created with a text editor (such as gqedx), and contains two
kinds of lines:

(1) Multics command lines, just as you would type them at the terminal; and

(2) special instructions, called control statements, that the exec_com com-
mand (which executes your start_up.ec) understands.

Let's consider some of the commands commonly found in start_ups. (For the purpbses of
discussion, we will assume a Multics login ID of "JQUser".)

KEEPING TUNED IN

One of the first things you see when you log in is the "message of the day". This message
contains important information about the status of the system, system problems, schedule
changes, etc. If you have no start_up, the message of the day is printed each time you
log in. However, from the very existence of a start_up.ec segment in your home directory,
the system assumes that you are taking explicit action to examine the message and ceases
to print it automatically. Placing the print_motd command in your start_up.ec will handle
this. The print_motd command keeps a copy of the last message of the day in a segment
(called "JQUser.motd") in your home directory. Each time print_motd is invoked it com-
pares the current message with the saved copy, and prints the message only if it has
changed. This relieves you of having to read the same message over and over, when once is
sufficient. Of course, it does cost $.02 a day to keep JQUser.motd around, so if you're
pinching pennies, the command

print >doc>iis>motd.info 1 99

in your start_up will print the message of the day each time you log in, without incurring
extra storage costs.

TAILORING TERMINAL OUTPUT

To take advantage of your terminal's capabilities and to make typing easier, you may want
to use your terminal's set tty command. This command has many options, documented in the
MPM Commands and Active Functions and in the on-line info file (type "help set_tty"); we
will consider only a few of the most general. The syntax of the command, for our pur-
poses, is:

set_tty -modes OPTION1,0PTION2,...,0PTIONN

Note that there is a space before and after "-modes", and commas but no spaces between the
options. For example, in the command:

set_tty -modes 1lfecho,polite,11132

"lfecho", "polite", and "11132" are options. Some particularly useful options are:

1fecho (line-feed echo) makes it possible to transmit typed lines by hitting only the
RETURN key, instead of RETURN-LINEFEED. (This option is not necessary with
Selectric-type terminals.) .

11132 (line length 132) tells Multics it can use the full carriage width of your ter-
minal, not just 79 columns (the default). Of course, you can use a number other
than 132, as appropriate. (For example, if your terminal beeps every time it
passes column 72 and it's driving you crazy, use "1171".)

*If you wish, you may also log in' without executing these commands, by using the
"-no_start_up" control argument to the login command.

Things . . . About Your start_up.ec Page 1

MS-99) Multics Bulletin Reprints

tabs tells Multics that your terminal has settable tabs. Tab stops should be set at
columns 11, 21, 31, etc., to correspond to Multics' view of the world.

“tabs tells Multics that your terminal does not have settable tab stops.

tabecho (used in combination with "“tabs") tells Multics to simulate tab stops on your
h terminal even though there are no hardware stops. When you depress the TAB key
or CTRL-I, Multics prints the spaces required to move the print-head or cursor
to where the next tab stop would be.

echoplex tells Multics that your terminal is permanently set in "full-duplex™ mode and
therefore cannot (without help) print what you type. If Multics will print on
your terminal, but your typing causes no printing (and you have no switch la-
beled HALF-FULL or HDX-FDX), you need this option.

polite prevents lines you type from being interrupted by output from Multics (e.g.,
messages) unless you have taken more than 30 seconds to finish.

replay causes Multics to retype a line which does get interrupted, up to the point
where you were stopped, so that you can continue it easily.

pl2y (page length 24) tells Multics that you have a soft-copy (CRT screen) terminal
that can display only 24 lines at a time. After the 24th line, Multics prints
"EOP" and refuses to display anything else until you hit FORMFEED or CTRL-L.
This is to allow you time to read the screen before new lines drive the old ones
off the top. The default is "plO", which causes no interruption.

COMMUNICATING WITH OTHERS

The Multics mail facility is one feature of the system that you would do well to exploit
fully, in spite of the slight overhead involved. It allows you to send and receive mes-
sages to and from other Multics users, communicate with the on-line consultant (type "help
ole"™ to find out about this), and hear from the SysDaemons (those elusive, eternally-
logged-in creatures that, among other things, print your files on the high-speed printer
and back them up against future blunders and unforeseen disasters). To regularly check
the messages in your mailbox (a segment in your home directory called "JQUser.mbx"), you
can include the mail command in your start up. If you don't already have a mailbox, the
mail command will create one the first time it is invoked with no arguments. If you get
lots of mail and don't always want to print it right away, you might include the line

&if [have_maill] &then &print You have mail.

instead of the mail command, in your start up. This makes use of the exec com control
statements "&if", "&then"™, and "&print", and of the [have mail] active function, and re-
sults in the printing of the message "You have mail." if there is anything in your mail-
box. You may then examine the messages later at your leisure.

Experienced Multics users also communicate with one another via one- or two-line messages
that are printed on the terminal immediately after being sent (via the send message com-
mand) if the addressee is logged in and accepting messages. To accept messages, you may
include the accept_messages command in your start_up. Two useful control arguments to
this command are "-print", which prints any accumulated messages of this immediate type,
and "-short", which replaces the sender's ID with "=:" if the same user sends several mes-
sage lines in tandem. (After having accepted messages, you can use the defer messages and
immediate messages commands to shut off and restore the printing of messages, if desired.)
Methods of sending mail and messages, and further options available for these commands can

be found in the MPM Commands and Active Functions and in the respective on-line info
files,

MINDING YOUR PENNIES

You are probably concerned, to a greater or lesser extent, with how fast the computer is

eatigg your funds. There are three commands you can include in your start_up to keep tabs
on is:

resource_usage ~-total
prints out how much money you have used so far (exclusive of storage charges) in the cur-

rent billing period prior to the current process, your limit (if any) for the period, and
the amount you have used on your current project since you were registered.

estimate_bill -init

sets up the estimate_bill command to let you know how much you have used in the current
login session (again, exclusive of storage charges) by shift and item. At any time later

Things . . . About Your start_up.ec Page 2

MS-99 Multics Bulletin Reprints

in the session you can use estimate bill to see how much has been spent so far. The

estimate _bill command sometimes creates a segment, "JQUser.eb data", for accounting pur-
poses. TFinally, -

general ready -set -time -inc_vcpu -inc_mem_units -inc_cost -level
changes your ready message (normally printed after the execution of each command line) to
include the amount spent since the last ready message.

ALLEVIATING TYPIST'S CRAMP

The abbrev command allows you to define abbreviations for whole command lines or parts of
command lines. You may use this facility by including the command in your start_up. Once
this 1is done, you can issue special abbrev requests (documented in the MPM) to define ab-
breviations, which may then be used in your command lines. Properly used, the abbrev fa-
cility can save a 1lot of time and bother. It can also be used in combination with
exec_com and the "do" command (a special command-line processor) to define, in effect,
your own commands. It does create and use a segment called "JQUser.profile", which you
should not delete unless you are prepared to lose all your abbreviations.

