LMM"D

. N . . | O\

gﬂt N faﬁ(cjaf
tolul _ epu Tima

—~
araluad - cpu Lo _

hes_ : Undocwmenlid @nm

8},& Uhe alooeldn FathmmL
(i, .@)uﬁq—%mz,) o{ The brand,
PC*;L’I/LQ él to [05 a /@{/)/vk |

Lo.w ZLde (a <. wcﬂxl@/ |
PQB’Q -ch,ug_f 0(/1«:.6{ ou(a—uupt C(_/ﬂ/z,(’>
(’,{) L t‘,’}’"& a0 6(& a)J/[0oy

Q/M @ ZE/MM I/MO/ é\—) /J/)OCQA/J

onn ilied <pu T
waed Zay @ P/zoc@}j‘t

~ hes_ - OlMo—e'.tm Elves

acaPt-aLm..OBd |
O.C/Q_.o.fl(j

acl —add 4

acl - dedite

acl _ Lt

ad - ace

chname

er_ad_ ddefe
sx_acd_ A
M-acﬁ_/u
™ fs_gob bradeto
-cs-gﬁ_—caﬂ-nm
-Ps,aﬂx-&t}u_mwm&
yx-mtg-wm
8M_u,oa3¢,/vn&w
Mb’&._,azé,
ke sg_count
ot _din
matsumbnoun
-pPagr o
RO,
C ak_Tann
alatio
- magz-ﬂm!&»-u |

hes— @ Bttt which ahoudd be in hphes_

ak_ loarJeuF_ MF-W
ak_ [OCKD’QL&P~%
k- dali

ak_dtd

\\
vl

| e
hes_: Buta mw@ /mmafw.m; o
mﬁ;- m‘?&
‘QS_ ALMJL- a,(’,t_. UJJ(/L
'PS-MaAc(a.tﬂi'_W / \
8.@1- ,CM — Mrg,c ’

8%?' d0arch udes Vo
~ 821;406, Caum é- sfr)\q

CN . R I VAN RN '___entl’|eb

Subroutine Cali
2/12/73%

Name: hecs_$%$add_acli_entries

This subroutine, given a list of Access Control List (ACL)
entries, will add the given ACL entrnes, or change their modes if

a corresponding entry already exists, to the ACL of the specified
segment.,

Usaze

declare hcs_$add_acl_entries entry (char(*), char(x),

ptr, fixed bin, fixed bin(35)); \

call hcs_$add_ac) entr:es (dirname, ename, acl_ptr,
acl_count, code);

1) dirname is the dlrectory portion of the path name of the
segment in question. (lnput)

2) ename is the entry name portion of the poth name of the
segment in question. (lnput)

3) acl_ptr points to a user-filled segment_acl structure.
See Notes below. (lnput)

L) acl_count contains the number of ACL entries in the

‘ segment_acl structure. See Notes below. (Input)
5) code is a standard status code. (Output) ™
Notes

The following structure is used:

dcl 1 segment_acl (acl —count) aligned based (acli_ptr),
2 access_name char(32),
2 modes bit(36),
2 zero_pad bit(36),
2 status_code fixed bin(35);

1) access_name is the access name (in the VO
person.project.tag) which identifies the
processes to which this ACL entry applies.

2) modes contain the modes for this access name. The

first three bits correspond to the modes read,
execute, and write. The remaining bits must be
zZero.

C) Copyright, 1973, Massachusetts In nstitute of Technology -
‘ and Honeywell Information Systems Inc.

\ V¥

@D Copyright, 1973, Massachusetts

et e j MULTICS PROGRANMERS' MANUAL

[

Page 2

3) zero_pad = must contain zero. (This field is for use with
extended access.) '
L) status_code 1is a standard status code for this ACL

entry
only.

If code is returned as error_table$argerr then the offending
ACL entries in segment__acl will have status_code ‘set to an
appropriate error and no processing will have been performed.

If the segment is a gate (see the MPM Subsystem
Guide section, Intraprocess Access Control (Rings)), then if the
validation level is greater than Ring 1, then only access names
that contain the same project as the user, and '"SysDaemon' and
'sys_control" projects will be allowed. If the ACL to be added

is in error then no processing will be performed and the code
error_table_$invalid_project_for_gate will be returned.

Writers'

e

Institute of Technology
and Honeywell Information Systems..lnc. (END)

. . g . - |
fow AU A L ' i nes_vada_dir_acl_entries @

Subroutine Call
2/13/773

ame: hes_S$add_dir_acl_entries

This subroutine, given a list of Access Control List (ACL)
entries, will add the given ACL entries, or change their
directory modes if a corresponding entry already exists, to the
ACL of the specified directory.

.

declare hcs_$add_dir_acl_entries entry (char(*), char(x),
ptr, fixed bin, fixed bin(35));

call hcs_$add_dir_acl_entries (dirname, ename, acl_ptr,
acl_count, code);

1) dirname is the path name of the directory superior to
‘the one in question. (lnput)

2) ename is the entry name of the directory in

. question. (lnput)

3) acl_ptr points to a wuser-filled dir_acl structure.
See Notes below. (lnput)

4) acl_count contains the number of entries in the dir_acl
structure., See Notes below. (Input)

5) code - is a standard status code. (Output)

otes

The following structure is used:

declare 1 dir_acl (acl_count) aligned based (acli_ptr),
2 access_name char(32),
2 dir_modes bit(36),
2 status_code fixed bin(35);

1) access_name is the access name (in the form
person.project.tag) which identifies the
process to which this ACL entry applies.

2) dir_modes contains the directory modes for this access
name., The first three bits correspond to the

modes status, modify, and append. The
remaining bits must be zero.

3) status_code is a standard status code for this ACL entry
only.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems lnc.

a

A R R] R R S N A A VIR Y T ST LY A4V MANUAL

Page 2

I f code is returned as error_tablie_$argerr then the

‘offending ACL entries in the dir_acl structure will have

status_code set to an appropriate error and no processing will
have been performed.

C) Copyrlght, 1973, Massachusetts Institute of Technolo gy
and Honeywell Information Systems Inc (END)

R IR Y1 T R CTVI I Lncs_;add_dir_inacl_entries

|
|

Subroutine Call
2/27/73

Name: hes_$add_dir_inacl_entries

This subroutine, given a list of initial Access Controil
List (lnitial ACL) entries, will add the given Initial ACL
entries, or change their directory modes if a corresponding

entry already exists, to the Initial ACL for new directories
within the specified directory. :

Usare

.
declare hcs_$add_dir_inacl_entries entry (char(w), char(x),
ptr, fixed bin, fixed bin, fixed bin(BS));

call hes_$add_dir_inacli_entries (dirname, ename, acl_ptr,
acl_count, ring, code);

1) dirname . is the path name of the directory superior to
the one in question. ‘(input)

2) ename is the entry name of the directory in
guestion. (lnput)

3) acl_ptr points to a user~-filled dir_acl structure.
See Notes below. (lnput)

L) acl_count contains the number of entries in the dir_aci
structure. See Notes below. (lInput)

5) ring is the' ring number of the 1Initial ACL.
(Input)

6) code is a standard status cbde. (Output)

Notes

The following structure is used:

declare 1 dir_acl (acl_count) aligned based (acl_ptr),
2 access_name char(32),
2 dir_modes bit(36),
2 status_code fixed bin(35);

1) access_name is the access name (in the form
person.project.tag) which identifies the

processes to which this Initial ACL entry
applies.

2) dir_modes : contains the directory modes for this access
name. The first three bits correspond to the

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems I[nc.

e viuSi_eiilries |

WJLTiCS SUBSYSTEM WRITERS!

GUIDE
Page 2
™

modes’ status, modify, and append. The
remaining bits must be zero.

3) status_code Is a standard status code for this Initial
ACL entry only.

I f code is returned as error_table_$argerr then the
offending Initial ACL entries In the dir_acl structure will have
status_code set to an appropriate error and no processing will
have been performed.

3

~

() Copyright, 1973, Masséchusetts Institute of

Technology
and Honeywell Information Systems Inc. (END)

wvwu el B WRITERSY GUILE ' ncs_%add_inacl_entries |

Subroutine Call
2/27/73

Neme: hes_$add_inacl_entries

This subroutine, given a list of Initial Access Control List
(Initial ACL) entries, will add the given Initlal ACL entries, or
change their modes if a corresponding entry already exists, to
the Initial ACL for new segments within the specified directory.

Usage
declare hcs_$add_inacl_entries entry (char(x), char(x),

ptr, fixed bin, fixed bin, fixed bin(35));

call hcs_$add_inacl_entries (dirname, ename, acl_ptr,
acl_count, ring, code); - '

1) dirname is the superior directory portion of <the path
name of the directory in question. (lnput)

2) ename | is the entry name portion of the path name of the
directory in question. (lnput)

3) acl_ptr - points to a wuser-filled segment_acl structure.
See Notes below. (lnput)

L) acl_count' contains the number of Initial ACL entries in the

. segment_acl structure. See Notes below. (lInput)

5) ring is the ring number of the Initial ACL. (lnput)

6) code is a standard status code. (Output)

Notes

The following structure is used:
dcl 1 segment_acl (aci_count) aligned based (aci_ptr),
2 access_name char(32),
2 modes bit(36),
2 zero_pad bit(36),
2 status_code fixed bin(35);

1) access_name is the access name (in the form
person.project.tag) which identifies the
processes to which this Initlal ACL entry
applies.

2) modes contain the modes for this access name. The

first three bits correspond to the modes read,
execute, and write. The remaining bits wmust be

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems lInc.

Ve

B RUUPINY BRI Muciivo wuboivicM WRITERSY GUIDE

Page 2

zZero,

3) zero_pad must contaln zero. (This fleld Is for use with
extended access.)
L) status_code 1is a standard status code for this

initial ACL
entry only.

I1f code is returned as error_tableSargerr then the offendsng
Initial ACL entries in segment_acl will have status _code set to
an appropriate error and no processing will have been performed.

C) C0pyrlght, 1973, Massachusetts Institute of Technology
and Honeywel] lnformatlon Systems -lnc. (END)

Caeeieind T MANUAL | hcs_S$append_branch

Subroutine Cal}
3/19/73

Mame: hcs_$append_branch

This entry creates a segment in the specified directory,
initiates the segment's Access Control List (ACL) by copying the
Initial ACL for segments found in the directory, and adds the
user to the segment's ACL with the mode specified. ACLs and

Initial ACLs are described in the MPM Reference Guide section,
‘Access Control.

sage

declare hcs_$append_branch entry (ch har(*), char(x),
fixed bin (S) fixed bin (35));
call hcs;$append_branch (dirnéme,,ehtryname, mode, code);

1) dirname is the path name of the directory in which segname
is to be placed. (Input) ’

2) entryname is the entry name of the segment to be created.

(Input)
3) mode is the user's access mode; see Notes below. (lnput)
L) code is a standard storage system status code. (Output)
Notes L

Append (a) access mode is required in the directory dirname
"to add an entry to that directory.

A number of attributes of the segment are set to default
values.

1) Ring brackets are set to the user's current validation level.

See the MPM Subsystem Writers' Guijde section, Intraprocess
Access Control (Rings).

2) The user ID is set to the name and project of the user, with
the |nstance tag set to *,

3) The copy switch is set to 0.
L) The bit count is set to 0.

See the MPM write-up for hcs _$append_branchx to create a

‘storage system entry with other values than the defaults listed
above.

() Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems |nc.

a

v bw dvunAMMEito ¢ MANUAL

Page 2

The mode argument is a fixed binary number where the desired
mode is encoded with one access mode specified by each. bit. For
segments the modes are:

read 8-bit (i.e., 01000b)
execute L-bit (i.e., 00100b)
write 2-bit (i.e., 00010b)

For directories, the modes are:

status 8-bit (i.e., 01000b)
modify . 2-bit (i.e., 00010b)
append l1-bit (i.e., 00001b)

The unused bits are reserved for unimplemented attributes and

must be zero. For example, rw access in bit form is 01010b, and

is 10 in fixed binary form.

@D Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

AR LD T EANUAL ncs_%append_branchx |

Subroutine Call
3/20/73

Name: hcs_$append_branchx

This entry creates either a subdirectory or a segment in the
specified directory. (The entry point is really nothing more
than an extended and more general form of hcs_$append_branch.)
If a subdirectory 1is created then the subdirectory's access
control list (ACL) 1is initiated by copying the Initial ACL for
directories that is stored in the specified directory; otherwise
the segment's ACL is initialized by copying the Initial ACL for
segments. The input userid and mode (See Usage below) are then
added to the ACL of the subdirectory or segment.

Usage
declare.hcs_$append_branchx éntry (char(*), char(x), fixed
bin (5), (3) fixed bin (6), char(*), fixed bin (1),
fixed. bin (1), fixed bin (24), fixed bin (35));

call hes_$append_branchx (dirname, entryname, mode, rings,
userid, dirsw, copysw, bitcnt, code);

1) dirname is the path .name of the directory in which
. entryname is to be ploaced. (lnput)

2) entryname is the name of the segment or subdirectory to be
created. (lInput)

3) mode is the user's access mode; see Notes below.
(lnput)

L) rings are the new segment's or subdirectory's ring
brackets; see the MPM Subsystem Writers' Guide
section, Intraprocess Access Control (Rings).
(lnput)

5) userid is the user's access control name of the form
Person.Project.Tag. (lnput)

. 6) dirsw : is the branch's directory switch (= 1 i7{ @
directory is being created; = 0 otherwise).
(Input)

7) copysw is the segment copy switch (= 1 if a copy is
wanted whenever the segment is initiated; = 0 if
the original is wanted). (lnput)

8) bitent is the segment's length (in bits). (lnput)

c> Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

- A MULTICS PROGRAMMERS'® MANUAL

Page 2
o

9) code is a standard storage system status code.
, (Output)
Notes

Append (a) access mode is required in the directory dirname
to add an entry to that directory.

- The mode argument is a fixed binary number where the desired -

mode is encoded with one access mode specified by each bit,. For

segments the modes are: '

read 8-bit (i.e., 01000b)
execute L-bit (i.e., 00100b)
write : 2-bit (i.e., 00010b)

For directories, the modes are:

status 8-bit (i.e., 01000b)
modify 2-bit (i.e.. 00010b)
append 1-bit (i.e.., 00001b)

Note that if modify access is given for a directory, then status

(—\must also be given; i.e., 01010b. The unused bits are reserved
/ for unimplemented attributes and must be zero. For example, rw
access in bit form is 01010b, and is 10 in fixed binary form.

o

(©) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

Ve ERST NIV I TN l

3

Subroutine Call
2/16/753

Neme: hecs_$append_link

_ This subroutine is provided to create a 1link in the

system directory hierarchy to some other directory entry in the
hierarchy. For a discussion of 1inks see the MPM Reference Guide
section Segment, Directory and Link Attributes.

Usare

storage

declare hcs_S$append_link entry (char(x), char(*)vchar(*),
fixed bin(35)); !

call hcs_$append_link (dir_name, link_name, path, code);

1) dir_name is the directory path name in which the 1link is to

be created. (lInput)

2) link_name is the entry name of the-, link

to be created.
(Input)

3) path : is the path name of the segment to which

link_name
is to point. (lnput)

4) code is a standard storage system status code. (Qutput)

Notes

The user must have the append attribute with régbect to the
directory in which the link is being created.

The entry pointed to b

y the link need not exist at the time
the link is created. B

The subroutines
may be used to create a
system hierarchy.

hcs_$append_branch and hcs_$append_branchx
Segment or directory entry in the storage

(© Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems lInc. (ENP)

(lf\cs_?h a0~ Chhamme |

Entry: hc_lpc$assign_channel

This entry assigns a speclal event channel and returns Its
Identifier to the caller,

Usage

declare hc_lpc$assign_channel entry (flxed bin(71),
fixed bin(35));

call hc_lipc$assign_channel (channel, code);

1) channel is the Identifler of the assfgned channel., -
(Qutput) e ’
2) code Is a status code, (Output)

“BchLJ"mt chammibs grnn crualed as ,wf o/?fdz
o,:/mmf o@tﬁm "Last copemand /OO,D " Thus

man W w B noduc The, mumben oflbaﬂwﬂmcﬁe/

- whum (ﬂ/h& uouéw/. (For Lram 3 ﬂt? l%mol‘h ECT).

Thein main Umikalin o Thal o ewoase

bb wowlﬂ uwté a wakwf o(l/mcﬂa/ d me

PO

hes. $ block

Entry: fast_hc_lipc$ipc_block

1
This entry point causes the calling process to put Itself
into the blocked state until a wake-up Is received. Then the
process runs agalin, all entries In the Interprocess Transmission
Table (ITT) are copied into the Event Channel Table (ECT) of the
ring to which they are directed. Control is then returned to the
caller of fast_hc_lpc$ipc_block.

Usage K
declare fast_hc_Ipc$ipc_block entry;
call fast_hc_Ipc$ipc_block;

There are no arguments.

T hag .wﬂ;ta o vefed l)a CPo;& Wock

s O«V/nO’M—/JPQuJ (Aoe kcsASam'ﬁm-o&Mm/)

chammtd 4 dpecihid i e Lot of chanmeds
Panmi Mmmﬁ;mt To WGW‘,{I

| _ ' T

Subroutine Call
Development System
6/30/72

hée 3 Cpu “tume ’MA‘PC‘Z Ly__

Name: cpu_time_and_paging_

This procedure returns the total CPU time used by the

calling process since it was created as well as two measures of
the paging activity of the process.