YOUR PRIVATE SECRETARY

The memo command may be included to keep a kind of calendar or checklist for tasks to be
done. This facility (again, documented in the MPM) allows you to set up memos for your-
self which are printed at a prespecified time, or repeated periodically. The memo command
creates a segment called "JQUser.memo". This facility can prove valuable if you 1log in
often and are prone to absent-mindedness.

PARAMETERS AND CONTROL STATEMENTS

In the start_up.ec, the special parameters "&1" and "&2" represent (and are replaced by)
arguments passed to the exec_com by Multics when the start_up is executed. These argu-
ments may be (depending on the Situation, as noted):

&1 &2
login interactive when you log in;
new_proc interactive when you issue the new_proc command, or after a fatal
process error; or
login absentee ~when an absentee job you ha?e submitted is logged in by

Multiecs.

Then there are the special exec_com control statements:

&command_line off tells exec_com not to print each command before it is
executed. It is helpful to omit this instruction when
debugging a 'start_up (or any exec_com);

&goto XXX ’ tells exec_com to continue executing, starting with the
line labeled XXX;

&label XXX where XXX is some character string to be used as a la-
bel; if XXX is one of the special parameters mentioned
above, it is replaced by the respective argument as a
label; and finally,

&quit tells exec_com to stop executing, bringing the start_up
to a halt.

Any line that begins with an ampersand (&) followed by one or more blanks is treated as a
comment and ignored during execution.

PUTTING IT ALL TOGETHER

Let us now consider an example of how some of these commands can be combined into a
start_up. (The numbers at the left are for reference and do not actually appear in the
start_up.ec segment.)

Things . . . About Your start_up.ec Page 3

MS-99

—

P L L Lo R N Lo Kme Hows Lo Mo o e W W e Mone Momn Ko K
NNNNNNNI\)NN.n—a—n—a_A-A-s-A—l—Ar—u—!r—'n—u—u—wv—u—u—\
OCO_ONMEWN 2OV NEWN -0V EWN =
PO Sy N S Y A N i S S | S o e e e e e L e

Lines 1, 2, 3,
start up more

respectively.

line executed will therefore be line 17 or line 25, respectively.

ALWAYS EXECUTED:
&command_line off

abbrev

&goto &2

&

& FOR INTERACTIVE PROCESSES ONLY:
&label interactive
accept_messages -print -short
memo -brief

estimate_bill -init

&goto &1

&
& FOR INITIAL LOGIN ONLY:
&label login

Multics Bulletin Reprints

<C<KLKLKLLK< A SAMPLE start_up.ec SEGMENT >>>>>>>>>>>

set tty -modes 1lfecho,11132,"tabs,tabecho,polite,replay

print_motd

mail

resource_usage -total
&quit

&

& FOR A NEW PROCESS ONLY (NOT LOGIN):

&label new_proc
&quit

& .
& FOR AN ABSENTEE LOGIN ONLY:
&label absentee

&quit

7, 8, 14, 15, 22, 23, 26, and 27 are comment lines, used only to make the
readable and understandable. The "&2" in line 6 is replaced by either "in-
teractive" or "absentee", meaning that the next line executed will be line 10 or line 29,
The "&1" in line 13 is replaced by either "login™ or "new_proc"; the next

This, of course, is only one example of what you can do in a start_up.ec. Many variations
of the commands discussed, as well as other commands and exec_com controls, can be uti-
lized to precisely tailor the Multics environment to your individual needs.

Things . . . About Your start_up.ec

Page U4

MS-99 Multics Bulletin Reprints

MULTICS TIME-SAVERS: A BEGINNER'S GUIDE TO (PERSONAL) ENERGY CONSERVATION

Adapted with permission from an article by Alicia Towster in Two Bits Worth, newsletter of
the University of Southwestern Louisiana Computing Center (February-March 1978). Appeared
in the May 1978 Bulletin.

Are you worn out from typing lengthy pathnames, repetitious command sequences, or tedious
lists of control arguments? You are? -Well, if you're willing to use your memory, your
ingenuity, and possibly some of your computer funds, you can minimize keyboard cramp.

First, there are addnames. Addnames are additional names which can be given to segments
or directories. This permits you to keep, on each entry, a long descriptive name (up to
32 characters) to help you to remember what it is, and a short convenient name which is
what you actually type. You add names to entries by using the add name command. For ex-
ample, user HTudor has a segment named catherine of_aragon. Once he has executed the com-
mand:

an catherine_of aragon kate

he can refer to the segment as simply "kate". (He will see both names when he 1lists the
directory--addnames appear right under the "primary" name--but he can tell they are add-
names rather than other segments, because quota and access information is given only with
the primary name.) :

The reason HTudor can type "an" instead of "add name" is because "an" is an addname of
"add_name". (You may have to read that sentence twice.) Addnames are used throughout the
Multics system; many are selected and added by systems designers (who don't much care for
extra typing either). Clearly you can save a lot of time and nerves by 1learning the
choices they have made. The surest way to find the addnames of a particular entry is to
move to the directory which contains it and do a "list" (or rather, "1s"). For standard
Multics commands, you can check the Table of Contents of the MPM Commands and Active
Functions (AG92); and on-line info files give addnames in the first section of each
writeup. ‘

Addnaming your programs is just slightly more complicated. HTudor has a source program
called "ann_boleyn.pl1" which he decides to addname "ann.pl1". (The compiler insists on
the ".pl1" suffix for addnames, too.) He then compiles the program (referring to it by
the addname), and the object program is stored in a segment called "ann". But alack!
When he tries to execute "ann", Multics refuses, choking on the entry point defined by the
label which begins the source program. We often ignore the entry point name, since, un-
less told otherwise, Multics assumes it is the same as the segment name. HTudor can man-
" age by typing "ann$ann_boleyn", but this is not very graceful. A far better solution is
to plan a head (!) and put two labels at the beginning of the source program, thus:

ann_boleyn: ann: procedure;

System designers have also defined standard. abbreviations for control arguments. (Why
type "-brief" when "-bf" works just as well?) You can see a list of many of these by typ-
ing "help control_arguments". Invest some time and dip more deeply into Honeywell docu-
mentation, scanning for words like "default" and "optional" (maybe you can avoid typing
some control arguments altogether), and the note "Star convention allowed." The star con-
vention enables you to reference several entries at once, and is described in Section III
of the MPM Reference Guide (AG91), and in an on-line info file. (Type "help star_names".)

Even taking advantage of every available addname, you may still find yourself typing some
rather long pathnames. If you expect to be using the same pathname repeatedly, you should
probably create a link.* User HTudor might type:

link >udd>Britain>HTudor>TskTsk>wivesd>wives.archive

Thereafter, when he is in the directory in which he created the link, he need only type
"wives.archive" to reference that segment. Links are handy "pointers" to other segments,
and do not consume your quota nearly as fast as real live segments do. However, you can't
take them with you, (e.g., when you change working directories or log into a different
project); 1links stay in the directory in which they were created. You may, however, link
to a link.

If you have at least one record to spare, you can use the portable energy saver--abbrevs.

Abbrevs are your own abbreviations for the kinds of processing you do; they can stand for
anything you want, from a few characters to a deluge of sequential commands. If HTudor

= = o 0 0 0 0 0 o 0 o o o o e o s 0 s e 0 @ o o S 0 e o = e 5 > = - . ———— - " " = " . - - - . - - - - - - — -

*See also the article "A Beginner's Guide to Links" in the May 1977 Bulletin.

Multics Time-savers Page 1

MS-99 Multiecs Bulletin Reprints

wants to use abbrevs, he types:
abbrev

The very first time he does this, a segment called "HTudor.profile" is created for him in
his home directory to contain any abbreviations he wishes to define. Most users will want
to invoke the "abbrev" command (addnamed "ab"--getting confused?) as part of their
start_up.ec.¥*

Giving the "abbrev" command tells Multics to invoke the abbreviation processor; every com-
mand typed subsequently is examined to see if it begins with a period (meaning it is a
special request to manipulate abbreviations) or contains an abbrev. Command lines con-
taining abbrevs are first "expanded"--the abbrev is replaced by what it stands for--and
then executed. This process may, on occasion, produce unexpected results. For example,
"ro" might seem like a nice abbreviation for "runout"; however, the command "ro" (for
"revert_output") would then be expanded to "runout", which Multies would find incomprehen-
sible as a command. To guard against this kind of mishap, some users decide to define
abbrevs that include some special character (e.g., a colon), or use capital letters (since
standard Multics commands are always lower-case).

HTudor prefers capitals, and is now ready to define his first abbrev:
.ab Behead delete ann

The ".ab" means add to the profile an abbrev to be expanded only when encountered at the
beginning of a command line (or immediately following a semicolon).

HTudor suddenly realizes that he wants his abbrev to work from any working directory, so
he corrects it by typing:

.abf Behead dl >udd>Britain>HTudor>ann

using the absolute pathname of the segment "ann". The "f" means force the abbrev to re-
place any existing abbrev of the same name. HTudor also defines:

.ab Annul cwd >udd>Britain>HTudor>TskTsk>wives;da ann_of_cleves HTudor.¥.*
.a GIRLS (MTudor ETudor)

Since GIRLS is not something that occurs at the beginning of a command, he defines it
using ".a" instead of ".ab". Now he can type such commands as:

Annul; sm GIRLS.Britain See me ASAP!

Some other useful abbrev requests are ".1" (to list some or all of one's abbrevs) and ".d"
(to delete abbrevs). A ".q" tells abbrev to quit using abbrevs. As you define progres-
sively more elaborate abbrevs, you will find the "do" command very helpful. (See the de-
scription of "do" in the MPM Commands and Active Functions, or type "help do". If .you
know a hardened Multician, you might ask him/her if you may go browsing through his/her
abbrevs. (Most will be flattered to oblige, and you can learn a lot just by looking.) To
do this, have your friend set you "read" access to his/her ".profile" segment. Then type:

.u >udd>FriendProjectID>FriendPersonID>FriendPersonID

The ".u" tells Multics to use the profile segment whose pathname you have given. You may
then use the ".1" (list) request to peruse the abbrevs contained in this profile segment.
To return to your own abbrevs, type ".u" again, followed by a carriage return.

* * * * *

None of these energy-saving techniques are directly useful when inputting text with an ed-
itor. However, a set of recently-installed Multics commands permits another kind of per-
sonal abbreviations to be wused in this manner. The "Speedtype" commands, as they are
known, provide a facility for expanding input text automatically. They should be used
cautiously--experienced typists have, on occasion, been known to produce errors of a some-
what bizarre nature ("Speedtypos"?). Use of Speedtype requires at least three extra rec-
ords and quite a bit of patience, but can greatly ease the tedium of 1large typing Jjobs,
and in many ways is far safer than defining--and remembering--one's own "abbreviations"
for input text (for later expansion by an editor's global-change request). For more in-
formation on Speedtype, consult the WORDPRO Reference Guide (AZ98), now available for pur-

?hase %n the IPS Publications Office (Room 39-484), or for reference in the Reading Room
39-430).

- - - - =5 - - - - . - " . TP > - " = - - — = . = - - = G = - e " . . . e = = e - - e e

%*See also the article "Things Nobody Told You About Your start_up.ec" in the March 1978
Bulletin.

Multics Time-savers Page 2

MS-99 Multics Bulletin Reprints

YOU DON'T HAFTA ANSWER RIGHT AWAY....

by W. Olin Sibert
reprinted from the January-February 1979 Bulletin

Many Multics commands will ask you questions when they require some extra ‘-information in
order to execute. These questions (and the answers you supply) are all handled by the
same subroutine (command_query), and follow certain system-wide conventions. A new fea-
ture now allows to you "escape" command_query_ if you need to know more information your-
self before you reply. Just begin your "answer" with two periods (".."). The rest of the
line will be passed directly to the Multics command processor rather than being returned
to the program that called command query . After your command has executed,
command_query will prompt you again, printing onIy "Answer:" rather than repeating the
question, (since the question can be quite long, and you have already seen it once). At
this point you may type in your answer, or "escape" the query again if you wish (procras-
tinating as many times as you see fit).” This allows you quite a bit of added flexibility
in answering commands' questions: if the question is unexpected and/or makes little or no
sense to you at first, you can issue a command or two to try to find out what prompted it.
The following example illustrates. User typing is preceded by an arrow (=>).

=> delete *¥* _pl1
delete: calliope.pll is protected. Do you want to delete it? => ..list
Segments = 3, Lengths = 7

re 2 calliope
rw 4 calliope.pli
rw 1 calliope.list

Answer: => ,.print wdir
>udd>CIRCUS>Elephant>work
Answer: => ..repeat_query

delete: calliope.pll is protected. Do you wish to delete it? => no
r 1409.2 0.480 17.426 '

As shown above, the "repeat_query" command can be useful in this type of situation, if you
want to see the question again--e.g., if it has scrolled off the top of a CRT-type termi-
nal screen.

Another useful capability provided by this general-purpose question routine is the
"answer" command, which allows you to supply preset answers for questions that commands
will (or might) ask you. This is primarily useful in abbrevs, although you may also find
it helpful at command level. For example, suppose you want to write an abbrev that moves
a segment from one directory to another, and then creates a 1link in the old directory
pointing to the segment's new location. If you were sure it would always be okay to de-
lgge any segment that already existed in the new location, you could define an abbrev like
this:))

.ab mvlk do "answer yes -brief move &1 &2; link &2 &1"

The "answer" command in the abbrev will "catch" any question asked by the move command
(e.g., an "are-you-sure-you-want-to-delete" query brought about by a turned-on safety
switch or a name duplication), and answer it "yes"™. The "-brief" control argument says
that no such question will even appear on the terminal. (If "-brief" is omitted, the
question and your prespecified answer are typed out automatically.)