Usage

declare cpu_time_and_paging_ entry (fixed bin, fixed bin(71),
(‘?0 fixed bin);

call cpu_time_and_paging_ (pf, time, pp);

1) pf is the total number of- page faults taken by the calling
process. (Output)

2) time is the total cpu time used by the calling process.
(OQutput) ‘

3) pp is the total number of pre-pagings for the calling

process. (Qutput)

Nete: The namg cpu—'& ~cwo(,,>q W-;‘/qzéa bheen

added T i gegiment hics Thud
-mﬂmﬂg be mm,wﬂfagﬂ ox ‘Ziéi

C) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved . (END)

| — W€

Subroutine Calil
2/16/73

Neme: hcs_$chname_file

This subroutine changes an entry name on a sStorage ‘system

entry §pecifie§ by path name. If an oid (i.e., already existing)
name is 'spethled, it is deleted from the entry; if an new name
is specified it is added. Thus, if only an old name is

specified, the effect is to delete a name; if only a new name is

specfffed, the . effect is to add 3 name; and if: both a&re
specified, the effect is to rename the entry. :
Usaze L

~declare hcs_$chname_file entry (char(x), char(x),

char(*), char(*), fixed bin(35));
call hcs_S$chname_file (dir_name, entry_name, oldname,
newname, code);

1) dir_name ~is the path name of the di?ectory in which the

entry to be manipulated is found. (lnput)

2) entry_name is the name of the entry to be manipulated,
(Input)

3) oldname is the name to be deleted from the entry. It may
be a null character string ("") in which case no
name is to be deleted. |If oldname is nuil, then
newname must not be null., (Input) s

4) newname is the name to be added to the entry. It must not
already exist in the directory on this or another

entry. It may be a null character string ("") in
which case no name is added. If it is null, then
oldname must not be the only name on the entry.
(lnput)

5) code is a standard storage system status code. It may
have the values:

error_table_%$nonamerr
error_table_$namedup
error_table_$segnamedup (Qutput)

Notes

The subroutine hecs_$chname_seg performs the same function,
given a pointer to the segment instead of its path name.

titute of Technology

C) Copyright, 1973, Massachusetts Instit '
Information Systems lInc.

and Honeywell

(

directory in question. '

crves s avuiniaie o T MANU AL

Page 2

The user must have the modify attribute with respect to the

Xam S </

Assume that the entry >my_dir>alpha exists and that it also

has the entry name betas. Then the following calls to
hcs_$chname_file would have the effects described. :
call hes_Schname_file (">my_dir", "alpha", "beta", "gamma",
code);
)}
This call would change the entry name beta to gamma.
call hcs_$chname_file (")my_dir”, "gamma', "gamma', "',

code);

This call would remove the entry name gamma. Note that any entry
name may be used in the second argument post;ion.

call hcs_$chname_file (">my_dir"™, "aipha', ", "deita,
code);

This call would add the entry name delta. The entry now has the
names alpha and delta.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systemsllnc. (END)

¢ e———

v CHUGRAMMERS T MANUAL Lﬁcs~$chname sng

Subroutine Cali
2/13/73

Name : hcs_$chname_seg

This subroutine changes an entry name on a
segment, given a pointer to the segment.
already existing) name is specified, it is deleted - from the
entry; if a new name is Specified, it is added. Thus, . if only an
old name is. specified, the effect is to delete a name; if only 3
new name is specified, the effect is to add a name; and if both
are specified, the effect is to rename the entry. \

Usare

Sstorage system
If an o1d (i.e.,

declare hcs_$chname_seg entry (ptr, char(x), char(x),
fixed bin(35)); ’

call hcs_$chname_seg (seg_ptr, oldname, newname, code);
1) seg_ptr is a pointer to the segment whose name will be
changed. (Input)

2) oldname is the name to be deleted from the entry, It may
be a null character string (") in which case no
name is to be deleted., |f oldname is null, then
newname must not be null. (Input)

3) newname is the name to be added to the entry. -/t must not
~already exist in the directory on this or another
entry. If may be a null character string (") in

which case no name is added. If it is null, then
Oldname must not be the only name on the entry.
(Input) : ’

L) code is a standard Storage system status code. It may

have the values:

error_table_$namedup
error__tab_$nonemerr
error_table_$segnamedup (Output)

Notes
The subroutine hcs_$chname_file performs the same function,

given the directory and entry names of the segment instead of the
pointer.

The user must have the modify attribute with respect to the
directory in question.

(© Ccopyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems lInc.

e

MULTICS PROGRAMMERS' MANUAL

Examples

: Assume that the user has a pointer, seg_ptr, to a segment
which has two entry names, alpha and betgs. Then the following
calls to hcs_$chname_seg would have the effects described.

call hcs_$chname_seg (seg_ptr, "beta", "gamma',

This call

code) ;

would change the entry name beta to gamma.

call hes_$chname_seg (seg_ptr, "gamma', ", code);

This call would remove the entry name gamma.

call hes_$chname_seg (seg_ptr, "v, ""delta", code);

This call would add the entry name delta.

The entry now has the
names alpha and delta.- 5,

(© Copyright, 1973, Massachusetts Institute of Technojogy
and Honeywell Information Systems lInc. (END)

candidieRS Y MANUAL hcs_$del_dir_tree

Subroutine Call
2/21/73

Nome: hcs_$del_dir_tree

This subroutine deletes a subtree of the storage system
hierarchy, given the path name of a directory. All segments,
links and directories inferior to that directory are deleted
including ° the contents of any inferior directories. The
specified directory is not itself deleted; to delete it, see the
MPM write-ups for hcs_$delentry_file and hecs_$delentry_seg.

Usaze

declare hcs_$del_dir_tree entry (char(x), char(*),
fixed bin(35));

call hes_$del_dir_tree (parent_name, dir_name, code);

1) parent_name is the path name of the parent directory of the
directory whose subtree is to be deleted. (lInput)

2) dir_name is the entry name of the directory whose subtree
is to be deleted. (lInput) ‘

3) code is a standard storage system status code.

Ot

‘The user must have the status and modify attributes with
respect to the specified directory and the safety switch must be
off in that directory. If the user does not have status and

modify attributes on inferior directories, hcs_s$del_dir_tree will
provide them. :

If an entry in an inferior directory gives the user access
only in a ring lower than his validation lTevel, that entry will
not be deleted and no further processing will be done on the
subtree. For those users who need to know about rings, they are
discussed in the MPM Subsystem Writers' Guide section,
intraprocess Access Control (Rings).

C)'C0pyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems |nc. (END)

CERACIILIG ANUAL hes_Sdelentry fi]ei

Subroutine Call

3/15/73

fame: hcs_$delentry_file
This subroutine, given a directory name and an entry name,
deletes the given entry from its parent directory. If the entry
is a segment the contents of the segment are deleted first. | f

the entry specifies a directory which contains entries
~code error_table_$fulldir is returned and hcs_$del_dir
be called to remove the contents of the directory.

Usage

the status
_tree must

declare hcs_$delentry_file (char(*), char(x),
fixed bin(35));

call hcs_Sdelentry_file (dirname, ename, code);

1) dirname is the parent directory name. ’(lnput)

2) ename is‘the entry name to be delefed. (Input)

3) code is a standard storage system status code. (Output)
Notes

The subroutine hecs_$delentry_seg performs the same function,
given pointer to the segment instead of the pathname..

The user must have -modify permission with respect to
dirname. If ename specifies a segment or directory rather than a
link, the safety switch of the segment or directory must be off.
For a temporary period the user must have write permission with

respect to the segment or modify permission with respect to the
directory being deleted. :

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems lnc. (END)

g ivL_wdesentry_seg

J

Subroutine Cali
3/14/73

llame: hcs_$delentry~seg

This §ubroutine, given the pointer to a segment, deletes the
corresponding entry from its parent directory. If the entry is a

segment the contents of the segment are deleted first. If the
entry specifies g directory which contains entries the status
code error_table_$fulldir is returned and hcs_$del_dir_tree must
be called to remove the contents of the directory.

Sage

declare hcs_$delentry_seg (ptr, fixed bin(35));

call hcs_sdelentry_seg (sp, code):;
1) sp is the pointer to the segment to be deleted. (lInput)

2) code is a standard storage system status code. (OQutput)
Notes

The subroutine hcs_$delentry_file performs the same
function, given the directory and entry names of the segment
instead of thea pointerf

The wuser must have modify permission with respect to the
segment's parent directory. ' The safety switch of .the segment
must be off. For a temporary period the user mus t>~have write
permission with respect to the segment., . - - -

C) Copyright, 1973, Massachusetts Institute of Technology
v and Honeywell Information Systems Inc. (END)

r

N V) - j

Subroutine Call
- 2/12/73

Nome: hcs_$delete_acl_entries

This subroutine is called to‘delete specified entries from
an Access Control List (ACL) for a segment.

Usage

declare hcs_$delete_acl_entries entry (char(x), char(*),
ptr, fixed bin, fixed bin(35));

call hes_s$delete_acl_entries (dirname, ename, acl_ptr,,
acl_count, code);

1) dirname is the directory portion of the path name of the
- segment in question. (lnput)

2) ename is the entry name portién of the path name of the
segment in question. (lnput)

3) acl_ptr points to a user-filled delete_acl structure. See
Notes below. (lnput)

4) acl_count contains the number of ACL entries in the

» delete_acl structure. See Notes below. (lnput)
5) code is a standard status code. (Output)
Notes , o N

The following structure is used:

declare 1 delete_acl (acl_count) aligned based (acl_ptr),
access_name char(32),
2 status_code fixed bin(35);

1) access_name is the access name (in the form of
person.project.tag) which identifies the ACL
entry to be deleted.

.2) status_code is a standard status code for this ACL entry
only.

| f code is returned as error_table_$argerr then the

offending ACL entries in the delete_acl structure will have
status_code set to an appropriate error and no processing wili
have been performed.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

'] . B N R RV A N T S O TN mANUAL

Page 2
’F\

If an access name cannot be matched to one existing on the
segment's ACL then the status code of that ACL entry is set to
error_table_$user_not_found, processung continues to the end of
the cdelete_acl structure and code is returned as zero.

c

Copyright, 1973 Massachusetts Inst itute of Technology
C) g Eht. ! and Honeywell Information Systems lnc. (END)

l’lcs,.. $ ({QQ&'G__ c,ﬁ:wmv\d

Entry: hc_ipc$delete_channel

This entry frees a speclial event channel for use by another
procedure,
Usage

declare hc_lipc$delete_channel entry (fixed bin(71),
fixed bin(35)); o

call hc_lipc$delete_channel (channel, code);

1) channel Is the Identifier of the channel to be freed.
(Input)

2) code Is a status code. (Qutput)

g hes_$ Qasigm c/(mwvd .

o R i IR TRV B 0. 0 W U S P
L |

Subroutine Call
('\ . 2/13/753

- Name: hcs_$delete_dir_acl_entries

This subroutine is used to delete specified entries from an
Access Control List (ACL) for a directory. The delete_acl

structure used by this subroutine is described in the MPM
write-up for hcs_$delete_acl_entries.

Usage

declare hcs_$delete_dir_acl_entries entry (char(x),
char(x), ptr, fixed bin, fixed bin(35)); !

call hcs_%$delete_dir_acl_entries (dirname, ename, acl_ptr,
acl_count, code);

1) dirname is the path name of the directory superior to the
one in question. (lnput)
2) ename is the entry name of the di?ectory in question.
(Input)
3) acl_ptr points to a wuser-filled delete_acl structure.
(’\ (Ilnput)
: 4) acl_count is the number of ACL entries in the delete_acl
structure.” (lnput)
5) code is a standard status code. (Output) sl
Note
Th status code is interpreted: as described in

e
hes_$delete_acl_entries.

C

C) Copyright, 1973, Massachusetts Institute of Technology
, and Honeywell Information Systems Inc. (END)

iy 1on 4e s
e R e U I N RIS - 1 W SR

l J

Subroutine Call
2/28/773

Name: hcs_$delete_dir_inaci_entries

) .This subroutine is used to delete specified entries from an
lpltfal Access. Control List (initial ACL) for new directories
within the specified directory.. The delete_acl structure used by

this subroutine is described in the MPM Write-up for
hcs_$delete_inacl_entries. '

declare hcs_$delete_dir_inacl_entries entry (char(x), °
char(*), ptr, fixed bin, fixed bin, fixed bin(35));

call hcs_s$delete_dir_inacl_entries (dirname, ename, acl_ptr(

acl_count, ring, code);

1) dirname is the path name of the directory superior to the
one in question. (lnput)

2) ename is the entry name of the directory in question.
(Input)

3) acl_ptr points to a wuser-filled delete_acl structure.
(lnput)

4) acl_count is the number of Initial ACL entries in the
delete_acl structure. (lnput)

“n
N~ -
~

5) ring is the ring number of the Initial ACL. (Input)
&) code is a standard status. code. (Output)
Note |
The status code Is interpreted as described in

hcs_$delete_inacli_entries.

C) Copyright, 1973, Massachusetts Institute of Technology
' and Honeywell Information Systems Inc. (END)

MY 0 N i ! Uviucg liLJ_:pd'Cit"Ce iiidc'l enti‘ies

Subroutine Call
2/27/73

Name: 'hcs_$delete_inac]_entriesg

Tpi§ subroutine is called to delete specified
an Initial Access Control

within the specified directory

t ‘entries from
List (Initial ACL) for new segments

Usage

declare hcs_$delete_inacl_entries entry (char(*), char(x),
ptr, fixed bin, fixed bin, fixed bin(35)); \

call hcs_$delete_inacl_entries (dirname, ename, acl_ptr,
acl_count, ring, code);

1) dirname is the superior di}ectory portion of the path name

of the directory in question. (lnput)

2) ename Is the entry name portion of the path name of the
directory in question. (lnput)

3) acl_ptr points to a user-filled delete_acl structure. See
Notes below. (lnput)

4) acl_count contains the number of ACL entries in the
delete_acl structure. See Notes below. (lnput)

5) ring is the ring number of the Initial ACLw_ (lnput)
6) code is a standard status code. (OQutput)
Nofgg

The following structure is used:

declare 1 delete_acl (acl_count) aligned based (acl_ptr),
: 2 access_name char(32),
2 status_code fixed bin(35);

. 1) access_name is the access name (in the form of

person.project.tag) which identifies the lnitial
ACL entry to be deleted.

2) status_code 1Is a standard status code for this Initial ACL
entry only.

I f code Is returned as error_table_$argerr then <the
offending Initial ACL entries in the delete_acl structure will

have status_code set to an appropriate error and no processing
will have been performed.

C) Copyright, 1973, Maésachusetts Institute of Technology
and Honeywell Information Systems Inc.

’ . , B SYSTEM Wi T e s GUIDE
R ST Y T R vl c Ly YOO o e Wi T eRrS [C1V] c

Page 2
o

If an access name cannot be matched to one existing on the
Initial ACL then the status code of that Initial ACL ‘entry is
set (o error_tabla_Suser_not_found, processing continues to the
end of the delete_acl structure and code is returned as zero.

c

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell lnformation Systems Inc. (END)

hes_$ Halock

Entry: fast_hc_lipc$ipc_f_block

This entry causes the process to put itself Into the blocked

state wuntil a wake-up is received and to empty the ITT. It also
returns information about special wake- -ups.
Usare

declare fast_hc_ipc$ipc_f_block entry (bit(36) allgned,

bit(I) a lgned)
call fast_hc_Iipc$ipc_f_block (special_events, call_regular);

1) speclal_events Is a string of bits Indlicating on which
special channel wake-ups are pending. The
bits correspending to channels with wake- -ups
pending are turned on, the others are left
unchanged. (lnput/Output) :

2) call_regular is set to "1'"b If any messages for the
calling ring were emptled from the ITT.
(Qutput) ' :

T hio bty 0 called b ciﬂaﬁodﬁ
cad chanmds ap(; ‘ﬁ:"%‘

Ape
chanwnds poassed T 'L g
(aee hcf;_.SLGAA m
M To avoed th 70@*&4@@%&«%
ohodd mot be called N4 procedius
W—Unam LPC *5'\:

. ¢

N GRS .,_)__/,et___fn()uc i
L j

Subroutine Call
3/8/73

Name: hcs_$fs_get_modé

This suprbu;ine returns the access mode of the user, at the
current validation level, with respect to a specified segment.

For a discussion of access modes, see the MPM Reference Guide
.section, Access Control.

Usarge

declare hcs_$fs_get_mode entry (ptr, fixed bin(5),
fixed bin(35));

call hcs_$fs_get_mode (segptr, mode, code);

1) segptr " is an pointer to the Segment in question. (lnput)

2) mode is the mode (see Notes below). (Output)

3) code is a standard storage ;ystem status code.
(Output)

otes

The mode and ring brackets for the segment in the user's
address space are used in combination with the user's current
validation level to determine the mode the user would have if he
accessed this segment. For a discussion of ring brackets and
validation 1level, see the MPM Subsystem Writers' Guide section,
Intraprocess Access Control (Rings). ' '

The mode argument is a fixed binary number where the desired

mode is encoded with one access mode specified by each bit. For
segments the modes are:

read 8-bit (i.e., 01000b)
execute L-bit (i.e., 00100b)
write 2-bit (i.e., 00010b)

For directories, the modes are:

status 8-bit (i.e., 01000b)
modify 2-bit (i.e., 00010b)
append l-bit (i.e., 00001b)

Note that if modify access is given for a directory, then status
must also be given; i.e., 01010b). The high-order bit is
reserved for an unimplemented attribute and must be zero. For

example, rw access in bit form is 01010b, and is 10 in fixed
binary form.