A second example will demonstrate how the "answer" command can be used effectively from
command level. Suppose you have an archive named "xanadu.archive" containing program
source segments, some of which you have extracted and modified. You now want to recompile
everything from the archive; to do this you must extract all its components. Since the
"archive" command, when asked to extract components, will not overwrite (delete) an exist-
ing file 1in the case of a duplicate name without asking, you could get "archive" to ex-
tract only those components you have not already extracted by using the command:

answer no -~brief archive x xanadu

This would automatically (and silently) reply "no" to the "archive" command when it asks
you if you want +the extract operation to delete your new, already-extracted segments.
(Unfamiliar with the Multies "archive" facility? See the Multics Programmers' Manual
(MPM): Commands and Active Functions, AG92, for information and examples.)

The full syntax of "answer" allows for considerable versatility: other control arguments
permit you to specify how many times a given answer should be supplied (default: as many
times as there are questions asked), or to specify a sequence of answers. For instance,

You Don't Hafta Answer Right Away... Page 1

MS5-99 " Multics Bulletin Reprints

you can set up a command line to supply one answer to the first question asked, supply an-
other answer to the second, give still another answer to the third, fourth, and fifth
questions, and ask you for anything else it wants after that. For a complete explanation
of these options, see the MPM, or type "help answer".

You Don't Hafta Answer Right Away... Page 2

MS-99 Multies Bulletin Reprints

WRITING MULTICS COMMANDS

PART I: OBTAINING ARGUMENTS AND REPORTING ERRORS

by Richard Scott
reprinted from the January-February 1979 Bulletin

Part of the beauty of programming on Multics is that all compiled "main" programs are com-
mands.<5> That is, you can invoke them simply by typing their names--no loading, no link-
ing, no muss, no fuss. And you can get information into programs by means of language I/0
statements. You can even make these programs look like commands with arguments by using
combinations of exec_coms and abbrevs. Or you can do the same thing in the PL/I language
by writing programs as subroutines with character (*) parameters. These constructs may be
satisfactory for a program only you are going to use. But as you begin to write programs
for wider use, in combination with standard Multics commands, what you really want is the
efficiency, control structure, and error-handling capability of a true Multics command
written in the PL/I language.<6>

Unfortunately, as far as I know, no existing manual clearly explains how to write Multics
commands. People find out how by a combination of perusing the MPM Subroutines (AG93),
looking at the source code of existing commands, and asking people who already know how.
Through this series of articles, I hope to clear up some of the mystery, and show you how
to write your own commands with no Multics "guru" present. The only tools you will need
are the MPM Reference Guide (AG91), the MPM Subroutines (AG93), and a knowledge of PL/I
(worth obtaining in its own right). }

ERROR MESSAGES

Since one of the big drawbacks of many programs is their inability to recover gracefully
from human error, let's start by talking about error handling. Commands report errors by
calling the subroutines "com_err_" and "com_err_$suppress_name". These subroutines take
arguments of varying number and type, and must therefore be declared with "options
(variable)", e.g.,

declare com_err_ entry options (variable);

The first two arguments are a Multics system status code and the name of the command. The
status code may be one returned by a standard Multics subroutine you have called, the
value of an external variable in an error table, or zero. A list of most of the external
variables in the Multics system error table (>system_library_1>error_table_) 1is given
under "Handling Unusual Occurrences" in Section VII of the MPM Reference Guide, along with
the messages that "com err " prints when passed the value of each variable. All of these
variables are declared "fixed binary (35) external", Therefore, if your program
"do_good_stuff.pli1" contains the declaration:

declare error_table $noarg fixed bin (35) external; /* missing arg */
then the statement: .

call com _err_ (error_table $noarg, "do_good_stuff"); /* report error %/
would cause the message:

do_good_stuff: Expected argument missing.

to be printed on the terminal. Such a message is printed on the "error_output" 1I/0
stream, so that you see error messages even when other command output to the terminal
(printed on the "user_output" I/0 stream) has been diverted elsewhere (e.g., via a
"file output" command).

Using the system status codes has the advantage of providing consistency with other
Multics commands: you need to memorize the meaning of fewer messages. However, if none of
the standard status codes' messages seem appropriate for your situation, call "com_err_ "
with a status code of zero and and give your own message as the third argument. The
statement:

call com_err_ (0, "do_good_stuff", "Try reading the documentation."); /¥* advise
user ¥/

<5> In a larger sense, all programs are subroutines--commands are actually called by the
command processor; but we won't worry about that.

<6> Such a command may, of course, call FORTRAN subroutines for computational tasks.

Writing Multics Commands, Part I Page 1

MS-99 Multics Bulletin Reprints

would print:
do_good_stuff: Try reading the documentation.

when executed. (A more elegant way of doing the same thing is to compile your own private
error table; that, however, is beyond the scope of this article.) If the status code is
not zero, the third argument is appended to the message the code generates, as we'll see
later. This argument is actually an "ioa " control string, which may contain variable
"keys" into which the fourth and subsequent arguments to "com_err_" are formatted and sub-
stituted. (See the description of "ioa_" in the MPM Subroutines.)

Generally, only commands call "com err_"; subroutines do not. A subroutine instead re-
turns a status code to the calling command, which then calls "com_err_". This allows you
to call the same subroutine from several commands, and decide (on a case-by-case basis)
whether and in what format to print an error message. It also relates the message more
directly to the user action which led to the difficulty.

ARGUMENTS

We must also concern ourselves with getting the arguments given on the command 1line into
the program. A thorough discussion of how to interpret these arguments is beyond the
scope of this article. Some conventions to keep in mind include:

(1) Control arguments, i.e., keywords that modify the behavior of the com-
mand or indicate the interpretation of a single immediately-subsequent
argument (e.g., "-brief" or "-output_file XXX"), begin with a hyphen
and may be given in any order.

(2) Informational arguments, i.e., variables such as filenames, may be re-
quired to appear in a particular order.

(3) Intermixing informational and control arguments should not change the
way the command behaves.

To find out how many arguments were supplied to your command, call the subroutine
"cu_$arg_count", which must be declared:

declare cu_$arg_count entry (fixed binary);
If you then declare a variable like:
declare nargs fixed binary; /* number of arguments supplied */
the statement:
call cu_$arg count (nargs); /* find out how many args */
will set "nargs" equal to the number of arguments supplied.<7>
Suppose your program expects at least one argument.' If "nargs" comes out zero, you would
want to return an error message. In such a case, the convention (these days) is to print
a message describing the syntax of the command, e.g.,
if nargs = 0 then do; /* not enough arguments ¥*/
call com_err_ (error_table $noarg, "do _good_stuff",
"“/"5%xUsage: do_good_stuff path"),
return; /* tell user & abort command %/
end;
prints a message like this:
do_good_stuff: Expected argument missing. Usage: do_good_stuff path
The usage message indicates (a) that an argument is expected, and (b) that it should be a
pathname. The "return" statement in the command procedure shown causes the command to be

aborted.

If command arguments were provided, get their values by calling "cu_$arg ptr", which is
declared:

declare cu $arg ptr entry (fixed binary, pointer, fixed binary,
fixed binary (35));

<7> In general, entry points to "cu_" (command utility) deal with manipulating the command
environment.

Writing Multics Commands, Part I Page 2

MS-99 Multics Bulletin Reprints

If you then make the following declarations:

declare argno fixed binary; /* argument sequence number ¥/
declare argp pointer; - /% pointer to argument */
declare argl fixed binary; /% length of argument */

declare arg character (argl) based (argp);
/% argument ¥/
declare code fixed binary (35); /% system status code ¥/

executing the statements:

argno = 1; /* looking for first argument */
call cu $arg ptr (argno, argp, argl, code);
/% get argument */

will set the value of "arg" to the first argument of the command. The variable "code" |is
a system status code. This is most often set to zero (meaning "no error") or to the value
of Merror_table $noarg", if, for example, you have asked for the fifth argument

(argno = 5) when only three were supplied. Proper use of "cu_$arg_count" will, of course,
prevent this.

Suppose your program requires one pathname argument and may take an optional control argu-
ment, "-brief", or its abbreviation, "-bf".<8> You could use a sequence 1like this to
process the arguments:

1 declare (error_table_$badopt, /% bad control argument */
2 error_table_$noarg) /* missing argument %/
3 fixed binary (35) external;
y declare brief flag bit (1) aligned initial ("0"b);
5 /% on if "-brief" supplied ¥*/
6 declare pathp pointer initial (null ());
7 /* pointer to pathname ¥/
8 declare pathl fixed binary; /% length of pathname */
9 declare path char (pathl) based (pathp);
10 /* pathname */
1 declare (null, substr) builtin;
12
13 /* Get arguments (cu_$arg_count already called above) */
14 do argno = 1 to nargs;
15 . call cu_$arg_ptr (argno, argp, argl, code);
16 /% get argument %/
17
18 if code "= 0 then do; /% couldn't get argument ®/
19 call com_err_ (code, "do_good_stuff", "Argument “d.", argno);
20 - Vi report problem */
21 return; /% abort command %/
22 end;
23
24 if substr (arg, -1, 1,) = "-n then do;
25 /* control arguments start with "-" %/
26 if arg = "-brief" | arg = "-bf" then do;
27 if brief flag then do; /* already specified %/
28 call com err_ (O, "do - good_stuff",
29 "Redundant control argument. a")
30 /%* report error %/
31 return; /* abort command ¥/
32 end;
33
34 brief flag = "1"b; /% show "-brief" specified %/
35 end;
36 else do; /* unknown control argument ¥/
37 call com_err_ (error_table $badopt, "do_good_stuff", nta" arg);
38 - /® report error %/
39 return; /% abort command ¥/
40 end;
41 end;
42 else do; /% pathname argument ¥/
43 if pathp "= null() then do; /* already specified ¥/
4y call com_err_ (0, "do good stuff", "Redundant argument. ~a", arg);
45 /¥ report error %/
46 return; /*® abort command ¥/

<8> Appendix A of the MPM Subsystem Writers' Guide lists names and conventional abbrevia-
tions of commonly-used Multics control arguments. Choosing applicable names from this
list and implementing the same abbreviations reduces the probability of errors in the use
of the command by people already acquainted with Multics.

Writing Multics Commands, Part I Page 3

MS-99 Multics Bulletin Reprints

47 end;

48

49 pathp = argp; /* save pointer and %/

50 pathl = argl; /* length of pathname ¥/

51 end;

52 end;

53

54 if pathp = null () then do; /* no pathname specified */
55 call com_err_ (error_table_$noarg, "do_good_stuff", "Pathname required.");
56 - /* report error %/

5T return; . /* abort command %/

58 end;

Use comments to explain what is happening in your program. The "~d" in "Argument ~d."
(line 19) is an "ioa " substitution key for formatting fixed-point values for decimal
printing--in this case the value of "argno". An error encountered in getting the argument
when argno = 2 therefore produces a message like:

do_good_stuff: Argument 2.

Here we can't print the actual argument in the error message; the nonzero error code may
indicate that it was unobtainable. But later (line 37), when the argument has been suc-
cessfully obtained, we can use it in the error message so that the user knows exactly what
has tripped things up. The ""a" is an "ioa_ " substitution key for formatting character
values, such as the next argument to "com err ", "arg". We use ""a" as the third argument
only to circumvent the (admittedly remote) possibility that the value of "arg" might be a
valid "ioa " control string; otherwise, the third argument could be specified as simply
"arg". If the control argument "-fred" were supplied on the command line, the error mes-
sage generated here would read: .

do_good_stuff: Specified control argument is not implemented by this command.
-fred ’

Although one is tempted to overlook a multiple specification of the same control argument,
such a case can indicate a typing mistake. 1It's usually safer, therefore, to report it as
an error (lines 27-32). And if you might have many cases of the sequence:
if ...
then do;
call com_err (...);
return;
end;

it's reasonable to replace them with calls to one or more internal procedures which call
"com_err_" and then perform a non-local "goto", transferring control to a "return" state-
ment in the main procedure.

Once you have the arguments, which are all character values, you may need to transform
some of them into numeric values. Do this with a sequence like:

declare error_table $bad_conversion fixed binary (35) external;
declare (conversion,
size) condition;
declare number fixed binary; /* a number ¥/
declare binary builtin;

on conversion begin; /* handler for invalid number ¥/
call com_err_ (error_table $bad_conversion, "do_good_stuff", "“a", arg);
* report error ¥/

goto exit; /* abort command ¥/
end;
on size begin; /* handler for too-large number */

call com_err_ (0, "do_good_stuff",
"Magnitude of “a greater than 131071.", arg);
/* report error ¥/

goto exit; /% abort command ¥/
end;
number = binary (arg, 17, 0); /* convert the argument */
revert conversion, size; /% disable the handlers */
exit:
return; /* abort command ¥/

Writing Multics Commands, Part I Page 4

MS-99 . Multics Bulletin Reprints

The "on" statements and "begin" blocks are condition handlers for the T"conversion" and
"size" conditions that might be raised if the value of "arg" could not be properly trans-
formed into a numeric value. For example, if "arg" were "2%" instead of "25" (due to a
typo), the call to "com_err_" in the "begin" block for the "conversion" condition would

print the message:
do_good_stuff: Error in conversion. 2%
A well-written command provides handlers for a wide range of possible error conditions,

seldom (if ever) letting control pass to the system handlers. Even cleaner (though more
complex) approaches attempt to "catch" illegal values before they raise error conditions.