() Copyright, 1973, Massachusetts Institute of Technology
. and Honeywell Information Systems lInc. (ENDD

- O 9 L Le ll__,[’)éth__ﬂumt: |

Subroutine Catii
2/28/73

- Name: hes_$fs_get_path_name

This entry, given a pointer to a segment, returns a path
name for the segment, with the directory and entry name portions
of.the path name separated. The entry name returned is the
primary name on the entry; see the MPM Reference Guide section,

Segment, Directory and Link Attributes for a discussion of
primary names. ' '

Usage

declare hcs_$fs_get_path_name entry (ptr, char(x),
fixed bin, char(¥), fixed bin(35))

-
’

call hes_$fs_get_path_name (segptr, dirname, 1dn, ename,

code);
1) segptr is a pointer to the segment™in question. (lnput)
2) dirname is the path name of the directory superior to the

segment pointed to by segptr. If the length of
the path name to be returned is greater than ' the
length of dirname, the path name will be
truncated. To avold this problem, the Tengih of
dirname should be 168 characters. (Qutput)

3) 1dn is the number of nonblank characters in dirname.
- (Qutput) o ~
L) ename is the primary entry name of the segment pointed

to by segptr. If the length of the entry name to
be returned is greater than the length of ename,
the entry name will be truncated. To avoid this
problem, the 1length of ename should be 32
characters. (Qutput) :

5) code is a standard storage system status code,
(Qutput)

© Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems lInc. (END)

Subroutine Call
Standard Service System

8/2L/71

Heme: hes_S$fs_get_ref_name

This entry point returns a specified (i.e., first, second,
etc.) reference name for a specified segment.

Usaze
declare hcs_s$fs_get_ref_name entry (ptr, fixed bin,
char(x), fixed bin); :
call hcs_$fs_get_ref_name (segptr, count, rname, code);
1) segptr is a pointer to the segment in question.
(Input)
2) count specifies which reference name is to be
returned. See Notes. (lnput)
3) rname is the desired reference name. (Output)
L) code . is a standard file system status code.
(Qutput)
loteas
If '"count" ‘= 1, the name by which the segment has most
recently been made known will be returned. If “count'.= 2, the

second most recently added name is returned and so on. |If
"count" is larger than the total number of names, the name by
which the segment was originally made known is returned and
"code" is set to error_table_$ref_count_too_big.

See the MPM Reference Guide Section on naming conventions.

C) Copyright, 1971, Massachusetts Institute of Technology

All rights reserved. (END)

C

Lfcs_;us_get_scg_ptr?

Subroutine Cali
2/16/73

Entryv: hes_$fs_get_seg ptr

Given a reference name of a segment,
returns a pointer to the base of the segment
of reference names, see the MPM
Constructing and Interpreting Names.

hcs_$fs_get_seg_ptr
. For a discussion
Reference Guide section,

Usare

declare hcs_S$fs_get_seg_ptr entry (char(x), ptr,‘ \
fixed bin(35));

call hcs_$fs_get_seg_ptr (rname, segptr, code);

1) rname ~is the reference name of a segment for which

a
pointer is to be returned. (Input)

2) segptr is a pointer to the base of “the segment. (OQutput)
3) code : is a standard status code. (Output)
Note

'f the reference name is accessible from the user's current
validation level, segptr is returned pointing to the segment;

otherwise, it is null. The user who needs to know about rings
and validation levels can find a discussion of them 1in the

Subsystem Writers' Guide section, Intraprocess Access Control
(Rings). : o

(© Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

1 e W ;v-nuve_] LI SR
i

J

Subroutine Calj
2/27/73

Name: hcs_$fs_move_file

This subroutine moves the data associated with one segment
in the storage system hierarchy to another segment given the path

names of the segments in question. The old segment remains,
with a zero length.

Usaze

declare hcs_$fs_move_fl]e entry (char(*), char(x),
fixed bin(2), char(x), char(*), fixed bin(35));

call hecs_$fs_move_file (from_dir, from_entry, at_sw, to_dir,
to_entry, code);

1) from_dir | is the path name of the directory in which
from_entry resides. (Input)

2) from_entry is the entry name of the éégment from which data
is to be moved. (lnput)

3) at_sw see Notes below. (lnput)

L) to_dir Is the path name of the directory in which
to_entry resides. (lnput) :

5) to_entry is the entry name of the segment to which data is
to be moved. (lnput) N

6) code is a standard storage system status code. 1T may

have the value error_table_$no_move if either

entry is not a segment, or one of the values
described in Notes below.

Notes

The input argument at_sw is a 2-indicator switch which
directs the procedure to use certain options. The two options
specified are append option and Lruncate option. If the appenc

.option (high~order bit) is on, then append to_entry to to_dir .
it does not already exist. If the append option is off and the

destination entry can not .be found the sgtatus code
error_table_$noentry is returned.

(© Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems lInc.

fat.
Bl

¢

v CavGAarnerd Y MANUAL

Page 2

If the truncate option (low-order bit) is on, to_entry is

“truncated if it is not zero length. Otherwise (i.e., if the

option 1is off and the length of to_entry is not zero) the status
coqe error_table_$clnzero is returned. In both of the cases
where the move 1is not completed, the procedure will attempt to
return the data to the original sezment.

The subroutine hcs_$fs_move_seg performs the same ~furniction
given pointers to the segments Iin question instead of path names.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

L.n'\,q__,: Vo_WOVe__Lug i

i

Subroutine Call

2/28/73
Name: hes_$fs_move_seg
This subroutine moves the data associated with one segment
in the hierarchy to another segment,

given pointers to the

segments in question. The ol1d segment remains, with a zero

length.,
Usaze

declare hcs_$fs_move_seg entry (ptr, ptr, fixed bin(1),
fixed bin(35)); \

call hcs_$fs_move_seg (from_ptr, to_ptr, trunsw, code);

1) from_ptr is the pointer to the segment from which data

is
to be moved. (Input)

2) to_ptr is the pointer to the target segment. (lInput)

3) trunsw if equal to 1, then truncate the segment specified
by to_ptr (if it is not already zero-length)
before performing the move ;
if equal to 0, then reflect the status code

error_table_S$clinzero if that segment is not
already zero=<length. (Input)

b) code is a standard storage System status code, Besides

the value given under trunsw above, ‘It may aiso
have the value error_table_$no_move. (Output)

jOte

The subroutine hcs_$fs_move_file pleorms the same function

given the path names of the segments in question instead of the
pointers,

C) Copyright, 1973, Massachusetts Institute of Technology
A and Honeywel] Information Sys;ems Inc. (END)

C ‘ hes_$ W-ﬂm,t)mu

Entry: set_a]arm_timer$get_alarm_tlmer

3

' This entry Is called to determine th
} process' alarm clock. (Al To cio%k e setting of the calling

Vsage

declare set_a]arm_tlmer$get_élarm;tlmer entry
(fixed bin(71), fixed bin(71));

T e—— O —

céil set_alarm_timer$get_alarm_timer (time, channel);

(‘\' 1) time Is the absolute (calendar clock time) of the alarm
clock setting for the calling process. |If this
time Is zero, the alarm clock is not set up for the

X , calling process. (Output) T

2) channel I's the event channel over which the alarm clock
wakeup will be sent, (Output) ’

e —————

TM‘\/A on mlowmad WWA{CL G the FAO&M
Cmen_ mamage

. .. . N {
R Y I VRS Lics,$get_autnor?

Subroutine Call
3/15/73

Name: hcs_$%$get_author

This subroutine returns the author of a segment or a link.
Usage

declare hcs_$get_author entry (char(x), char(*),:flked
bin(l), char(«), fixed bin(35));

call hcs_$get_author (dirname, entry, chase, author, wcode);

1) dirname is the path name of the directory containing entry.
The path name can have a maximum length of 168
- characters. (lnput).

2) entry Is the name of the entry; It can have a maximum
length of 32 characters. (lnput)

3) chase if entry refers to a link, this flag 1indicates
whether to return the author of the link or the
author of the segment to which the-link points:

0 = return link author;
1 = return segment author. (lnput)

L) author Is the author of the segment or iink In the form of

. Doe.Student.a with a max imum length of 32
characters. (Output) - : '

5) code is a standard storage system.status code. (Output)
Note

The user must have status permission on the parent
directory.

(© Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

.

I L) [VEVIFEE. i nCo_vou L“UC_aULIi\'JQ'—j

Subroutine Caill
3/16/73

Name: hecs_$get_bc_author

Thls subroutine returns the bit count author of a segment or
directory. The blt count author is the name of the user who last
set the bit count of the segment or directory.

/

Usare

declare hcs_$get_bc_author entry (char(x), char(x),
char(«), fixed bin(35));

\

call hes_3get_bc_author (dirname, ename, bc_author, code);

1) dirname . Is the directory name of the segment whose bit
count author is wanted. (lnput)

2) ename is the entry name of the segment whose Dbit count
author is wanted. (lnput) ~

3) bc_author is the bit count author of the segment in the form
of Doe.Student.a. (Output)

L) code is a8 standard storage system status code.
(Output)

Note

The user must have status permission on thé‘directory
containing the segment. '

() Copyright, 1973, Massachusetts lInstitute of Technology
and Honeywell Information Systems inc. (END)

SR I B Y I Y T A W R R U e Uwv s v o

Lﬁcs_¥¢uc_utr_ring_uracketsi
j

Subroutine Calil
3/1/73

Nome : hc;_sget_dir_ring_brackets

This subroutine, given the path name of the superior
directory and the name of the ~directory, will return that
directory's ring brackets.

Usage

declare hcs_S$get_dir_ring_brackets entry (char(¥), char(x),
(2) fixed bin(3), fixed bin(35));)

call hcs_$get_dir_ring_brackets (dirname, ename, drb, code);

1) dirname is the path name. of the superior directory.
(Input) :

2) ename is the entry name of the d{rectory in question.
(Input) '

3) drb

is a 2¥element array to contain the directory's
ring brackets. (Output)

L) code is a standard status code. (Output)
Notes

The wuser must have status permission to dirname 'in order to
list the directory's ring brackets. R

Ring brackets are discussed in the MPM Subsystem Writers'
Guide section, Intraprocess Access Control {Rings).

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell lnformation Systems Inc. (END)

l/\C%—t BAXQ W'Jiag, /luua

Entry: proc,lnfoSget_lnltlal_rlng

This entry point returns the value of the
whlich the Process was initlallzed.

(!SEE 3

ring ;number In

declare pProc_info$get_Initlal_ring entry-(fixed-bln);

call proc_info$get_lnltla1_rlng (Irlng);

1) Iring Is the value of the process's Initla)
: ring. (Output) -,

hcs.fbgﬂi (po-—moak

Entry: Ips_$get_lps_mask

This entry 1Is used to find the current value of the IPS
mask. : :

_ Usage

declare Ips_s$get_Ips_mask entry (bit(36) aligned);

call Ips_¢%get_Iips_mask (oldmask);

1) oldmask Is the‘ current value of the 1IPS mask.
: (Output) .

\°S /otaMJo L4 °w-tlA,;,P/’°C6w oiﬁfm.ﬁ. It b a mean,
b& whuch & eumnand p0<ees moy lae 'm'twwf-[w{
by o Cgofmtm%) - I Mowss, Thene an

cuventl, 3 lps in PQ e
cb.w'x - MOUm occuns hecanar o watr, Nao
WL the? ATTN b o1 do ool
adm - -

‘Ct"é %W%AW%MJ uﬁ% /

5 Occu)

cpul - eccurs whemth cpuime Ume goco off.
(i thungu&xd thd e wanls
wwud shen Thld ocowu,)

The tps mask i o waoe - attalle 2ilely which ol
ZSL;S?L - U:M b:;«cw/@ Lps w’@w}(pt X%x'wt M%M
| _ iface & Cnmenl mamagen — . T
w% w mst wll though oul and ohoudd 1ok ﬁ

redbne Cilegndid wth's o s ToE faiigd

Subroutine Call
3/16/73

Name: hes_$get_max_length

This subroutine returns the max length of a segment given a

directory name and entry name. The max length is the length
beyond which the segment may not grow.

sapga

declare hcs_$get_max_length entry

(char(*), char(x),
fixed bin(18), fixed bin(35));

\
call hes_$get_max_length (dirname, ename, max_length, code);

1) dirname is the directory name of the segment whose max

length is wanted. "(lnput)

2) ename ' is the entry name of the segment whose max length
is wanted. (lInput) :

e

3) max_length 1is the ‘max length of the segment in words.
(Output)

4) code Is a standard storage system status code.
(Output)

Note

The wuser must have status permission on the directory
containing the segment. S -

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

Entry: get_page_trace
.Thils entry returns Informatlion- about Fecent paging
activity.
A
Usage :

declare get_page_trace entry (ptr, flixed bin);

call get_page_trace (datap, cqunt);

1) datap Is a pointer to a user area where return
information will be stored. (Input)

2) count Is the number of page faults to be traced.
(Input)

Notes

If count 1Is 1less than or equal to 0 or greater than 200,
then 200 page faults wlll be traced, i.,e., the Information for
the last 200 page faults will be returned. Otherwlise the last
"count" page faults will be traced. The trace information Is
stored with the following data structure declaration:

declare 1 trace (200) based (datap) allgned,
2 page_no flixed bin, o
2 seg_no fixed bin,
2 delta_time fixed bin(71);

1) page_no - Is the page number of the segment which caused the

page fault. Counting starts at 0, T.e., the flrst
page is page 0.

2) seg_no I's the segment number of the segment which caused
the page fault. '

3) delta_time Is the real time In microseconds slnce the last

page fault, 1l.e,, delta_time(l) Is the time from
page fault i-1 to page fault |,

Note that the pointer datap should polnt at an even locatlon.
The trace Iinformation Is stored starting at '"trace(l)" and

contlnues to "trace(count)", i.e., the most recent page fault is
reflected in "trace(count)",

Cin vk i End 't Guaue k‘scs__:';get__.process__usagej

Subroutine Calil
4L/30/73

Name: hcs_$get_process_usage

This subroutine returns information about a process's usage

of Multics since it was created. It provides data about
processor and memory usage.

Usare

declare hcs_%get_process_usage entry (ptr, fixed bin(35));

call hcs_$get_process_usage (info_pointer, code);

1) info_pointer is a pointer to the structure in which

process information is vreturned (see
Notes below). (lnput)

2) code is a standard status code. (Output)

Notes

The format of the structure based on info_pointer is:

declare 1 process_usage,

number_wanted fixed bin,

cpu_time_used fixed bin(71),
memory_usage fixed bin(71),
number_of_page_faults fixed bin(35),<_
amount_of_prepaging fixed bin(35),
process_virtual_time fixed bin(71);

NN

1) number_wanted is set by the calling program to

specify the number of other entries in
the structure to be filled in. The
entry itself (the numbers wanted) s
not included in this count. The value
5 would cause five entries listed
below to be filled in. A smalier
number, n, will cause the first
entries to be filled in. (input)

2) cpu_time_used is set to the amount of processor time

(in microseconds) used by the calling
process. (Qutput)

() Copyright, 1973, Massachusetts Institute of Technology
and Honeywell tnfqrmation Systems Inc.

Page 2
M
3) memory_usage is 2 measure of the primary (core)
. memory used by this process. The

units of memory usage are
page-seconds, normalized to account
for - the size of primary memory
actually in use. (Output)

4) number_of_page_faults is set to the number of demand page
faults this process has taken.
(OQutput) :

5) amount_of_prepaging is the number of pages prepaged for
this process. (Output)

6) process_virtual_time is the amount of processor time (In

c

el e

microseconds) used exclusive of page
processing

fault and system interrupt

time. (Output)

() Copyright, 1973, Massachusetts lnst
and Honeywell Info

e
.

itute of Technology

rmation Systems.

lLnc.

(END)

S et O vt Vae g AN A

L]

Subroutine Call
2/27773

Name: hes_$get_ring_brackets

This subroutine, given the directory name and entry name of
a nondirectory segment will return that segment's ring brackets.

Usage

declare hcs_$get_ring_brackets entry (char(x), chér(*),
(3) fixed bin(3), fixed bin(35));

call hecs_$get_ring_brackets (dirname, ename, rb, code)};

1) dirname is the directory portion of the path name of the
segment In question. (lnput)

2) ename Is the entry name of the segment in question.
(Input)

3) rb ' is a 3-element array to confain the segment ring

' ’ brackets. (Output)
L) code is a standard status code. (OQutput)
Notes

The wuser must have status permission to dirname in order to
list a segment's ring brackets. '

‘w
AN

Ring brackets are discussed in the -MPM: Subsystem Writers!
Guide sectlion, Intraprocess Access Control (Rings).

() Copyright, 1973, Massachusetts Institute of Technology
: and Honeywell Information Systems Inc. (END)

R S N TN R Uil 1 lvlcs_yéﬁcwsafety_s‘l‘l ;

Subroutine Call
3/16/73

MName: hes_$ezet_safety_sw

This subroutine returns the safety switch of a3 directory or
a segment, given a directory name and an entry name.

Usage

declare hecs_Sget_safety_sw entry (char(w), char*), bit(1l),
fixed bin(35));

call hcs_%get_safety_sw entry (dirname, ename, safetyL§w,
code);

1) dirname is the dnrectory name of the segment whose safety
switch is wanted. (Input)

2) ename is the entry name of the segment whose safety
- switch is wanted. (lnput)

3) safety_sw ' is the value of the segment's safety switch.

= "0"b if the segment may be deleted.
= "1"b if the segment may not be deleted. (Output)

L) code is a standard storage system status code.
(Qutput)

ot ' ‘ ~

The wuser must have status permussnon "with respect to the -
directory contalning the segment.

() Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

i et Guaiwe ihcs_Sget_search_ruies‘

Subroutine Call
Development System
06/14/71

Name: hcs_$get_search_rules

This entry returns the sear

ch rules currently in use in the
caller's process.

‘Usaze

declare hcs_$get_search_rules entry (ptr);
call hcs_$get_search_rules (search_rules_ptr);
1) search_rules_ptr- is a pointer to a user suppiied search
rules structure. (lnput)
Hotes |
| The search rule structure is declarea as follows:

declare 1 search_rules,
2 number fixed bin,
2 names (21) char(168) aligned;

1) number is the number of search rules.

2) names are the names of the search rules.

~.

(END)

hCS._ $8J- Naon— %VAOJ)L
Entry: status_$get_user_effmode o

This entry point returns the effectlve mode of a segment for
a user in a speclified ring. The segment, user, and ring are all
speclfled by arguments.

Usaze

dedlare status_$get_user_effmode entry (char(*), char(w),
char(«), fixed bin, fixed bin(5), flxed bin(35));

call status_$get_user_effmode (dirname, entry, user,
ring, mode, code);

1) dirname is the path name of the directory contalning

entry. The path name can have a maximum length of
168 characters, (lnput)

2) entry s the entry name of the segment about which
Iinformatlion s requested, The entry name can have
a maximum length of 32 characters. (!nput)

3) user

ls the name of the user whose effectlve access to
dirnamedentry 1s requested. The name should be of
the form 'Doe.Multlics.a'. The name can have a
maximum length of 32 characters. (l!nput)

4) ring s the ring number for Whlch the efféctlve mode 1s
to be computed. (lnput)
5) mode ; is the effective mode of the wuser 1in the ring
: requested. (Qutput)

ls a returned status code. (Output)

- B =

Entry:

hes-$?}% h Lgl’l~/QG’00» Q- cow"C

unsnap_ﬁervIceShigh_low_seg_count

This entry merely returns the highest segment pumber

used

bin,

"~ and the ‘hardcorée segment count.
Usage .
declare hcs_s$unsnap_service_high_low entry (fixed
fixed bin);
call hcs_s%unsnap_service_high_low (high_Seg, hcsecnt);
1) high_seg) highest segment number used, (Output)
2) hcscnt hardcore-segment c;unt. (Output)

C

- 1) pname is the

Y v lucs"¢anctiate'

Subroutine Call
3/12/173

Hame: hes_$initiate

This subroutine is used to search for a segment, make a copy
of it if the copy switch so indicates, and make the segment or
its copy known to the process. The reference name specified is
entered in the address space of the process and a pointer to the
segment is returned. If segsw is on, then the segment pointer
is input and the segment is made known with that segment number.

Usage

\

declare hcs_$initiate entry (char(*), char(*), char(x),
fixed bin(1), fixed bin(2), ptr, fixed bin(35));

call hes_Sinitiate (pname, ename, rname, Segsw, Copysw,
segptr, code);

path name of the directory containing the
segment. (lnput)

2) ename Is the entry name of the segment. (lnput)

3) rname is the reference name. If it is zero in length,
the segment is initiated by a null name. (lnput)

L) segsw is the reserved segment switch:

= 0 if no segment number has been reserved;
= 1 if a segment number was reserved. (lnput)

5) copysw is the copy switch:

0 if it is desired to go by the setting in the
directory entry;

1l if no copy is wanted;
2 if a copy is always wanted. (lnput)

6) segptr is a pointer to the segment. (It is Input if
segsw = 1., Otherwise, it is Output.)

7) code is a standard storage system status code.
(Qutput)

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

4ugc]- MULTICS PROGRAMMERS' MANUAL

(“\ Page 2

Notes

The wuser must have non-null access on the segment ename in
order to initiate it. '

If ename cannot be initiated, a null pointer is returned for
segptr and the returned value of code indicates the reason for
fallure. If ename Is already known to the user's process, code
is returned as error_table_$segknown and the the argument segptr
will contain a valid pointer to ename. If ename is not already

~ known, and no problems are encountered, segptr will contain a
valid pointer and code will be zero.

(© Copyright, 1973, Massachusetts Institute of Technology
anq Honeywell Information Systems “lnc. (END)

Kl

CovunArme e MANUAL i hcs_$initiate_counti

]

Subroutine Call
3/12/773

Name: hcs_$initiate_count

This subroutine, given a path name and a reference name,
causes the segment defined by the path name (or a copy of it,
depending upon the copysw option) to be made known by the given
reference name. A segment number is assigned and returned as a
pointer and the bit count of the segment is returned. .

Usage \
declare hcs_Sinitiate_count entry char(*), char(*), char(x),
fixed bin(24), fixed bin(2), ptr, fixed bin(35));

call hecs_$initiate_count (pname, ename, rname, bitcount,
copysw, segptr, code); -

1) pname is the directory portion of the path name of the
segment in question. (lnput)

2) ename is theAentry name portion of the path name of the
segment in question. (lnput)
3) rname is the desired reference name. If it is zero in
length, the segment is initiated by a null name.
(Input) A
k) bitcount is the bit count of the segment. (Output)
5) copysw is the copy switch: |
=0 if it is desired to go by the setting in the
hierarchy entry;
= 1 if no copy is wanted:;
=2 if a copy is always wanted. (Input)
6) segptr is a pointer to the segment in question. (Output)
7) code is a standard storage system status code.

(OQutput)

(© Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

r\

[N A R Y I TIE R O VAU A G

The wuser must have non-null access on the segment ename in
order to initiate it. s

If ename cannot be initiated, a null pointer is returned for
segptr and the returned value of code indicates the reason for
failure. If ename is already known /to the user's process,. code
is returned as error_table_$segknown and the argument segptr will
contain a valid pointer to ename. |If ename is not already known,

and no problems are encountered, segptr will contain a valid
pointer and code will be zero. ?

See also the MPM Reference Guide section, Constructing and
Interpreting Names.

C) Copyright, 1973, Massachusetts Institute of Technology

and Honeywell Information Systems Inc. (END)

¢

vavaewrem WRITERSY GUIDE ihcs“$initiate_search_rules

Subroutine Call
Development System
12/15/71

[larle: hcs_$initiate_search_rules

This is a supervisor entry which is mainly used by the
set_search_rules and set_search_dirs commands. It also provides
the wuser with a means of specifying the search rules which he
wishes to use in his process. (For more information on search
rules, see the appropriate MPM Reference Guide Section.) ’

Usaze !
declare hcs_S$initiate_search_rules entry (ptr, fixed bin);

call hes_Sinitiate_ search_rules (search rule_pointer,
code);

1) search_rule_pointer is a-pointer to a:. structure containing
the new search rules. (lnput)

2) code a standard return - status code.

is
(Output)
Hotes

The structure pointed to by search_ rule _pointer is declared
as foliows:

-declare 1 sr aligned, T
2 num fixed bin,

2 names (21) char(168) aligned;

1) num is the number of entries. The current
maximum is 21 but the user need only
disclose the maximum that he will use.

2) names ‘ are the names of the search rules. They
may be absolute pathnames or key words.

Search rules may be either absolute pathnames of directories
or key words. The allowed search rules are:

pathname the absolute pathname of a directory to
be searched;

(key words)

initiated_segments search for the already initiated
segment;

C) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

Page 2
referencing_dir

working_dir
process_dir
home_dir
default

system_libraries

set_search_directories

The key word
vord or pathname as
immediately.

’f\ with

it

search

1
LRI LV R RV R Y W e T A N WAV

udibl

search

the parent directory
module

making the reference;’

of the

search the working directory;

;he process directory;

search the login or home directory;

return to the default search rules;
insert the default

3
system libraries
at this point

in the search rules;

insert the following directories
after working_dir in the default
search rules and make the result the
current search rules.

e

"default' cannot be used with any other code
returns

the default rules and exits

The search rules can be changed when the procedure Is called
different rules or the process is terminated.

Errors returned from this routine are:

‘a

error_table_$bad_string (not a pathname .or code word)

error_table_$notadir

error_table_$too_many_sr

Additional

file system errors may be returned from other routines

which are called from hcs_$initiate_search_rules.

(o

-

() Copyright, 1972, Massachusetts lnstitute of Technology

All rnghts reserved.

(END)

}\cs,i LM—ﬂjot

ﬂgmg: foam_

Thls procedure Implements the pageable portion of the
hardcore .1/0 Asslignment Manager (l10AM). (See also dstm_.) It
contains entry polnts which are called by Device Interface
Modules (DIMs) to assign, unassign, and verlify devices and is

called from the wuser ring to 1lst the device status and free
assigned devices.

Entry:]oam_$loam_devlce_llst |

This entry returns a 1}
to the calling process.
for each device.

The format of the 11st Is a block of data for each device as
follows: ‘ K

st of all devices currently asslgned
One or more device names will be glven

declare 1 device_info based (p) allgned,
2 number_of_names flxed bin, ‘
2 name (number_of_names) char(32);

The blocks are packed adjacently. The flrst block is pointed to
by datap.

.

declare loam_$ioam_device_llst entry (ptr, ptr,
fixed bin);

call loam_$loam_device_list (areap,ldatap,
device_count);

' for
polnts to an area In which allocation
1) areap ‘the 1lst will be done. (lnput)
2) datap points to the allocated 1ist of devices.
: (Output)

7) device_count s the number of devices, (Qutput)

hes-$ (oam_ ndhoae

Entry: loam_$loam_release

This entry forces a specifled device to become free If
assigned to the calling process. o _

Usaze

declare loam $loam_ release entry (char(*), fixed bin);

call foam $Ioam_release (devlice_name, code),

1) device_name Is the name of the device to be

released.
(Input)
2) code Is a returned error code:
error_table_$loname_not__ found* device

name unknown;

error_table_$lo_n6;permlsslon:

‘device not
assigned to this process;

or any codes returned from

the device
detach handler, (Output)

hcs.-$ Wam_ statio

Entry: loam_sloam_status

This entry returns Information about a specified device,

Usase

declare loam_$loam_status entry (char(*), char(*),
‘ fixed bin);

call loam_$loam_status (devlce_name, message, code);

1) device_name

2) message

+ 3) code

2)

3)

b)

Notes

The status of
follows:

Is the name of the device In questlion.,
(Input)

s a character string description of the

-status of the device. It can have a maximum
.length of 32 characters. (Output)

Is a numerical representation of the device
status, (Output)

the devlce"and the returned values are as

1) No meaning can be attached to the glven device_name,

message = '"unknown'; code = error_table_$loname_not_found;

Device not assigned to any process.

message = "unasslgned"; code = error_table_$dev_nt_assnd;

Device assligned to thls process.

message = '"assligned"; code = 0;

Device asslgned to some other process.

message = "assigned to other process';
code = error_table_$%$already_assigned;

hes—$ LPC__W’&

Entry: hc_ipc$ipcoinit

This entry 1Is <called once per-process per-ring to inform
hc_ipc of the location of the ECT for that ring.

Usare
declare hc_lpc$ipc_Iinit entry (ptr);
call hc_lpc$ipc_init (ect_ptr);

1) ect_ptr points to the ECT for the ring from which it is
called. (lnput)

£

hes_$ M.ﬁxf |

Entry: 1evel$gét .
This entry obtalns the current valldation level,
Usage
| declare level$get entry (fixed bin);
call level$get (ring_no);

1) ring_no will contaln the current valldation
: " (OQutput)

level,

-

[

hes_$ lwed_ ok

Enfry: level$set

This entry polnts sets the valldatlon level,

Usage
declare level$set entry (flxed bin);

call level$set (ring_no);

1) ring_no _
level., (lnput)- ’

——————— -

—_—

contalns the value to be used as the new valldatlon

[

[

{ Hlo w1 S0 __au 5

Subroutine Calil
2/15/773

flamz: hes_3Slist_ac]

This subroutine is used to either 1ist the entire Access
Control List (ACL) of & segment or to return the access modes
from specified entries. The segment_acl structure used by this

subroutine is described in the MPM write-up for
hcs~$add_acl_entri¢s.
U;’; 2 C’S:

declare hcs_$1list_acl entry(char(x), char(x), ptr, ptr,
ptr, fixed bin, fixed bin(35));

call.hcs_$1list_acl (dirname, ename, area_ptr, area_ret_ptr,
acl_ptr, acl_count, codea)

is the directory portion of the path name of
the segment in questign. (lnput)

1) dirname

2) ename is the entry name portion of the path name of
the segment in question. (lnput)

3) area_ptr ' points to an area into which the list of ACL
entries is to be allocated. (lnput)

4) area_ret_ptr points to the start of the aiiocated list of
ACL entries. <(Output) .

5) acl_ptr if area_ptr is null then acl_ptr is assumed

to point to an ACL structure, segment_acl,
into which mode information is to be placed
for the access names specified in that same
structure, ?Input?
6) acl_count is the number of entries in the ACL structure
identified by acl_ptr (input); or is set to
the number of entries ia the segment_aci
structure allocated in the area pointed to by
area_ptr, if area_ptr is not null. (Output)

7) code is a standard status code. (Output)
Note

If aci_ptr is used to obtain modes for specified access
names (rather than obtaining modes for all access names on &
segment), then each ACL entry will either have a zero code and
will contain the segment's mode or will have code set to
error_;ab]e_suser_not_found and will contain a zero mode.

@D Copyright, 1973: Massachusetts Institute of Technology
and Honeywell Information Systems Inc. <(END)

H\.;.'.:___V () 'J‘L__(Ii ."__-,)'-.,I i
‘
j

Subroutine Cal}
2/13/753

Mamz: hes_Siist_dir_acl

This subroutine is used to either 1list the entire Access
Control List (ACL) of a directory or to return the access modes
for specified entries. The dir_acl structure described in
hcs_Sadd_dir_acl_entries is used by this subroutine.

!(Sa?-e

declare hes_$1list_dir_acl entry (char(x), char(*), ptr,
ptr, ptr, fixed bin, fixed bin(35));

call hecs_$1list_dir_acl (dirname, ename, area_ptr,
area_ret_ptr, acl_ptr, acl_count, code);

1) dirname is the path name of the directory superior to
the one in question. (lnput) '

2) ename is the entry name of the directory in question.
(Input)

3) area_ptr points to an area into which the 1list of ACL

entries is to be allocated. (lnput)

4) areca_ret_ptr points to the start of the list of the ACL
entries., (Output)

5) acl_ptr : if area_ptr is null then acli_ptr is.assumed <to

point to an ACL structure, dir_acl, into which
mode information is to be placed for the access
names specified in that same structure. (lnput)

6) acli_count is either the number of entries

in the ACL
structure identified by acl_ptr (lnput); or if
area_ptr is not null, then it is set to the

number of entries in the dir_acl structure that
has been allocated. (Output)

7) code is a standard status code. (OQutput)

ot

I¥ acl_ptr is used to obtain_ modes for specified access
names (rather than obtaining modes -‘for all access names on a
segment), then each ACL entry will either have a zero code and
will contain the directory's ‘mode or will have code set «o
error_table_Suser_not_found and will contain a zero mode.

@D Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

Y

Cuee 2

li,’“,*’-n
. I\I

if acl_ptr is wused to obtain modes for specified access
names (rather tham obtaining modes for all access names on the

tnttial ACL), then each lnitial, ACL entry will either have & zero
status_code and will contain the directory’s mode or will have

status_code set to error_table_Suser_not_found and will contain a
zero mode.

(o

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. {END)

e cum VU0 dS e WAL TERSY wuvaiue i Nca_wiist_inaci

Subroutine Call

2/27775%
Mame: hes_$list_inacl
This subroutine is used to either list the entire Initial
Access Control List (lnitial ACL)

for new segments within the
specified directory, or to return the access modes from specified
entries. The segment_acl structure used by this subroutine is
described in the MPM write-up for hes_$add_inacli_entries.

Usage

declare hcs_$11ist_inacl entry(char(x), char{x), ptr, ptr,

ptr, fixed bin, fixed bin, fixed bin(35));

call hes_S$list_inacl (dirname, ename, area_ptr, area_ret_ptr,
acl_ptr, acl_count, ring, code)

1) dirname is the superior dirgctory portion of

t path
name of the directory in question. (I

e
lDU"C)

t
]
i

2) ename is the entry name portion of the path name of
the directory in qguestion. (ilnput)

3) area_ptr points to an area into which <the 1ist of
Initial ACL entries 1is to be allocated,
(Input)

L) area_ret_ptr points to the start of the allotated list of
Initial ACL entries, (Output)

5) acl_ptr if area_ptr is null then acl_ptr is assumed
to point to an ' Initial ACL structure,
segment_acl, into which mode information is
to be placed for the access names specified
in that same structure. (!nput)

6) acl_count Is the number of entries in the 1{nitial ACL
structure identified by acl_ptr (lnput); or
is set to the number of entries In the
segment_acl Structure allocated in the aiea
pointed to by area_ptr, if area_pir is not
null. (Output)

7) ring is the ring number of the Initiai ACL.

_ (input)
8) code is a standard status code. (Qutput)

-~

C) Copyright, 1973, Massachusetts Institute of Technology

and Honeywell Information Systems lInc.

(-*,

N AR R B S LX) wiv e Ve

Page 2

Mote

= If acl_ptr is wused to obtain modes for specified access.
names (rather than obtaining moges for all access names on the
Initial ACL), then each Initial ACL entry will either have a zero
status_code and Will contain the segment's mode or will have

status_code set to error_table_$user_not_found and will contain 2
zero mode.)

C) Copyright, 1873, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (ENDJ

(&

P]

Subroutine Cali
Standard Service Systen

1/17/772

Hame: hcs_$make_ptr

This entry, when given a segment name and an entry point
name, returns a pointer to a segment entry point. It uses the
search rules to find the required segment.