Writing Multics Commands, Part I Page 5

MS-99 Multics Bulletin Reprints

WRITING MULTICS COMMANDS
PART II: ACCESSING AND CREATING SEGMENTS

by Richard Scott
reprinted from the March-April 1979 Bulletin

Last time we talked about obtaining arguments and reporting errors. These operations are
fundamental to all commands--even those that get all their input from the terminal. For
commands that process a lot of input data or produce a lot of output, the terminal is not
usually a suitable I/0 device. 1In this article we will talk about the most efficient way
of doing I/0 to and from Multics segments.

You could, of course, use PL/I I/0 statements to read data from segments and write results
into them. For operations on databases bigger than (roughly) one million bytes, this may
be the easiest approach.<9> To handle smaller amounts of data, however, it's more effi-
cient to make use of Multics' virtual memory and treat segments' contents as based vari-
ables in the program.

In standard PL/I, a pointer is a locator value used to designate a generation of storage
of a program variable. Since, in Multics, all .generations of storage occur in segments,
Multics PL/I extends the pointer concept somewhat. In Multics, the internal representa-
tion of a pointer 1is-a combination of a segment number and an offset within the corre-
sponding segment, commonly written "segnoloffset"--e. g., 2441104, where "244" and "104"
are octal numbers.

In a given process,<10> the Multics supervisor assigns a unique (for that time and proc-
ess) segment number to each segment referenced. Asking the supervisor to assign such a
number to a given segment is called initiating the segment or making the segment known to
the process. And -asking the supervisor to disassociate the segment number from a given
‘segment, so that the number may be re-used, is called terminating the segment, or making
the segment unknown.

GETTING A POINTER TO A SEGMENT

In Multics PL/I, as in standard PL/I, you can obtain a pointer to an existing generation
of storage by using the "addr" or "pointer" builtin functions, or to a new generation of
storage by using the "allocate" statement. However, in Multics PL/I you can also get a
pointer to a named segment by calling the supervisor. The subroutine most commonly used
for this purpose is "hes_$initiate_count",<11> which must be declared:

declare hcs $initiate_count entry (character (*), character (*), character (¥),
fixed binary (24), fixed binary (2), pointer, fixed binary (35));

If you declare this and the following variables.

declare bit_count fixed binary (24); /% segment length in bits ¥/
declare seg_ptr pointer initial (nuil 0);

. /¥ pointer to base of segment */
declare code fixed binary (35); /* system status code ¥*/

then executing:

call hes_$initiate_count (">udd>ARK>Noah", "hippo.data"™, "", bit_count, 1,
seg_ptr, code);™ /% get pointer to base of segmenb *®/

sets "seg ptr" to the 1location of the segment "hippo.data" in the directory
">udd>ARK>Noah"--i.e., to ">udd>ARK>Noah>hippo.data", provided that the segment exists and
you have at 1least "r" ("read") access to it. It also sets "bit_count" to the length of
the segment, in bits.

If the segment is not already initiated, this call initiates it. The null string ("")
passed as the third argument tells the supervisor to associate a null reference name with
the segment. If you pass a non-null character string here, the supervisor associates that
string with the segment as a reference name. A segment may have many reference names, but

<9> Another approach would use the entry points to "msf_manager_", documented in the MPM
Subsystem Writers' Guide (AK92).

<10> "Process" refers to the complex of virtual address space and programs in execution
associated with a given Multics user at a given time. Except that it calls upon the
Multics supervisor to perform certain functions, it is very much like a "virtual machine".

<11> Supervisor calls are usually entry points of "hes_" (“Qardgore gupervisor").

Writing Multies Commands, Part II Page 1

MS-99 Multics Bulletin Reprints

each non-null reference name in a process may be associated with only one segment at a
time. Other programs in the same process (including the dynamic linker) may then refer to
the segment by one of its reference names until that reference name (or the segment) is
terminated. For most purposes, however, a null reference name will suffice.

The constant "1", passed as the fifth argument, tells the supervisor to give you a pointer
to the original segment. If you pass "2" instead, the supervisor creates a temporary copy
of the segment in your process directory and sets "seg ptr" to that segment's location.

You might think that you have an error if the supervisor returns a nonzero value in
"code". However, that isn't necessarily the case. For example, if "hippo.data" has al-
ready been initiated, the supervisor returns the value of "error_table $segknown", whose
corresponding message (as printed by "com err "; see Part I of this series, in the
January-February issue) is "Segment already known to process." However, '"seg ptr" is
still set to the location of "hippo.data". This is why we call the value returned in
"code" a status code, not an error code. The test for whether initiation has failed is
the value of "seg ptr": if it is null, then the supervisor could not initiate the segment
for you, and you should call "com_err_" with the value of "code" to find out why. (See
the example under INTERPRETING PATHNAME ARGUMENTS, below.)

Once you have a pointer to "hippo.data", you can use a based variable to overlay the stor-
age however you like. 1If there are already data in the segment, the value of "bit_count"
will tell you how many bits of data there are. However, the bit count of a segment may
not necessarily reflect the actual contents of the segment. It's kind of like the label
on a package, which may claim there are 7 ounces of potato chips inside, when in fact
there may really be only 5 (or even 9--a somewhat rarer case with potato chips). But we
assume that this value is correct. It is the duty of any command that changes the con-
tents of a segment that may be used by other commands to reset that segment's bit count
correctly. So if you expect the segment to contain ASCII (character) data, you can calcu-
late the number of characters from the bit count by dividing by 9 (since there are 9 bits
in each character on Multics). For example, if we declare the following variables:

declare nchars fixed binary (20); /* number of characters in segment */
declare hippo_string character (nchars) based (seg_ptr);

/* segment contents as one long ¥/

/* character string */

then executing:

nchars = divide (bit_count + 8, 9, 20, 0);
/% get number of characters in segment */

lets us treat the contents of "hippo.data" as one long character string, which we can then
manipulate with the PL/I string builtin functions such as "index" and "substr". The vari-
able "nchars" is declared with a precision of 20 bits because the maximum number of char-
acters a segment can hold is between 2'° and 22°. We used the "divide" builtin function

instead of just saying:
nchars = (bit_count + 8)/9;
because the builtin function is more efficient.

On the other hand, if you expect the segment to contain an array of aligned, single-

precision, floating-point, binary numbers, the declarations and executable code are analo-
gous: :

declare nvalues fixed binary (18); /* length of array %/
declare hippo_array (nvalues) float binary based (seg_ptr);
/% segment as array of numbers */

nvalues = divide (bit_count + 35, 36, 18, 0);
/* get number of words in segment ¥/

Here, the largest number of 36-bit words a segment can hold is between 2!7 and 218, You
can do the same sort of thing with any imaginable type of data; just keep in mind that in

most cases (unless it has been set otherwise) the maximum length of a segment 1is 261,120

36-bit words (9,400,320 bits). Of course, with complicated structure variables, the cal-
culations get worse.