Usage

declare hcs_S$make_ptr entr

y (ptr, char(x), char(*), ptr,
Tixed bin);

call hcs_$make_ptr (caller_ptr, seg_name, entry_point_name,
entry_point_ptr, error_code);

1) call

er_ptr is a pointer to the “calling procedure" (see
Notes below). (lnput)

2) seg_name is the name of segment to be located.
(tnput) ‘

3) entry_point_name is the name of

the entry point to be located.
(Input) :

&) entry_point_ptr is the pointer to the
specified by
(Qutput)

segment entry point
seg_name and entry_point_name.

.
~

5) error_code is the returned error code. (Output)

Hotes

The directory in which the procedure pointed to by
caller_ptr is located is used as the calling directory for the
standard search rules. If it is null, then rule 1 of the

standard search rules is skipped. Sece the MPM Reference Guide

section on The System Libraries and Search Rules,. The standard
usage is to have caller_ptr null.

The seg_name and entry_point_name arguments aroc
character strings of length < 32,
may be blank padded.

NONVary g
They need not be aligrned and

If a null string is given for the entr
then a pointer to the base of the segment is returned. In either

case, the segment seg_name is made known to the process with the
reference name seg_name. If an error was encountered upon
return, the entry_point_ptr argument js null and a nonzero error
code is given.

y_point_name argument,

© Copyright, 1972, Massachusetts

Institute of Technology
All rights reserved.

Ny
vage 2

To invoke the procedure entry point pointed to by
entry_point_ptr, wuse cu_$gen_call or cu_%$ptr_call. (See cu_ in

the NP

Cxample

The following PL/I statements will generate a call to the

procedure fred$foo passing as arguments the integer 17, the
pointer p, and the character string ''treat'.

call hcs_$make_ptr (null, "“fred", "foo", ep, code);

cail cu_$ptr_call (ep, 17, p, "“treat');

C) Copyright, 1972, Massachusetts Institute of Technology

All rights reserved. (&ND)

- FNLS_9imake_5Sug !

{
j

Subroutine Call
Standard Service System
2/16/72

Hamgi hes_smake_seg

This oprocedure creatds a segment in a specified directory
with a specified entry name. Once the segment is created, it is
made known to the process by a call <o hcs_S$initiate and a
pointer to the segment is returned to the calier. I f the segment
already exists, an error code is returned. However, a pointer to

the segment is still returned.
sage
declare hcs_S$make_seg entry (char(*)}, char(x), char(x),
» fixed bin(5), ptr, fixed bin);

call hcs_$make_seg (dirname, entry, rname, mode
segptr, code);

1) dirname is the directory in'which to create the segment.

(Input)
2) entry is the entry name of the segment to be created.
(Input)
3) rname is the desired reference name, or "". <(input)
k) mode specifies the mode for this user. See_ Notes in
~ hcs_$append_branch for more informatiom on modes.
(lnput)
5) segptr is a pointer to the created segment. (Output)
6) code is a standard file system status code. (Gutput)
Hotes
If dirname is null, the process directory is used. If the
entry argument is null, a unique name is provided. The rname

argument is passed directly to hecs_$initiate and should normaily
be null.

See also the MPM Reference Guide section on Constructing and
Interpreting Names. = o

-~

©) Copyright, 1972, Massachusetts Institute of Techrnology

All rights reserved. (END)

D

th_,#&mq@,/e_ (PSS

controls the enabling and disabling of
Y. The entries modify the per=process
S mask register.

The procedure Ips_
interprocess signals (IPS
IPS mask and automatic IP

Entry: Ips_S$mask_lips

“This entry Is used to mask one or more (1PS) Interrupts from
going off, -

Usage .
declare Ips_smask_ips entry (blt(36) allgned, bit(36)
aligned);
call lIps_s$mask_lps (mask, oldmask);
1) mask contalns a blet ON for each IPS Interrupt to
be masked. (Input)
2) oldmask s the old 1PS mask. (Output)=
Hotes

There 1Is a one-to-one correspondence between bits of the
mask word and IPS Interrupts. The correspondence between bits of
the mask word and 1PS iInterrupts can be found with the use of the
"create_lps_mask_" subroutine.

3ar hes. $&ZX- Lfs.-maali .

¢ hes_ % Wamﬂaﬁacju

Entry: printer_demdprinter_attach

This 1is the ring O printer DIM attach call. 1t finds
a free per-printer structure, calls the mini-gim to attach
the printer and initializes the DCW<s,

Usage

call hcs_Sprinter_attach (channel_name, ev_chan, index,
ercode);

or
call printer_dcmSprinter_gttaéh ");
1) channel_name(character(*)) 'is the device index

2) ev_phan(fixed binary(71)) is the channel to use in
signalling events

3) index(fixed binary(17)) is the index into the attach
1ist (got at attach time and
used for further.calls)
(returned)

L) ercode(fixed binary(17)) error code (returned)
=0 means everything is OK

=1 means all printers are
busy

=2 the mini_gim could not
assign the device

=3 the per=-printer
structure was wrested
from this process

=l4 there was an error in
the device configuration

hea_$ W@’agﬂ’u,ﬁx

Entry: printer_dcmiprinter_detach

This is the ring O printer DIM detach call,

Usage

call hcs_3printer_detach (index, ercode);

or

call printer_dcmyprinter_detach (index, ercode);
1) index(fixed binary(17)) - is the device index
2) ercode(fixed binary(17))- - is the error code

=0 nothing wrong
=1 {index is out of bounds

=2 the device was not in
use :

=3 this was net attached
. to the named printer

External References

checkdevice_name
dct_seg
pri{ ccnv
pdsYprocessid
Jinteraction_switch
mini_gimfcur_status
g tdew
J1ist_connect
Jassign
Junassign
Jset_list

hes-3$ prte. - winls

"Entry: printer_dcmiprinter_write

This program handles the ring 0O operation of the
printers. User calls are forwarded to this module which
gets free buffer space, then code converts the data sets

up the DCW”’s and initiates printer 1/0 through use of
the mini-gim,

Usaage

" call hcs_Yprinter_write (index, workspace, offset,
nelem, nelemt, rcode);

or

call printer_dcmdprinter_write (index, workspace, offset,

nelem, nelemt, rcode);
1) index(fixed binary(17)) identifies the printer channe)
(see $printer_attach)
2) workspace(pointer) is a pointer to the beginning‘
of the caller”’s workspace
from which writesbehind data
is to be transferred

3) offset(fixed binary(17)) is the offset in characters
from the start of the user’s
workspace and indicates where

the data transfer should
begin

L) nelem(Fixéd binary(17)) is the number of characters
which should be transferred

from the user’s workspace

5) nelemt(fixed binary(17)) - the number of characters
; actually transmitted by the
write call (returned)
6) rcode(fixed binary(17)) error code means (returned)
’ -0 A-O0K |

=1 ioname is incorrect

Ches_% PUmln - wode (2)

=2 printer is not attached

=3 this process is not
attached to this printer

If all the data was not written (i.e., nelem # nelemt),
the calling routing should first wait for a while, then
try to write out the rest of the data. A proper sequence
of instructions is: '
loop: call hcs_§printer_write (--);
{f nelem” = nelemt then do;
call ipcYblock (-=); /% go to sleep ¥/
offset = offset + nelemt; |
nelem = nelem - nelemt;
nelemt = O; T

go to loop;

end;

- l/)CS_$ fyloc:..w«o

Name: proc_info

This procedure returns to the caller selected per=process
data that may be of Interest.

Usare

declare proc_Info entry (blt

(36) allgned, char(32) allgned,
char(32) aligned, blt(

36) aligned);

call proc_Info (process_id, process_group_Id,
process_dlir_name, lock_id);

1) process_lId is the vafIable used to Identify thls

process. (Output)

2) process_group_ld !'s the character string representation
~ of thls process' access rights.
’ (Qutput) ’

3) process_dlr_name Is the path name of the process
\ dlirectory of thls process. (Qutput)

4) lock_id I's the unlque Ident!fler used by thls

process In the standard locking

procedures, (OQutput)

B S

This e om wlanad WW&UL Ty vavows a/,zu
/Mé f%ocw(ww Quch gbﬁ/o/wceoa_‘cc/—-,

TR RN UV v t.Cb__&QUOt&;__ELC’L !

|

Subroutine Cail}
3/19/73

Hemai: hcs—$auots—bE:

- This subroutine returas the record quota and accounting
information for a directory.

Usare

declare hcs_$quota_get entry (char(x), fixed bin(18),

fixed bin(35), bit(36) aligned, fixed bin, fixed
bin(1l), fixed bin, fixed bin(35));

call hcs_3$quota_get (dirname, quota, trp, tup, infgent,

o

1) dirname

2) quota

3) trp

L) tup

5) infqcnt

6) taccsw

7) used

8) code

taccsw, used, code);

is _the path name of the directory for which quota
informatlion is desiréd. (lnput)

is the record quota in the' directory. (Output)

is the time-record product charged to the
directory. This number is in units of
record-seconds. (Output)

Is the time that the trp was last updated in
storage system time format (the high-order 36 bits
of the 52-bit time returned by clock_). (Qutput)
is the number of Immediately inferior directories
(i.e., directories in this directory) which
contain terminal accounts. (OQutput)

is the terminal account switch. if the switch is
on, the records are charged against the quoOta in
this directory. If the switch is off, the recoids
are charged against the quota in the Tirsc

superior directory with a terminal accounct.
(Output)

is the number of records uscd oY SCoiNenTs 1
directory and by non-terminal
directories. (Output)

Cata s

inTerior

is a standard storage - system status cod
(Output)

]
(¢}
.

-

C) Copyright, 1973, Massachusetts Institute of Technology

and Honeywell Information Systems lnc.

c

uvivic

N .,.?4“ MERE fi4ss Raye status PREMISSIAR A SHS Hiféétéfy:

ccount is currently active, this cali wiiil cause the
account rmation In the directory header to be updated from
the Active Segment Table (AST) entry before this information Is
returned to the caller. |If the directory contains a non-terminal
account, the quota, 'trp, and tup variables are all zero. The
variable used, however, Is kept up-to-date and represents the
number of pages of segments in <this directory and inferior
non-terminal directories. If a quota were to be placed 1In this
directory, it should be greater than this used value.

C) Copyright, 1973, Massachusetts Institute of Technology

and Honeywell Information Systems tnc. (END)

MU L OO Y

L |

Subroutine Call
3/18/73
llemes: hes_$quota_move

Thls subroutine is callable by any user and moves allt or
part- of & quota between two directories, one of which is
Immediately inferior to the other.

Usage

declare hcs_$quota_move entry (char(x), char(x),
fixed bin(18), fixed bin(35));

call hcs_$quota_move (dirname, entry, quota_change, code);

1) dirnamg is the path name of the parent directory.
) (Input)

2) entry is the entry name of the inferlor directory.
(lnput)

3) quota_change is the number of 1024-word pages of secondary

storage quota to be subtracted from the
parent directory and added to the Iinferior
directory. (lnput)

L) code is a standard storage system status cod
(Qutput)

.
Notes *
-

The entry specified by entry must be a directory.

The user must have modify permission :in both directories.

After the quota change, the remaining quota in each
directory must be greater than the number of pages used in

that
directory.

The argument quota_change may be either a positive o
negative number. If it is positive, the quota will bo woved i oy
dirname to entry. |If it is negative, the move wWili be ‘i i
to dirname. |If the change results. in zero quota left on encry,
that directory 1is assumed to no longer contain a terminai Guoca

and all of Its used pages are reflected up to the used pages on
dirname. There s a restriction on quotas such that all quolas
In the chain from the root to (but rot inciuding) the termina;
directory must be nonzero. ' This rest¢triction means ¢hnat
hcs_S$quota_move cannot leave behind a quota of =zero in the
superior directory. :

() Copyright, 1973; Massachusetts lnstitute of Tecunoiogy
and Honeywell Information Systems Inc. END)

L (R A S S ¥ R |

Subroutine Caili
2/13/7%

harme: hes_Sreplace_acl

This subroutine replaces an entire Access Control List (ACL)
for -a segment with a user—provided ACL, and can optionally add an
entry for *.SysDaemon.* with mode rw to the new ACL. The

segment_acl structure described in hcs_$add_acl_entries is used
by this subroutine.

Usaze

declare hcs_Sreplace_acl entry (char(*), cnar(*), ptr,
fixed bin, bit(1l), fixed bin(35));
ca]{ hcs_sreplace_acl (dirname, ename, acl_ptr, aci_count,
- no_sysdaemon_sw, code);

1) dirname Is the directory portion of the path name of

the segment in questipon. (lnput)

2) ename is the entry name portion of the path name of
the segment in question. ({nput)

3) aci_ptr points to the wuser supplied segment_acl
structure that is to replace the current ACL.

(Input)

4) acl_count is the number of entries in the segment_aci

structure. (lnput) T

5) no_sysdaemon_sw if "0'"b, then a *.SysDaemon.* rw entry wil}
be PUt on the segment's ACL after the
existing ACL has been -deleted and before the
user supplied segment_acl entries are added;
if "1'p, then only the user-supplied
segment_acl” will replace the exlsting ACL.
(Input)

6) code is a standard status code. (OQutput)

If acl_count is zero then the existing ACL will be
and only the action indicated - by
performed (if any). 1In the case when acl_count is greater than
Zero, processing of the segment_acl entries is performed top (o

bottom, allowing later entries to overwrite previous ones if the
access_name parts are identical.

deleced
no_sysdaemon_sw wiil be

nstitute of Technology

Ins
Information Systems Inc,

() Copyright, 1973: Massachusetts
and Honeywell

C

(© Copyright, 1973, Massachusetts

vape 2

If the segment 1is a gate (see the MPM Subsystem Writers®
Guide section, Intraprocess Access Control (Rings)) and if the
validation level is greater than Ring 1, and only access names
that contain the same project as the user, and "SysDaemon" and
"sys_control" projects will* be allowed. If the replacement ACL
is in error then no processing will be performed and the code
error_table_sinvalid_project_for_gate will be returned.

Institute of Technology

and Honeywell Information Systems Inc.

(END)

¢ s|\Q'-1..;v’ O'L'-'ﬁ) v QCC___di ;‘__u\.' B

Subroutine Caill
2/15/73

Hama: hes_S$replace_dir_acl

This subroutine replaces an entire Access Control List (ACL)
for a directory with a user-provided ACL, and can optionally add
an entry for *.SysDaemon.* with mode sma to the new ACL. The
dir_acl structure described in hes_S$add_dir_acl_entries is used
by this subroutine.

‘Usare

declare hcs_S$replace_dir_acl entry (char(x), char(*), ptr,
fixed bin, bit(1l), fixed bin(35));

cail, hes_Sreplace_dir_acl (dirname, ename, acl_ptr,
acl_count, no_sysdaemon_sw, code);

1) dirname Is the path name of the directory superior to
the one in question. . (lnput)

2) ename is the entry name of the directory in
question. (lnput)

3) acl_ptr points to a user-supplied dir_acl structiure
that is to replace the current ACL. (Input)

L) aci_count is the number of entries in the dir_aci
structure. (lnput)

[N
~
~

5) no_sysdaemon_sw if "0"b, then a *.Sysbaemon.* sma entry wiil

be put on the directory's ACL after the
existing ACL has been deleted and before the
user-supplied dir_acl ' entries are added; If
"1'"b, then only ‘the user-supplied dir_act
will replace the existing ACL. (lnput)

6) code is a standard status code. (Output)

Note

If acl_count is zero then the existing ACL will be deiected
and only the action indicated - by no_sysdaemon_sw will be
performed (if any). In the case when acl_count is greater than
zero, processing of the dir_acl. entries is performed top (o

bottom, allowing later entries to overwrite previous ones if the
access_name parts are identical.

nstitute of Technology

© Copyright, 1973, Massachusetts Ins
1 Information Systems inc. (EwD)

and Honeywel

|

—

Subroutine Call
3/1/753

Name: hces_$replace_dir_inacl

This subroutine replaces an entire Initial Access Control
List (Initial ACL) for « New directories within a specified
directory with a user-provided Initial ACL, and can optionally
add an entry for *.SysDaemon.¥ with mode sma to the new Initial
ACL. The dir_aci structure — described in
hcs_$add_dir_inacl_entries is used by this subroutine.

Usage

declare hcs_$replace_d r_inacl entry (char(x), char(*), ptr,

i
fixed bin, bit(1) aligned, fixed bin,
fixed bin(35));

call hecs_$replace_dir_inact (djrname, ename, acl_ptr,
acl_count, no_sysdaemon_sw, ring, code);

1) dirname s the path name of the directory superior to
the one In question. (lnput)

2) ename is the entry name of the directory in
question. (lnput) :

3) acl_ptr points to a user-supplied dir_acl structure
that is to replace the current initia) ACL.
(input)

L) ascl_count is the number of entries in the djr acl

structure. (lnput)

5) no_sysdaemon_sw if "0"b, then a *.SysDaemon.* sma entry will
be put on the Initial ACL after the existing
Initial ACL has been deleted and before the
user-supplied dir_acli entries are added; if
"1"b, then only the user-supplied div_aci

will replace the existing Initial ACL.
(Input)

6) ring is the ring number of <the initial ACL.
(Input)

7) code Is a standard status code. (Output)

C) Copyright, 1973; Massachusetts !Institute of Technciogy
and Honeywell Information Systems !nc.

~

i atl_equnt 1§ £EFd £haéh the esisting Initial ACL will be
deletwfl &and Onily the action indicated by no_sysdaemon_sw will
performed . (if any). In the case when acl_count is greater than
zero, processing of the dir_acl entries is performed top to
bottom, allowing later entries to overwrite previous ones if the
access_name parts are identical.

C) Copyright, 1973, Méssachusetts Institute of Technology

and Honeywell Information Systems lnc. (END)

be .

i

o SUOLLTSTEM WRITERS' GuioE ' hcs_$repiace_inaciJ

Subroutine Call
371773

- Name: hes_$replace.inact

This subroutine replaces an entire Initial Access Control
List (lnitial ACL) for new segments within a specified directory
with a user-provided Initial ACL, and can optionally add an entry
for *.SysDaemon.* with mode rw to the new Initial ACL, The

segment_acl structure described in hes_$add_inacl_entries is used
by this subroutine.

Usage

declare hes_S$replace_inacl entry (char(*), char(¥), ptr,
fixed bin, bit(1l), fixed bin, fixed bin(35));

call hes_$replace_inacl (dirname, ename, aci_ptr, acl_count,
ro_sysdaemon_sw, ring, code);

1) dirname is the superior directory portion of the path
name of the directory in question. (lnput)

2) ename is the entry name portion of the path name oFf
the directory in question. (lnput)

3) acl_ptr _ points to the user suppliied segment_aci
structure that 1is to repiace the cuirent
Initial ACL. (lnput)

.
~
~

L) acl_count is the number of entries in the segment_acl
structure. (lnput)

5) no_sysdaemon_sw if "0"b, then a *.SysDaemon.* rw entry wili
put on the Inltlal ACL after the existing

Initial ACL has been deleted and before tihe

user-supplied segment_acl entries are added;

if "1i'b, then only the user-suppliied

segment_acl will replace the existing Initiail
AcCL. (lnput)

6) ring is the ring number of the Initial ACL.
(Input) ’
7) code is a standard status code., (Output)

-~

(© Copyright, 1973, Massachusetts Institute of Technoiogy
and Honeywell Information Systems lInc.

: . . ‘
v SULSYSTEM WRITERS' GuUiDE hcs_$rep1ace_:nacﬁj

Subroutine Call
3/1/73

- Name: hcs_$replace_inacl

This subroutine replaces an entire Initial Access Control
List (lnitial ACL) for new segments within a specified directory
with a user-provided Initial ACL, and can optionally add an entry
for %.SysDaemon.* with mode rw to the new Initial ACL. The

segment_acl structure described in hes_$add_inacl_entries is used
by this subroutine.

Usage

dec1are'hcs_greplace_inacl entry (char(*), char(¥), ptr,
-~ fixed bin, bit(1l), fixed bin, fixed bin(35));

call hes_$replace_inacl (dirname, ename, acl_ptr, acl_count,
ro_sysdaemon_sw, ring, code);

1) dirname is the superior directory portion of the path

name of the directory in question. (lnput)

2) ename is the entry name portion of the path name of
the directory in question. (lnput)

3) acl_ptr points to the user supplied segment_acl
structure that 1is to replace the current
Initial ACL. (lInput) .

4) acl_count is the number of entries in the segment_acl

structure. (lnput)

5) no_sysdaemon_sw |if "0"b, then a *.SysDaemon.* rw entry wili
be put on the Initial ACL after the existingz
Initial ACL has been deleted and befoire tne
user-supplied segment_acl entries are added;
if "1'b, then only the user-supplied

segment_acl will replace the existing Initial
ACL. (lnput)

€) ring is the ring number of the Initial ACL.
(Input) ’
7) code is a standard status code. (Output)

-

C) Copyright, 1973, Massachusetts Institute of Technology

and Honeywell Information Systems lInc.

tm.

LA N RV

- If acl_count 1|s zero then the existing initial ACL will be

deleted and only the action !
performed (i1f any).

indicated by no_sysdaemon_sw wiil De

In the case when acl_count is greater than

zero, processing of the segment_acl entries
bottom, allowing later entries to over
access_name parts are identical.

(© Copyright, 1973, Massachusetts Institute of
and Honeywell Information Systems

Technology

Inc.

Is performed top to

write previous ones if the

(END)

t

v b \iv;u-.’ i
L |

o

p

Ccs_Scesei_working_s

Subroutine Call

Development System
05/10/71

~Hame: hcs_$reset_working_set
- L)
This entry is called to turn off the used bits of ali pages
This is

in the page-trace 1list for the current process.
equivalent to truncating the pre-page list and starting the
gathering of pre-page statistics with the next page fault.,

Usaze
declare hcs_$reset_working_set entry;

call hcs_$reset_working_set;

There are no arguments. -

(END)

A e ind T ANUAL : hcs_%$set_bc !

|

Subroutine Cail
3/19/73

[lame: hcs_$set_bc

. This subroutine sets fhe bit count of a segment in the
storage system, given a path name, it also sets that segment's
bit count author to be the user who called it.

Usage

declare hcs_$set_bc entry (char(*), char(x),
fixed bin(24), fixed bin(35));

call hcs_$set_bc (dirname, ename, bit_count, code);

1) dirname is the directory name of the segment whose bit
count is to be changed. (lnput)
2) ename is the entry name of the segment whose bit count
: is to be changed. (lInput)"
3) bit_count is‘the new bit count of the segment. (lnput)
L) code is a standard storage system status code.
(Qutput)

The user must have write permission with respect to the

segment, but does not need write permission with respect to

the
parent directory.

The subroutine hcs_$set_bc_seg performs the same function,

when a pointer to the segment is provided rather than a path
name.

-

C) Copyright, 1973, Massachusetts Institute of Technology o
and Honeywell Information Systems l!rc. (P,

m

VIRV pncs_sset_be_sag

}
t
L j

Subroutine Cail
3/19/73

Mame: hcs_$set_bc_seg

-

This subroutine sets the bit count of a segment in the
storage system, given the'pointer to the segment. It also sets
that segment's bit count author to be the user who called it.

Usage

‘declare hcs_S$set_bc_seg entry (ptr, fixed bin(24),
fixed bin(35));

call hcs_$set_bc_seg (segptr, bitcount, code);

1) segptr . is a pointer to the segment whose bit count is to be
changed. (lInput)

2) bitcount is the new bit count of the segment. (Ilnput

3) code is a standard storage system status code. (Qutput
Note
The user must have write permission with respect to the

segment, but does not need write permission with respect to the
parent directory.

The subroutine hcs_$set_bc performs the same function, when
provided with a path name of a segment rather than the “pointer.

@; Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems inc. (ENU

lﬂCS,f}? ook &Q@Wm-w

Name: set_alarm_timer

This procedure Is called to perform the varlous alarm clock
functions. (Aed Tome Lock

Entry: set_alaFm_tImer$set_a1arm_tlmer

This entry is used to set the time (absolute time) or time

increment (relative time) in the alarm clock for the calling
process.

Usage
declare set_alarm_timer entty (fixed bin(71),
fixed bin, fixed bin(71));
call set_alarm_timer (time, time_sw, channel);

1) time Is the real time, In microseconds, at which the
process will recalve an alarm clock wakeup. The
time may be relative to the current time (as read
from the calendar clock by clock_) or it may be an
absolute calendar clock time when the wakeup Is to
take place. (lnput)

2) sw Is a switch indicating whether the flrst argument

Is to be considered absolute or relative, The
followlng correspondence is used:

sw =1 relative time;

sw = 2 absolute time. (lnput)
3) channel Is the event channel over which to send the wakeup,
If the channel Is zero, the condition "alrm" will
be signalled; otherwlise an Interprocess
Communication (IPC) wakeup will occur. (Input)

T proadun v an wilpmdd LJ[L\({ML ?BT/UL
pao @hus W_- mamager

f’\

hes— 3 M_Mmﬁa;Lp,mm

e ww e mr wm e e em mw e em e e wm e wmm em mm wm wms me e we mm e e ae e e e e e e

Azl ivps_tset_automatic_ips_mask ext entrv (bit (36) alizned, bit (36) aik

call ine_%cet_automatic_ins_mask(mas¥k, oldmask): Jf\
1) mask is the new valus to bas usad for ndstatido_nas{’
2) o0ldmaidk is the old value of vpis$auto_mask (Outnut).

-

Fdsiauro,mcd: W am a/v»:? 0{ 36 lauto one 601 ,Q,ﬁ-olt mcM.
/g

l?s y %a bl = 1% mom
l ‘UMW 1 0Clurg

-
~
~

(e hes. $3J_Lf5_wm!%ﬁ

hes-$ ke Copyou

b nY switch in tae branch effectip
entry in the directory With nath name dirnama to cony if calle hsl
“T'ite marmit ip the directory, */

convgys

J /% erenamvgy changes the settine of the conv

entry (a_dirname, a_enanme, a_conv, a_code)

.
?

Al s copgnus sy (oo, che (), B b;{(é»

| | ;
Da_abxwwm wmfaammo/mméfwc%
™~ laning e onts, whnre co
| TRy

1) a_omame g Zw A&a@ e Copy udeh
3) a-copy i /éfu@w of copy owlch
O ot A

4) o cods v a slali cody

e

A hC6-$ &i—,cFu..W

Entry: pxss$set_cpu_timer

] - Thls entry 1s used to set the CPU timer. It may be called
from outside ring 0 by any process.

Usage

declare pxss$set_cpu_timer entry (fixed bin(71), fixed blin,
fixed bin(71));

call pxss$set_cpu_timer (time, sw, channel);

1) time
2) sw
\ 3) channel

is the CPU time, In microseconds, that
the process can run before receiving the
CPU wake-up. The time may be relative
to the <current CPU time wused by the
process or |t may be an absolute time,
i.e., the wake=-up will occur when the
process' CPU time exceeds this value.
(Input)

Is a switch Indicating whether the flrst
argument Is to be consldered absolute or

relative, The followlng correspondence
Is used:

sw = 1 relazlve time;
sw = 2 absolute time., (lnput)

Is the event channel over which to
signal the wake-up when and iif it
occurs., I f channe) Is zero, an
Interprocess signal (I1PS) will occur;
otherwlse an Interprocess communlicatlon
(1PC) wake=up will occur. (lnput)

Theo procaduns am vilvned in 'aaGt/w

f’N

-~

PAOC,Q(J-LML —tl/w\m, mmaﬁu._

. . -
e . : et e e M O Tl g_OFVacn. wo !

L |

Subroutine Calj
3/1/73

Hame: hes_$set_dir_ring_brackets
This subroutine, given the path name of the superior

directory and the name' of the directory, will set that
directory's ring brackets. '

aze

declare ncs_Sset_dir_ring_brackets entr

try (char*), char(x),
(2) fixed bin(3), fixed bin(35))

’

call hes_$set_dir_ring_brackets (dirname, ename, drb, code);

1) dirname. ~is the path name of the superior directory.
(Input)

2) ename is the entry name of the directory 1In gquestion.
(Input) .

3) drb Is a 2-element array specifying the ring brackets
of the directory. (lnput) '

4) code is a standard status code. (Output)

_'Q’.‘-Q <

The user must have modify permission in the superior
directory and the validation level must be less than or equal to
both the present value of the first ring bracket and the new
value of the first ring bracket that the user wishes set.

Ring brackets and valldation levels are discussed in the MPMY

Subsystem Writers' Guide section, Intraprocess Access Control
(Rings).

(©) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell information Systems lInc. (EMND)

hes. $ At*ju?ﬁ— mead<.

Entry: ips_$set_ips_mask

This entry is used to replace the entire !PS mask with a new
value, :

Usage -
declare ips_S$set_lIps_mask entry (blt(36) aligned, bit(36)
aligned); : .

call Ips_$%set_Ips_mask (mask, oldmask);

1) mask this word replaces the old 1PS mask.,
(Input)

See L\C,S__$ W,LFS, mM)

2) oldmask Is the old IPS mask., (Output)

~

units of 16 words, and

S ERESN N __uiuii__'l Qiig el
l]
Subroutine Call

53/30/73

lamas hes_Sset_max_length

-

This subroutine sets the max length of a segment, given &
directory name and an entry name. The max length is the length
beyond which the segment may not grow

Usage
declare hcs_$set_max_length entry (char(x*), char(*),
fixed bin(18), fixed bin(35));
call hes_$%set_max_length (dirname, ename, max_length, code);
1) dirname: is the directory name of the segment whose max
length is to be changed. (lnput)
2) ename

Is the entry name of the segment whose max length
is to be changed. (input)

3) max_length is the new value in words for the

max. length of»
the segment. (linput)

L) code is a standard storage system status code. (Sece
Notges below.) (Qutput)
Notes

.
~

A directory may not have its max length changed, °

Modify permission with respect to the directory containing
the segment is required. :

Eventually, the max length of a segment will be accurate to
if max_length is not a muitipie of 16
words, it will be set to the next multiple of 16 words. However,
currently the max length of 23 segment should be set in units of
1024 words, due to hardware restrictions.,

If an attempt is made to set the max length of & seguont
greater than the system maximum, sys_info$max_seg_size, code wiil
be set to error_table_S$arzgerr.

If an attempt is made to set theée max. length of g sezment
sec

greater than its current length, code will be to
error_table_$invalid_max_length. .

The subroutine hcs,Sset_max_length_seg may pe used when the
pointer to the segment is given, rather than a path name.

C) Copyright, 1973, Massachusetts Institute of Technology
v and Honeywell Information Systems Inc. (END)

hes-3 of block

. Entry: fast_hc_ipc$ipc_sf_block

This entry goes blocked until a wake=up Is received on the

specified channel or an Interprocess Signal (IPS) wake-up Is
received. . :

Usage

declare fast_hc_lipcS$ipc_sf_block entry (flxed bin(71),
fixed bin(35));

call fast_hc_lpcs$ipc_sf_block (channel, code);

1) channel is the identifier of the special channel

In
which to go b]ocked.v (Input)

2) code Is a standard status code, the code

error_table_$ips_has_occurred 1indlicates that
this procedure returned because of an [|IPS
wake-up. (Qutput)

Thic gl v wlended /Km proceasss hal WZLW
fa{o‘t %5@% 2t will M%nuw a o
7 {apec and wdl mot A mt/aumkwf
accfi/w on Lol d»/ Jmam],]oo Z/nW/:f hao occwud,
One :ol'to'v-Qfl méb uar hes—$,46%(/’? and 'Cfc_#Mod{
onThe damu /\)IQQC,(J JWJ hocause tpe— may éz,
holdin a wuﬁzwp on e chapmed that hes—3sLblock
wdl ol aee. " | |

t 4

(|

Subroutine Cail
L2773

Mame: hes_Sstar_

d This subroutine is the star convention handler for - the
storage system. (See The Star Convention in the MPM Reference
Guide section, Constructing and Interpreting Names.) it is
called with a directory name, and an entry name containing
components which may be % or *%*. The directory is searched for
all entries which match the given entry name. Information about
these entries is returned in a structure. |f the entry name 1is
*%, information on all entries in the directory is returned.

Status permission is required with respect to the directory
to be searched.

) The main entry returns the storage system type and all names
which match the given entry name. (See hecs_$star_list_ below to
obtain more information about each entry.)

Usaze

declare hcs_$star_ entry (char{(%), char(x), fixed bin(2),
ptr, fixed bin, ptr, ptr, fixed bin(35));

call hes_$star_ (dirnsme, star_name, select_sw,
areap, ecount, eptr, nptr, code);

1) dirname is the path name of the directory to be searched.
(Input) .

2) star_name is the entry name which may contain asterisks.
(Input)

.

1 if information is to be returned about link
entries only;

3) select_sw .

2 if information is to be returned about segment
entries only;

3 if information is to be returned about all
entries. (lnput)

L) areap is a pointer to the area in which information is
to be returned. If the pointer is null, ccount is
set to the total number of selected entries. Sce

Notes immediately below. (lInput)

5) ecount is a ctount of the number of entries which match
the entry name. (Output)

C) Copyright, 1973,~Massachusetts Institute of Technology
and Honeywell Information Systems lnc.

R) iANUA o

Page 2

6) eptr is a pointer to the aliocated structure in which
information on each entry is returned. (Output)

7)) nptr is a pointer to the allocated array of all the

- entry. names +in this directory which match

star_name. See Notgs immediately below. (Output)

8) code is a standard storage system status code. See
Status Codes below. (Qutput)

Notes

Even if arecap is nuli, ecount is set to the total number of
entries in the directory which match star_name. The setting of
select_sw determines whether ecount is the total number of 1ink

entries, the total number of segment entries or the total number
of all entries.

If areap is not null, the following structure is allocated
in the user-suppnlied area: '

declare 1 entries (ecount) aligned based (eptr),

(2 type bit(2),
(k 2 nnames bit(16)
f 8)

’
2 nindex bit{18)) unaligned;

1) type specifies the storage system type of entry:

0 ("00"b) = link, B
1 ("01"b) = nondirectory segment,
2 ("10"b) = directory segment.

2) nnames specifies the number of names for this entry which
match star_name.
3) nindex specifies the offset in the array of names

(pointed to by nptr) for the first name returned
for this entry.

A1l of the names which are returned for any one entry are
stored consecutively in an array of all the names, allocated in
the user-specified area. The first name for any one entry begins
at the offset nindex in the array.

declare names (total_names) char(32) aligned based (nptr);
where total_names is the total number of names returned.
It should be noted that the user must provide an area large

»fh‘ enough for this subroutine to store the requested information.

C) Copyright, 1973, MaSsachusetts Institute of Technology
and Honeywell Information Systems Inc.

Entry?

1)

. ‘ . G oo
SR LN T MANUA L LhCS__#otal

& O
~0
N
~
-~

W

RCE EL ST R YT

This eatry returns wmore Informatlion about the selected
entries.

Usage

declare hecs_$star_1i
fixed bin(3),
fixed bin(35))

st_ entry (char(=*), char(x),
ptr, fixed bin, fzxed bsn, pt., ptr,
H

cail nes_Sstar_list_ (dirname, star_name, select_sw,
areap, seg_count, link_count, eptr, nptr, code);

dirnpame

2) star_name

3) select_sw

4)

5)

6)

7)

areap

seg_count

Tink_count

eptr

Copyright,

‘s as above. (lnput).
is as above. (lnput)

=1 if information is to be returned about link
entries only; :

=2 if information is to be returned sbout sezment
entries only;

=3 if information is to be returned about alj
entries; .