Now you can read the contents of the segment by referring to the associated based variable
on the right-hand side of an assignment statement:

x = hippo_array (7);
or as an argument to a function or subroutine:

call print_values (hippo_array);

Writing Multics Commands, Part II Page 2

MS-99 | Multics Bulletin Reprints

And you can write into the segment by referring to the associated based variable on the
left-hand side of an assignment statement:

hippo_array (11) = x * y;

or as arguments to subroutines. . The supervisor takes care of bringing the data into main
memory as it is needed, and you can forget about "read" and "write" statements.

VERIFYING ACCESS

Of course, to read from or write into a segment, you must have the appropriate access to
it.<12> If you do not, the supervisor raises the "no_read_permission" or
"no_write_permission" conditions. Many commands assume that, if you have any access at
all to a segment (so that "hcs_$initiate_count" returns a pointer to it), you have at
least "r" ("read") access; this is usually true. However, "w" ("write") access is more
likely to be lacking, so you should check for it before trying to change the contents of
the segment. . You can do this by calling "hes_$fs_get_mode" as follows:

declare hecs_$fs_get_mode entry (pointer, fixed binary (5), fixed binary (35));

declare mode fixed binary (5); /* access mode */

declare write_ok bit (5) internal static initial ("00010"b) options (constant);
- ' /% bit pattern for "w" access ¥/

call hes_$fs_get_mode entry (seg_ptr, mode, code);
/% get access mode %/

if code "= 0 : /* can't get mode */
then... i /% report problem somehow */
if “(bit (mode, 5) & write_ok) /* no "w" access ¥/
then... /* report problem somehow ¥/

The call to "hcs_$fs_get_mode" sets "mode" to a fixed binary value whose bit pattern rep-
resents the access mode to "hippo.data" for the person using your command. A 2's bit of
"1" (e.g., a "mode" of 00010b, 01010b, or 01110b) indicates that the calling process has
"w" access. We use the "bit" builtin function to transform the binary number to a bit
string and "and" this bit string with the bit string constant "write_ok", in which only
the value of the 2's bit is "1", The result of the "and-ing" is a string of all zero
bits, "false", unless the value of the 2's bit in the bit-string representation of - "mode"
is also "1". The person using your command has "r" access to "hippo.data" if the 8's bit
of the bit-string representation of "mode"™ is "1"; you can make an analogous test for that
by declaring and using a constant like the following:

declare read_ok bit (5) internal static initial ("01000"b) options (constant);
/% bit pattern for "r" access %/

The status code with which to call "com_err_" in the case of insufficient access is the
value of "error_tablm $moderr"™ (whose associated message is "Incorrect access on entry.").

You should include The full pathname of the segment in the error message, as we will il-
lustrate later.

CREATING SEGMENTS

So far we have discussed only segments that already exist. You can also ask the supervi-
sor to create segments by calling "hcs_$make_seg" as follows:

declare hcs_$make_seg entry (character (*), character (*), character (*),
fixed binary (5), pointer, fixed binary (35));

mode = 01010b; /* request "rw" access mode %/
call hcs_$make_seg (">udd>ARK>Noah", "chicken.data"™, "", mode, seg_ptr, code);
/* make and/or get pointer to segment ¥/

Here the first three arguments are the same as those described for "hes_$initiate_count”
above. And "mode" is declared the same as for the call to "hes_$fs_get mode" above; but
in this case it is an input argument indicating what you want the access mode of the seg-
ment to be for the process that creates it. In the example above, the values of both the
8's bit and the 2's bit are "1", indicating "rw" access.

If the value of "code" is set to zero, the supervisor has created the segment and set the

- = = > - - " - - - - - - - - - - = = - - - - = " = - - - — - = - . - e - - - - - - - - -

<12> See Section VIII of the Multics Introductory Users' Guide (AL40), or Section IV of
the MPM Reference Guide (AG91), for an explanation of access modes.

Writing Multics Commands, Part II Page 3

MS-99 Multics Bulletin Reprints

access as requested. However, even if "code" is nonzero, the value of "seg_ptrf may still
be non-null. This happens when either (a) there is already a segment named "chicken.data"
in "> udd>ARK>Noah" or (b) the reference-name (third) argument to "hcs_$make_seg" was non-
null and a segment was already initiated with that name. We will assume that the
reference-name argument was null; then the value of "code"™ will be either the same as
"error table $namedup" (if the segment exists) or "error_table_$segknown" (if the segment
exists and has been initiated). 1In either case, you must decide whether to reject the
segment if you can't get a new one, or use the one that's already there. If the latter,
you can get your access mode by calling "hcs_$fs_get_mode", and the segment's length by
calling "hes_$status_mins":

declare hcs_$status_mins entry (pointer, fixed binary (2), fixed binary (24),
fixed binary (35)); C
declare type fixed binary (2); /* type of directory entry %/ ,
declare (error table $namedup, /* entryname already in directory */
error table $segknown) fixed binary (35) external;
- . /* segment already known to process ¥/

call hcs_$make_seg (">udd>ARK>Noah", "chicken.data", "", mode, seg_ptr, code);
: ’ /* make and/or get pointer to segment */

if seg_ptr = null () /% can't get a ségmeht ®/
then... - /% handle the error #/

. if ‘code = error_table_$namedup | code = error_table $segknown
S .) . /* segment already exists %/
then do; ‘ /% get needed information */
call hcs_$fs_get_mode (seg_ptr, mode, code);:
. ‘ : /% get access mode %/
. _ /% handle errors */

call hes_$status_mins (seg_ptr,'type; bit_count, code);
i . - /% get length %/
.« : /% handle errors %/
- end; : -) o .
C o else... . . o /% handle the error %/

TEHPORARY-('SCRA?CH') SEGMENTS

To get temporary segments for Scratch space, call "get temp_segments ". For: example, ifr
~you need three temporary segments, you can get them as follows: L .
‘declare . get_temp_ segments entry (character (*), (*) pointer,
: " fixed binary (35)7; S ; -
declare temp_seg_ptrs.(3) pointer initial ((3) null ());
s S : ' . /¥ array of pointers %/

:call get_temp_segments. ("dq_good;siuff", temp_seg ptrs, code);
: i] /% get scratch segments ¥/

if code “= 0 ‘/* can't get segments %/
then... ‘ /% handle the error */

The first argument to "get_temp segments_" must be .the name of your command (here,
. "do_good_stuff"). You tell "get_temp_segments " how many segments you need by the extent
' of the pointer array "temp_seg ptrs". " This must be an array, even if you 'want only - one
segment: . .

declare temp_seg_ptrs (1) pointer initial ((1) null»());
) /% array of extent 1 #/

The advantage of using "get_temp_segments_" instead of "hcs_$make_seg" is that, once you
are finished with the segments, another program may reuse them (see CLEANING UP, below)
and thereby avoid the cost of creating new segments.