=5 if information is to be returned about link
entries only, including the path name

associated with each l;n& entry;

=7 if information is to be returned about all
entries, including the path name associcated
with each link entry. (lnput)

is a pointer to the area in which information is
to be returned. if the pointer is null, seg_count
and link_count are set to the total number of

selected entries. See Notes inniediately below.
(lnput) .

is a count of the number of segments and
directories which match the entry name. (OQutput)

is a count of the number of links which match the
entry name. (Output)

is as above. (Output)

-

1973, Massachusetts Institu te of Technoloﬂy
and Honeywell !nformation Sys tems Inc.

B s — |

Page &

8) nptr is a pointer to the allocated array in which
selected entry names and path names associated

- with link entries are stored. (Output)

9) code is as above. *"(Qutput)

Notes

Even if areap is null, seg_count is set to the total number
of segments and directories which match star_name, if information
on segments is requested., I|f information on links is requested,
link_count is the total number of links which match star_name.

The following structure is allocated in the user=-supplied
area, if areap is not null:

declare entries (count) bit(l44) .aligned based (eptr);

where count = seg_count + link_count.

For each unit of the array, one of two structures will be
found. Which structure should be used may be determined by the
type item which is located at the base of each structure. it
should be noted that the first three items in each structure are
identical to the structure returned by hcs_$star..

The following structure is used if the entry is a segment or
a directory:

[N
~
-

declare 1 branches aligned based (eptr),
(2 type bit(2),

nname bit(16),

nindex bit(18),

dtm bit2363,
dtu bit(36),
mode bit(5),
pad bit(13),

records bit(18)) unaligned; '

NN

1) type .is as above.
2) nname is as above.

3) nindex is as above.

L) dem is the date and time the segment or directory was
last modified.

5) dtu is the date and time the segment or directory was
last used.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell !nformation Systems lInc.

RN —

L i

Page 5

W/2/75
6) mode is the current user's access to the segment oOr
directory. See the MPM write-up of

hes_Sappend_branch for a description of modes.
. . .
7) pad is unused space in this structure.

§) records is the number of 1i024-word records of secondary
storage which have been assigned to the segment or
directory.

The following structure is used if the entry is a Tink:

declare 1 links aligned based (eptr),
(2 type bit(2),
nname bit(16),
nindex bit(18),
dtm bit(36),
dtd bit(36),
pathname_len bit(13),
pathname_index bit(18)) unaligned;

DR

1) type is as above.
2) nname is as above.
3) nindex is as above.

L) dem is the date and time the link entry was last
modified. .

5) dtd is the date and time the link entry was last
dumped. :

6) pathname_len is the number of significant <characters in
the pathname assocated with the link.

7) pathname_index is the offset in the array of names fTor
link pathname. See below. :

r?
-
(0]

If the path name associated with each 1link entry was
requested, the path name will be placed in the names airay and
will occupy six units of this array. The offset of the first
unit is specified by pathname_index in the 1inks array. The
length of the path name is given by pathname_len in the links
array.

(© Copyright, 1973,~Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

f“.

Cievad IRTAY RO

f he mateh Wikh star_game was found in the directory, code
fin 1 be returned as error__table_%$nomatch. :
. : .

If star_name contained illegal syntax with respect to the
star convention, code will be returned as error_table_$badstar.

IT the user did mot provide enough space in the area to
return- all the requested information, code will be returned as
error_table_S$notalloc. In this case the total number of entries
(for hes_$star_) or the total number of segments and the total

number of links (for hes_$star_list_) will be returned, to
provide an estimate of the space required.

C) Copyright, 1973, Massachusetts Institute of Technology
: and Honeywell Information Systems Inc. (END)

. oo v ale.

|

Subroutine Calil
3/1S/73

Neme: hes_S$status_.

-

This

subroutine consists of a number of hardcore,
user-callable,

storage s¥yYstem entry points which return various

items of information about a speciflied hierarchy entry.

The main entry point (hcs_$status_) returns the most often

needed

information about a specifled encry. (See

hcs_$status_long below.)

Qge

declare hcs_$status__ entry (char(x), char(%), fixed bin(1),

-

ptr, ptr, fixed bin(35));

call hcs_$status_ (dirname, entry, chase, eptr, nareap,

1) dirname

2) entry

L) eptr

5) nareap

6) code

Notes

code);

is the directory portion of the path name of the
entry In question. (lnput)

is the entry name portion of the path name of the
entry in question. (lnput)

=0: if the entry is a link, recurn 1ink
information; ’

=1l: if the entry is a 1link, vreturn_ information
about the entry to which it pointys. (input)

is a pointer to the structure in which information

is returned. See Notes immediately Dpelow.
(Input) .

is a polnter to the area in which names arc
returned. If the polnter is nuli, no names are
returned. See Notes immediately below. (Input)

is a storage system status code. See Access
Reguirements below. (Qutput)

The argument eptr poipts to the following structure if the
entry is a 'segment or directory:) ’

C) Copyright, 1973, Massachusetts Institute of Technology

and Honeywell Information. Systems inc.

er\

e

1)

2)
3
4)
5)
6)

7)
8)

entry

age 2

R A A S VAV T RV L T O L G0} IRANU AL

deciare 1 branch based (eptr) aligned,

type

nnames

padl

records

(2 type bit(2),

nnames bit(16),

nrp bit(l13),

dtm blt(36),’

dtu bic{(36),

mode bat(S),

padl bit(13),

records blt(18)) unaligned;

NRONNORNDNDN

specifies the type of entry:

0 ("00"b) = link;
1 ("01"b) = segment;
2 ("10"b) = directory.

specifies the number of-names for this entry.

is a relative pointer (relative to the base of the

segment containing the user-specified free storage
area) to an array of names.

contains the date and time the segment was last
modified. :

contalns the date and time the sezment was
used.

contains the mode of the segment with respect to
the current user. See the MPM write-up of
hcs__$append_ branch for a description of modes.

is unused space in this structure.

contains the number of 1024-word records of

secondary storage which has been assigned to the
segment.

The argument eptr points to the following structure if <the
is a link:

(S

declare 1 link based (eptr) aligned,

_C) Copyright, 1973, Massachusetts Inst

(2 type bit(2),

nnames bit(16),
nrp bit(le)
dtem bit(3
dtd bit(36
pnl bit(1lg
pnrp bit(1l

4

NIRNNPON DN

6)
),
), .
8)) unaligned;

itute of Technology
and Honeywell Information Systems Inc.

; L L woltacul
IR EAR RTATARY A ' ! -_

)
i
-

Page 3
3/19/753
1) tvype a2y slaveEs
) nnames as above. ,
3) nrp as above.
L) dtem contains the date and time the 1link was last
- modified.
5) dtd contains the date and time the link was last
dumped.
6) pnl specified the length in characters of the 1link
N path name.
7) pn}p is a relative pointer (relative to the Dbase of

the segment containing rhe user-specified free
storage area) to the 1ink ‘path name.

Note that the user must provide the storage space required

by the above structures. The status entry point merely fills
them in.

| f nareap is not nuil, entry names are returncd in the
following structure allocated in the user-spacified area.

declare names (nnames) char(32) aligned based QQP);

where np = ptr (nareap, eptr-Yentry.nrp).

The first name in this array is defined as the primary name
of the entry.

Link path names are returned in the following

structure
allocated in the user-specified area.

declare pathname char(pnl) aligned based (1p):

where 1p = ptr (nareap, eptr=->link.nrp);

Note that the user allocates the area and it must be large
"~ enough to accommodate a reasonable number of names.

Access Reaulrements

The user must” have status permission on the parent directory
to obtain complete information.

-

() Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems f N

1¥ the user lacks status permission but does have non-null
access to a segment, the foilowing per-segment attributes may be
returned: type, effective access, bit count, records and current
iength. In this instance if the entry point hcs_$status_ or
hcs_S$status_long is called, the status - code
error_table_S$no_s_permission ®* is returned to indicate that
incomplete information has been returned.

ntry: hecs_$status_minf

This subroutine returns the bit count and entry type given a
directory and entry name. The access required to use this
subroutine is status permission on the directory or non-null
access to the entry.
Usage

dectare hcs_$status_minf entry (char(x), char(x), fixed
bin(l), fixed bin(2), fixed bin(24), fixed bin(35));

call hecs_$status_minf (dirname,ventry, chase, type, bitcnt,

code);
1) dirname is as above. (lnput)
5‘1 2) entry is as above. (lnput)
3) chase is as above. (input)
4) type specifies the type of entry: -
0 = link;
1 = segment;
s 2 = directory. (Qutput) '
5) bitcat is the bit count. (Output)
6) code is as above. (Output)

Entry: hcs_$status_mins

This subroutine returns the bit cnunt and entry type givean a
pointer to the segment., The access required to use this

subroutine is status permission on the directory or non=null
access on the segment.

!lgg"')‘! Q.

declare hcs_$statds_mins entry (ptr, fixed bin(2),
fixed bin(24), fixed bin(35));

C) Copyright, 1973, Massachusetts Institute of Techrology
and Honeywell Information Systems lnc.

lage 5
3/19/73
call hcs_$status.mins (segpir, type, bitcnt, code);
1) segptr is a pointer to the segment about which
Information is desired. (lnput)

2) tvype is as above. (Output)
3) bitent is as above. (Output)
L) code Is as above. (Output)

Enfry: hcs_Sstatus_long

This subroutine returns most user-accessible information
about a specified entry. The access required to wuse this
subroutine 1is the same as <that required by hecs_$status_ and

described in Access Reguirements above.
Usage

declare hcs_$status_long entry (char(x), char(x),
fixed bin(l), ptr, ptr, fixed bin(35));

call hes_$status_long (dirname, entry, chase, eptr, nareap,
code);

Arguments are as above. :

The argument eptr points to the same.structure as before

i
the entry is a link. It points to the following structure i¥ th
entry is a segment or directory:

f

©

declare 1 branch based (eptr) aligned,
(2 type bit(2),
nnames bit(1l6),
nrp bit(18),
dtm bit(36),
dtu bit(36),
mode bit(5),
padl bit(13),
‘records bit{1l8),
dtd bit(36),
dtem bit(36),
pad2 bit(36),
curlen bit(12),
bitent bit(2y),

OO NNNNDDNN

C) Copyright, 19737 Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

P

1-8)

9) dtd
10) dtem
11) pad2

12) curlen

13) bitcent

1) did

15) pad3
16) copysw
17) padi
18) rbs
19) uid

(© Copyright, 1973, Massachusetts

RN NN

SN e v Uy

did bit(h4),

pad3 bit{4),

copysw bit(9),

padh bit(9),

rbs (0:2) bit(6),

uid but(36)) unaligned;

are as described above in the structure for
segments and directories returned by hcs_$status_.

is the date and time -the segment was last dumped.
is the date and time the branch was last modified.
is unused space in this structure.

is the current length of. the segment in units of
1024-word records.

is the bit count associated with the segment.

specifies the secondary storage device (if any) on
which the segment currently resides.

is unused space in this structure.

contains the setting of the segment copy switch.

-~

is unused space in this structure. ™

contains the ring brackets of the segment.

is the segment unique .identifier.

Institute of Techrology
and Honeywell lnformatjon Systems Inc. (END)

L\ce,. $ ofola,{yzoceao

Name: stop_process

This procedure 1Is used to Inltiate the stopplng of a
process,

Usage

declare stop_process entry (b1t(36) allgned);
call stop_process (process_1d);

1) process_id Is the Id of the process to be stopped. (lnput)

/Qk Qaﬁﬂt&b—uuﬂb MO(MMJ-— oC.

ando afln aﬂzcﬂ T
Wwﬁau ;‘;Ow%?dwtoya ,Mocw,

hes- $ Tdem—atta oy

ﬂgmg: tdcm

This module Is the magnetic tape Device Control Module (DCM)
for all magnetic tape 1/0. |t provides a physical Interface to
the tape controller by which all tape controller commands may be

issued. Drive multiplexing and dynamic buffer allocation are
handled by thls module.

Lntry: tdem$tdcm_attach

This entry 1Is called to attach a free drive for tape
operatlons., The drive number is_allocated from a 1ist of those
free.

Usage
declare tdcm$tdcm_attach entry (ptr, flxed blin);
call tdcm$tdcm_attach (tsegp, code);

1) tsegp Is a polnter to a data base In the User Rling
contalning per drive Information. (See the tseg
wrlte~-up In the SPS.) (lnput) .

2) code Is an error code and Is nonzero If no free drive
can be found. (Output)

————— .

have

being

hCﬁ» SL TJCM- &Lt&«(/lq

tdcm$tdcm~detach.

Thls entry 1s called to detach a drive after all opera
been completed. This call wlll not result 1In the
unloaded. .

Usage

declare tdcm$tdem_detach entry (ptr, fixed bin);
call tdcm$tdem_detach (tsegp, code);

as above.

=

tlons
drive

hes.. $ Tdow _tocall

Entryv: tdcm$tdem_locall

This 1Is the maln working entry by whlch
operations are performed., By setting proper variables In the

tseg data base, an array of controller commands or a sequence of

read/write operations can be [nitlated. (See the tseg write-up
In the SPS.)

1/0 and contro)

Usage

declare tdecm$tdcm_locall entry (ptr, flxed bin);

call tdcm$tdcm_liocall (tsegp, code);

1) tsegp Is a polnter to the tseg data base. (Input)
2) code Is an error code:

2 = drive number out-of=-bounds;

3 = drive not attached;

'4 =

drive not owned by thls process;

.
~
-

5 = buffer slze exceedéd;
6 = buffer count Is too large. (Output)

~ hes _$Tdem marage

] . Lntry: tdem$tdem_message

This entry results In a mount request message to be typed on)
the operator's console.

Usage

declare tdem$tdem_message entry (ptr, char(*), flxed bin(l),
fixed bin);

call tdcm$tdem_message (tsegp, reelld, ring, code);

1) tesgp as above. (lnput)

2) ‘reellid Is a character string representation of the reel

name or number., (lnput)

3) ring If nonzero, It Indicates a ring Is to be used.
K (Input) ‘
‘ 4) code as above. (Output)

hes—$ Tdem_ /\M,A%A\J
hes . $thM /.Ld: AL@M

Entryv: tdem$tdem_set_slignal, tdem$tdem_reset_slgnal

These entrles are used to set and reset a swltch which
controls the handling of speclal interrupts from the tape
controller. When this switch 1Is set, all speclial Interrupts
result In a signal to the attached process for thls drlve.
Otherwlse, all speclal Interrupts are lIgnored.

Usare
+ declare tdcm$tdem_set_slignal _entry (ptr, fixed bin);

call tdcm$tdcm_set_slignal (tsegp, code);

declare tdcm$tdcm_reset_slgnal entry (ptr, flxed bln);

call tdem$tdcm_reset_signal (tsegp, code);

1,2) as above.

-

)

Subroutine Cali
2/20/753

HName: hes_S$terminste-file
This subroutine, given the path name of a segment in the
current process, removes *all the reference names of that segment

and then removes the segment from the address space of the
process. For a discussion of reference names, see the MPM
Reference Guide section, Contructing and Interpreting Names.

Usage

declare hes_s$terminate_file entry (char(x), char(x),
fixed bin(1l), fixed bin(35));

call hcs_$terminate_file (dir_name, entry_name, rsw, code);

1) dir_name is the directory portion of the path name of the
segment in question. (lnput)

2) entry_name is the entry name portion of the path name of the
segment in question. (lnput)

3) rsw is the reserved segment switch. If equal to 1,
the segment number should be saved in the reserved

segment list; I¥ equal to 0, the segment number
should not be saved. (Input)

4) code is a standard storage system status code.
(OQutput) .
Notes
The subroutine hecs_$terminate_seg performs the same

operation given a pointer to a segment instead of a path name;

hcs_$terminate_name and hcs_$terminate_noname terminate a single
reference name.

The subroutine term_ performs the same operation as
hes_S$terminate_file.

in fact, only those reference names are removed for which
the ring level associated with the name is greater than or equal
to the validation level of the process. |f the user nceds to
concern himself with rings, he should refer to the MPM Subsysiem
Writers' Guide section, Intraprocess Access Control (Rings).

() Copyright, 1973, Massachusetts Institute of Technology
and Honeywell .Information Systems inc. (FND)}

LR LY AVIR VY W 1 ”]CS_,S’LC ‘];-3c—'\‘{"e—-—“‘u“i\3 i

Subroutine Caii

fb? 2/20/73
Nare: hes_$terminate_name

. “nis subroutine terminates one .reference name from a

segment. If it is the only reference name for that seg gment, the
segment is removed from the address space of {ne process. For a
discussion of reference names see the MPM Reference Guide
section, Constructing and Interpreting Names.

Sare

Geclare hcs_$terminate_name entry (char(«%), fixed bin(35));

call hecs_$terminate_name (ref_name, code);

3

1) ref_name is the reference name to be terminated. (input)

2) code is a standard storage system status code. ({(Gutpui)
\‘!Q te
F%u subroutine hcs_Sterminate nonumu cerminates a nu}[
reverence name from a specified segment; hes_$terminate_file and
o hCo —vcermlnate_seg completely terminate a segment given its path
i/

name or segment number, respectively.

The subroutine terfm _$singie_refnaie poeriorms che 5 Ghie
operation as hcs $te.m|nate _hame.

f*!’%

C) Copyright, 1973, Massachusetts Institute of Techrnolcgy
and Honeywell Information Systems inc. (EMD)

Subroutine Calil
2/15/73

Hame: hes-$terminate_noname
kfhis subroutine terminates a null reference name from. the
specified segment. If this is the segment's only reference name,
the segment is removed from the address space of the process.
fhis entry is used to clean up after initiating a segment by

null name; see also the MPM write-up for ncs_Sinitiate.
cdiscussion of reference

section, Constructing and

U§QQ;Q

i
‘
(]

a

For a
neames, see the MPM Reference Guide
Interpreting Names. '

declare hcs_$terminate_noname entry (ptr, fixed bin(35));

call hes_$terminate_noname {segptr, code);

1) segptr is a pointer to the segment ia question. (input)

2) code is a standard storage system status code.
(Qutput)

o+n

“he subroutine hces_$terminate_name terminates 2 specificd
non~null reference name; hcs_S$terminate_file ‘ and
ncs_SYterminate_seg completely terminate a segment given its patn
name Or segment number, respectively.

C) Copyright, 1977, Massachusetts Institute of Techno]ggy .
- and Honeywell information Systems inc. (END)

S v hes_$tevminate_s

%]

o
-
el

Subroufine Cail
2/20/73

Name: hes_$terminate_seg

-This subroutine, given a pointer to a segment in the current
process, removes all the reference names of that segment and then
removes the segment from the address space of the process. For a

discussion of reference names, see the MPM Reference Guide
section, Constructing and Interpreting Names.

Usare

declare hcs_$terminate_seg entry (ptr, fixed bin(l),
fixed bin(35));

call’hcs_$terminate_seg (segptr, rsw, code);

1) segbtr " Is a pointer to the ~ segment to be terminated.
(lnput)

2) rsw is the reserved segment switch. {f equal to 1,
the segment number should be saved in the reserved
segment list; if equal to 0, the segment number
should not be saved. (lnput)

) code is & standard storage .system status code.
(Qutput)

[N
~
o~

The subroutine hcs_$terminate_file performs the same
operation given the path name of a segment instead of a pointer;
hcs_S$terminate_name and hcs_$terminate_noname terminate a single

reference name.

The subroutine term_$segptr performs the samne oOperation as
hcs_Sterminate_seg.

in fact, only those reference names are removed for wnich
the ring level associated with the name is greater tham or equal
to the wvalidation 1level of the process. If the user needs to
concern himself with rings, he shouid refer to the MPM Subsystem
Writer's Guide section, intraprocess Access Control (Rings).

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems lInc. (CEMNDDY

LRI YNNI l_l.CS__T,» Ci‘ur.CaCe_n P "

Subroutine Catli
3/1S8/7%

Ham2: hes_S$Struncate_file

_This subroutine, giveq a pathname, truncates a segment to a
specified 1length. If the segment is already shorter than the
specivied length, no truncation 1Is done. The effect of

truncating a segment s to store zeros in the words beyond the
specifled length.

sage

declare hecs_$truncate_file entry (char(*), char(x),
fixed bin, fixed bin(35));
call hes_$truncate_file (dirname, ename, length, code);
1) dirname is the directory portion of the path name of the
segment in question. (lnput)
2) ename is the entry portion of the path name of the
segment in question. (lnput)
%) iength is the new length (decimal) of the segment in
words. (lnput)
4) code is a standard storage system error code. (Output)
\'Q §°: S ~

~

The subroutine hcs_$truncate_seg performs the same function
when given a pointer to the segment instead of the path namne.
See also the restrictions discussed in that write-up under Nojigcs.

(© Copyright, 1973, Massachusetts Institute of Technology _
and Honeywell information Systems lInc. (F}D>

Ln\..}___-.v Cr Lol x.'il__.u.:

\;'{
2

i

Subirouti a
/7

C
S

[

ne
3/1

Hlamz: hes_$truncate_seg

This subroutine, given a pointer, truncates a segment o a

specified
specified

truncating

length. If the segment is already shorter than the
length, no truncation is done. The effect of

segment 1is to store zeros in the words beyond the

specified length.

Sa

declare hcs_$truncate_seg entry (ptr, fixed bin,

fixed bin(35));

call hes_S$truncate_seg (segpir, length, code);

1) segptr

2) length

3) code

lote

is a pointer to the segment to be <truncated. Cnly
the segment number portion of the pointer is used.
(Input)

is the new length (decimal) of the segment in words.
(Input)

is a standard storage system status code. (Output)

The write attribute is required with respect to_the segment.

~
-~

A directory may not be truncated. -~

The
starting

implementation is such that pages will be thrown away
from the next page after the word number length and the

remainder of the last page will be zeroed.

The subroutine hcs_$truncate_file performs the same function
when given the pathname of the segment instead of the pointer.

C) Copyright, 1973, Massachusetts institute of Technology

and Honeywell Information Systems Inc. (EN)

“‘:‘} ..

hcsd Ty to_unlock _tack

Name: ti - . unlock_lock

Thls entry checks that the Indlicated lock Is locked by an
exlsting process, |If the process that locked the lock no longer
exists, the lock will be reset to the lock ID of calling process.
It is assumed that users of thils entry obey the convention of
locking locks wlith the system provided lock ID.

Usage
declare tfy_to_un\ock_lock entry (ptr, fixed bin);
call try_to_unlock_lock (lock_ptr, state);
1) fock_ptr Is a pointer to the 1lock whose validity fs In
question. (lnput) ’
2) state 1 If the lock Is locked by an exlsting process;

2 If the lock !s not locked;
3 If the loek was !nvalidly lockad and has bean
reset. (Output)

=
=
=

——

D,

hes_$ t%_afmt

Eotry: tty_Index$tty_abort

Thls routine Is used to reset read-ahead and/or write-behind
(F.e., It flushes.al) 170 sti1) In the buffers In tty_buf).

YUsage

declare tty_Index$tty_abort entry (flxed bln, fixed bin,
fixed bln, fixed bin);

call tty_Index$tty_abort (tw_Index, reset_swl tch, state,
code);

1) tw_Index Identifies the typewrlter channel. (lnput)

2) reset_swltch may be as follows:

1= reset on!y‘read-ahead;

2= reset oniy write-behind; else,
reset both., (lInput)

are as above. (Output) (@gr th,éfég—OMdgg>

T 3-h)

————

e — .

.

l/lcs, $ 1% _dita ch

Eptry: tty_Index$tty_detach

This procedﬁre is called to detach a terminal. Input and
output can be allowed to finish or can be terminated,.

Usape

declare tty_index$tty_detach entry (fixed biln, flxed bin,
fixed bin, fixed bin);

call tty_lIndex$tty_detach (tw_ Index, dflag, state, code);

1) tw_lIndex identifles the typewrlter channel, (lnput)

2) dflag = 0 detach, finlsh read-ahead and
write-behind, do not hangup but rather
let the typewriter lie dormant., (Only
the process currently using this
typewriter can make this call.) The
next process to invoke tty_index will
be attached to this typewriter,

= 1 detach and hangup after completing
any output. (Only the answering
service can make this call,) (lnput)

3-4) are as above. (Output) (211 hc,s,,‘;‘%—iMA—U)?)

————

lqcs,f}; %-Obfa JL.. d — PnOC,

>

Entry: tty_lindex$new_proc

Thls entry *1s also used to detach a termlnal. It does not

hangup the termina!

Usage

and makes

®

It available to a named process.,

declare tty_Index$new_proc entry (flxed bin, bit(36)
. aligned, fixed bin, fixed bin);

call tty_index$new_proc (tw_index, nproc, state, code);

1) tw_index

2) nproc

5-4)

identifies

Is the 1D
typewriter

the typewriter channel. (Input)

of the process to which this
Is now available, (lnput)

hcs__j; tg_mwf

Entry: tty_Index$tty_event

The tty_event call iIs used by the user ring portion of the
typewriter DIM to Inform the ring 0 portion of the event channel
over which all further Interprocess communication (i.e., wake-up

signals) should occur,

Usage

declare tty_Index$tty event en:
- - ent .
fixed bin, fixed bin); ry (fixed bin, fixed bin(71),

1
call tty_Index$tty_event (tw_Iindex, event, state, code);

1) tw i i
_Index identifies the typewriter channel. (Input)
2) ev
ent {it:he event channel over which subsequent
rprocess communi
(erer 4 catlion I's to occur,

f

3-14)‘ are as above, (Outptft.) (X,QJL ‘\C\Qﬁ%-’wdl?a /

™

heo$ t%_ mdix

Entry: tty_lndex

The tty_index procedure Is called through hcs_ by the User

Ring portion of the typewrliter Device Interface Module (DIM)
during Its processing of the attach call. This entry is used to

assign a speciflc typewriter channel to the current process and

to return a numeric typewriter index for use In identifying the
channel in subsequent calls to the ring 0 typewriter DIM.

Usage

declare tty_index entry (char{*), fixed bin, flxed bin,
fixed bin);

call tty_lindex (name, tw_lndex, state, code);

1) name I[s the symbollic name of the typewrliter
channel to be asslgned, (lnput)

2) tw_Index Is the numerlc typewriter Index to be used to
Identlify the typewriter channel In all
subsequent calls, (Output)

3) state s the current status of the typewrlter

channel and may take on any of the following
numeric values:

1 = channel inactive;
2 = channel actlive, waltlng for dilalup;
5 = typewriter ls dlaled up, (Output)

4) code Is a status code and may take on one of the
following values:

0 = call processed normally;
0 = error detected. (Qutput)

" —
—

hes_ b J(%__cwﬂu

*

Lntry: tty_Index$tty_order
This procedure is invoked to change the status, line length,
or code conversion modes, It |s also used to enable or disable

the quit feature and it can be used to return certain Information
about a terminal,

Usage

declare tty_Iindex$tty_order entry (fixed bln, char(«), ptr,
fixed bin, fixed bin);

call tty_lindex$tty_order (tw~lﬁdex, order, argptr, state,

code);
1) tw_index Identifles the typewriter channel. (lnput)
2) order Is the request made. (lnput)
3) argptr Is an argument for use by requests. (lnput)
4=5) are as above. (Qutput) (&h hcsﬁ%—lmd-%’)
Hotes

The orders (see Usare Immediately ager) are:
hangup hangs up the telephone connection,
info returns the structure:

declare 1 Info based (argptr) aligned,

2 id char(u),

2 pad char(s8),
2 type fixed bin;

Wm // _V-/d/f/T//
CS - -
@ i

1) id
2) pad

3) type

line_length

llsten

makebusy

modes

Page 5
10/13/72
System: 16.0

s fhe teﬁmlnal answer back code.

Is padding.

Is the kind of terminal.

co~NOOUNMEFEWN P

1BM 1050;

IBM 2741 (with MIT modlficatlons)
Teletype Model 37;

Terminet 300;

ARDS;

IBM 2741 (standard);

Teletype Model 33 or 35,

Teletype Model 38.

sets the maximum line length to the Integer

pointed to by argptr. (Obsolete, Use
modes.)

causes calls to thls data set to be answered.

prevents calls to thls data set from being
answered,

changes various typewrlter modes and then
returns the previous.settings. The following
structure Is used:

declare 1 modes based (argptr) allgned,

2 len fixed bin (init(length{modes. str))),
2 str char(128);

1) len

2) str

Is the 1length of str, 128 characters Is
probably an adequate length.

Is a string of key words representing modes
separated by commas. If a key word s
preceded by a not sign (™), then that mode is
turned off; otherwise, the mode Is turned on.
Modes not in str are not changed.

The key words and funcfions are:

can

P

an® . tDer""

100N

- does canonlcal form conversion,

WAl

A/}

PTG Y8 TEN_PROCRAMMER SUBPTENENF N
p\<355-—§%5§§ﬂ"0'10bb1

crecho echos a carriage return wupon receipt of a
1ine-feed from a terminal. (Thts mode Is
applicgble for device types 3, 4, 7, and 8
only.) -

edi ted does output conversion in edited mode.

~erkl does erase and kill processing.

esc does Input escape converslon.

11nn sets lline length to nn (or nnn).

rawi’ does not code-convert input characters.

réwo does not code-convert output characters.

red allows red and black shift characters to be
sent to terminal.

tabs Inserts tabs. If off, the tabs will be
replaced with blanks.

default Is a comblnation of modes wused to set the

standard modes without the <caller knowling

what all the modes are, Currently, default
Is equivalent to can, esc, erkl, Trawi,
“rawo., -

The previous mode settings are returned In a form that may

be used to restore the modes to thelr original settings.
For example, a quit handler would:

str = "default';
call tty order (twx, '"modes'", addr (modes), state, err);

The orlginal modes are then restored by:

call

printer_off
printer_on

quit_disable

quit_enable

tty_order (twx, '"modes', addr (modes), state, err);
turns off the printer,
turns on the prInteF.

-does not Inform traffic control of quits,.
(Obsolete)

informs traffic control of quits, (Obsolete)

TS

M

‘T\ | | MM%

dut_table

start

—onden

enters,edlit mode If the character &tFIRE
pointed to by argptr Is XXeX, where X is any
character, Otherwise, normal’ mode is in
effect. (Obsolete. Use modes,)

sends wake-up to the current process.

Status codes for all tty DIM entrles are:

1) error_table_$dec_int_assnd - the symbolic name Is
incorrect in some way.

2) error_table_$invallid_device _ the symbolic name I's
Incorrect in some way.

3) error_table_$lo_no_permisslon - an attempt was made to

access a TTY belonging.to
another process.

4) error_table_$undeflned_order_request an 11legal order request

was made.

~

hes_ ¢ Ug../maa(

Hame: tty_read
Eptry: $tty_read

The tty_read entry !s used to code=convert and transfer to
the caller's workspace data which has already been read=-ahead
from the wuser's typewriter., If a complete line has not as vet
been read from the typewriter, control Is immediately returned to

the caller after insuring the typewriter channel Is in read-ahead
mode , '

Usage
declare tty_read entry (fixed bin, ptr, fixed bin, flxed
bin, fixed bin, flxed bin, fixed bin);
call tty_read (tw_lIndex, workspace, offset, nelem, nelemt,
state, code);

1) tw_Index ldentifles the typewrlter channel. (lnput)

2) workspace Is a pointer to the beginning of the caller's
workspace Into which vread-ahead data is to be
transferred. (lnput)

3) offset Is the offset In characters from the start of the
user's workspace and Indicates where the data
transfer should begin, (lnput)

) nelem Is the number of characters which may be
transmitted to the user's workspace. Note that a
new line character will terminate the data
transfer wunless the number of characters in the
line exceeds nelem. In this case, the remaining
characters will be transmlitted in subsequent
calls, To . insure reading a 1line in proper
canonical form, nelem must be large enough to
contain the entire line as typed, (lnput)

5) nelemt I's the number of characters actually transmitted
by the read call, (Output)

6) state Is the status of the typewriter channel as
des¢cribed under tty_lIndex. (OQutput)

7) code

is the status code as described

under tty_j .
(Butput) y_index

~—

-,

P i

hcé-flg C%_ATOL-CL

Entrv: tty_1 ndex$tty_state

Thi
S entry returns the state of a typewrlter channe)

Usage

declare tty_lindex$tty_state entry (fixed bin, fixed bin,
fixed bin);

call tty_index$tty_state (tw_index, state, code);

1) tw_index identifies the typewriter channel., (lnput)

2-3) are as above. (OutDU.t) (Mkc€_$—@,\4ﬂ&%>

f
t

| ”

hcs-itg~wnlﬂ

Mame: tty_wrlite
Entry: S$tty_wrlite

The tty_write entry !s used to transfer data from the

caller's workspace to the user's typewriter. The ASCI! data in
the workspace is converted to the proper device codes on the way
to the typewriter. .If all the data cannot be written at once,

nelemt will be returned less than nelem. When this occurs, the
user ring caller must block the process and, upon wakeup, reissue
the call as outlined in the example below.

’

Usage
declare tty_write entry (flxed bin, ptr, fixed bln, fixed
bin, fixed bin, fixed bin, fixed bin);
call tty_write (tw_Index, workspace, offset, nelem, nelemt,
state, code);
1) tw_Iindex identifies the .typewrliter channel, (lnput)

2) workspace |Is a pointer to the beginning of the <caller's

workspace from which data is to be transferred.
(Input)

.
~
-

3) offset s the offset In characters from the start of the

user's workspace and indlcates where the data
transfer should begin. (Input)

4) nelem is the number of characters which should be
transferred from the user's workspace. (lnput)

5) nelemt Is the number of charactefs actually transmitted by
the write call. (Output)

6) state is the status of the typewriter channel as
described under tty_index. (OQutput)

7) code Is the status code a described under tty_lIndex,

(Qutput) . :

If all the data was not written (l.e., nelem £ nelemt), the
calling routine should flrst block and then try to wrlte out the

rest of the data. Also, there are cases when tty_write wants to
force a return out of ring 0 to allow a possible quit Iinterrupt

l’]cs_SL Xy
A

or timer runout, In these cases, It returns a code of 3000005,
The caller should update offset, nelem and recall, A proper
sequence of Instructions is: '
loop: call hes_$tty_write (--);
If nelem ™= nelemt then do;

If code a 0

then call ipc$block (==); /= g0 to sleep */

else [f code 7= 3000005 then

g0 to error;

offset = offset + nelemt;

nelem = nelem - nelemt;

g0 to loop;

end; . "~

hes_$ummanke «{35

ntry: Ips_S%unmask

This entry Is called to unmask spec!fled |PS Interrupts.

Usage

.declare Ips_$unmask_1lps entry (blit(36)

allgned, bit(36)
aligned);

call ips_$unmask_Ips (mask, oldmask);

1) mask for each bit ON in this word, the
corresponding IPS Interrupt Is unmasked.
(Input)

_2) oldmask

Is the old 1IPS mask, (Output)

[y
(N
~

(Y3 ‘Acs_i 8&’ LFs,maa//e’D