'MODIFYING SEGMENTS SAFELY

One important use of temporary segments is for making extensive modifications to permanent
segments. If a command were to make massive changes directly to a permanent segment, a
program error or system crash might leave the segment's contents mangled or otherwise use-
less. You can considerably reduce the likelihood of this kind of catastrophe by copying
the contents of the permanent segment into a temporary segment, modifying the temporary

Writing Multics Commands, Part II Page 4

MS-99 Multics Bulletin Reprints

segment, and then copying the new temporary segment back into the permanent segment, ei-
ther upon completing all the modifications or at strategic points in the modification
process. Thus, if something goes wrong, the contents of the permanent segment are left in

a manageable state. You can copy the permanent segment into the temporary segment with a
single assignment statement, e.g.:

temp_seg_ptrs (1) -> hippo_array = seg ptr -> hippo_array;
* copy segment contents to */
/% temporary segment %/

or after making the modifications:

seg_ptr -> hippo_array = temp_seg _ptrs (1) -> hippo array;
: /* copy modifications back into */
/* original segment */

Truncate the original segment and reset its bit count (see CLEANING UP, below) after each
copy from the temporary segment to the original.

INTERPRETING PATHNAME ARGUMENTS

The above examples used character-string constants for the directory and entryname argu-
ments. However, you do not usually want to program in constant values; you want to get
the pathnames from command arguments. 1In the preceding article in this series (January-
February issue), we obtained such an argument and stored its pointer and length:

declare pathp pointer initial (null ());

/* pointer to pathname %/
declare pathl fixed binary; /* length of pathname %/
declare path character (pathl) based (pathp);

/* the pathname %/

The pointer and length were obtained by calling "cu_$arg_ptr". To transform this path-
name, which could be an entryname ("giraffe stats"), a relative pathname
("<Noah>giraffe_ stats"), or an absolute pathname (">udd>ARK>Noah>giraffe_stats"), into the
absolute directory pathname and entryname required by "hes_$initiate_count® and
"hes_$make_seg", call "expand_pathname_":

declare expand_pathname_ entry (character (*), character (*), character (%),
fixed binary (35));

declare dirpath character (168); /% absolute pathname of directory */

declare entryname character (32);

call expand_pathname_ (path, dirpath, entryname, code);
: /* get directory and entry %/

if code "=z 0 © /% couldn't interpret "path" ¥/
then do;) : /* handle error %/
call com_err_ (code, "do_good_stuff", "“a", path);
- = - - 7% include value of "path™ in message */
return; : . /* abort command %/
end;

This sets the value of "dirpath" to the directory portion of the absolute pathname of
"path" and sets the value of "entryname" to the entry portion. .The lengths of "dirpath"
(168) and "entryname" (32) are the respective maximum lengths for an absolute pathname and
an entryname.

Now you can use "hcs_$initiate_count™, for example, to get a pointer to "giraffe stats":

declare rtrim builtin; /% trims trailing blanks #*/
call hes_$initiate_count (dirpath, entryname, "", bit_count, 1, seg_ptr, code);
/* get pointer to segment %/

if seg_ptr = null () /% couldn't get it */

then do; /% handle the error %/
call com_err_ (code, "do_good_stuff", "“a>%a" rtrim (dirpath),

rtrim (entryname));) /% include full pathname in message %/

return; /* abort command */

end;

The builtin function "rtrim" removes trailing blanks from the values of "dirpath"™ and
"entryname" so that, if an error occurs, the message comes out looking like, for example,

do_good_stuff: Entry not found. >udd>ARK>Noah>giraffe_data

Writing Multics Commands, Part II : Page 5

MS-99 Multics Bulletin Reprints

without a lot of extra blanks after ">udd>ARK>Noah" and "giraffe.data". You should always
ijnclude the full absolute pathname in error messages as soon as it becomes available from
"expand_pathname_". Doing so makes it much easier for the person using your command to
flgure ‘out what's wrong when he or she mistypes a pathname or thinks the working directory
is sommthing other than what it is.

CLEANING UP

When your command is finished working with segments, it is important that it "clean them
up." This involves four things:

truncating modified permanent segments,
resetting these segments' bit counts,
terminating all permanent segments, and
releasing all temporary segments.

[N

If you have reduced the number of words of data in the segment, truncate it to its new
length. This means setting to zero all the words beyond those containing actual data.
First, calculate the bit count (which you will use later) from the new data size. (This
operation is essentially the reverse of getting the size of the data structure from the
bit count.) Next, calculate the new length of the segment in words from the bit count (if
you don't have it already) and call "hcs_$truncate_seg" to do the truncating:

declare nwords fixed binary (18); /* length of data structure in words */

bit_count = 9 ¥* nchars; i /* calculate bits from characters */
‘nwords = divide (bit count + 35, 36, 18, 0);
- /i get integral number of words %/
call hes $truncate_seg (seg_ptr, nwords, code);
* zero out unused words ¥/

if code "= 0 /% couldn't truncate %/
then... /* report error %/

You truncate the .segment because this frees the unneeded storage so that it can be reused
and so that the person using your command doesn't have to pay for it.

Resetting the bit count on a permanent segment is important, because the bit count will be
used later by other commands to determine that segment's length. A call to
"hes_$set_bec_seg" sets the count. For example, using the value of "nwords" calculated
above, we set the bit count as follows:

declare hcs_$set_bq_seg entry (pointer, fixed binary (24), fixed binary (35));

call hes_$set_bc_seg (seg ptr, bit count, code);

/%’ set the bit count #/
if code "= 0 : /% couldn't set it ¥/
then do; - /% handle error ¥/

Finally, terminate the permanent segments and release the temporary segments you have
used. You terminate segments so that their numbers may be re-assigned and, more impor-
tant, because the efficiency of your process decreases if the number of segments known to
it (called the working set) becomes too large. . To terminate segments initiated by
"hes_$initiate_count" with null reference names, call "hcs_$terminate_noname:"<13>

declare hcs_$terminate_noname entry (pointer, fixed binary (35));

call hes_$terminate_noname (seg_ptr, code);
/* terminate segment ¥/

To release the temporary segments, call "release_temp_segments_":

declare release_temp_segments_ entry (character (*), (¥) pointer,
fixed binary (35));

call release_temp_segments ("do_good_stuff", temp seg ptrs, code);

<13> If a command initiates a segment before an earlier command has terminated it, a call

to "hcs_$terminate_noname" by the second command does not terminate the segment it re-
mains accessible to the first command.

Writing Multics Commands, Part II) Page 6

MS-99 i Multics Bulletin Reprints

—_—

/* return temporary segments to pool */

The arguments to "release_temp_seg<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>