phos_: Undocumented Entries get_cur_status list_change list_size } all are gim entries phcs_\$ assign \$ list_size \$ safety \$ unassign Name: gim_assign This procedure handles the assignment of devices and wired-down storage within the GIOC Interface Module (G!M). The Calls". The correspondence between the user callable entry points and the entry points in this accordance is shown below: points and the entry points in this procedure is shown below: ### User Entry Points hcs_\$assign hcs_\$list_size hcs_\$safety hcs_\$unassign ### Entry Point in gim_assign gim_assign\$assign gim_assign\$!ist_size gim_assign\$safety gim_assign\$unassign # Phcs_\$ get_disk_meters ### Name: get_disk_meters This procedure is responsible for obtaining the data collected by meter_disk in the segment disk_traffic_data, and copying it out into the user ring. It is also responsible for wiring and unwiring the disk_traffic_data segment, and controlling the use of the same as a resource. As disk traffic may occur during a call to phcs_\$ring_O_peek, that procedure is not adequate to observe the data collected by meter_disk. As this data does not represent statistics, but a continuous trace, consistency is important, and this special procedure, called through phcs_\$get_disk_meters, must be used. Since consistent inspection of disk_traffic_data requires that the page tables be locked, the data must be copied out to a wired data base. The segment temp_copysegl is used for this purpose, and remains wired only during the call to ret_disk_meters. As the segment temp_copysegl is a nonshareable resource, it is protected by a lock. The wait event associated with this lock is the ASCII bit pattern of "dtm_". ### Entry: get_disk_meters This entry returns a consistent copy of disk_traffic_data to the caller. If disk_traffic_data was not wired, zeroes will be returned. #### Usage declare get_disk_meters entry (ptr); call get_disk_meters (image_ptr); 1) image_ptr is a pointer to a 1024-word array where the copy of disk_traffic_data should be placed. (Input) This call can be made by calling phcs_\$get_disk_meters, with the same parameter, in other rings. # phcs-\$get-status Internal Interface Hardcore Ring 02/03/71 Entry: glm3\$get_status This is the status handling entry point for the gim. #### Usage call glm3\$get_status (devx, sap, as, os, w, rcode); - 2) sap is a pointer to the array in which status will be returned. This array is declared as follows: - 1) status is bits 0-5 and 18-29 of the first-word of the GIOC status. - 2) time is the time that the status was generated (not currently implemented): - 3) listx is the Data Control Word (DCW) list index of the DCW causing the status to be stored. - 4) dcwt is the DCW tally residue. Note: sa (0) contains only the current status (i.e., the current DCW list index). - 3) as is the upper bound of the status array. (input) - 4) os is the array subscript of the last status array element filled in by gim3\$get_status. (Output) - 5) w is non-zero if more status is walting for this device than could be stored in the status array. (Output) - 6) rcode : is an error code. (Output) # phcs-\$ initiate Same calling sequence as hcs-\$initiate This entry sets the calling processes validation level to zero and then calls initiate. It is used to initiate directories and other data bases which cannot normally be initiated in the user ring. phcs-\$initiate_count. Same calling sequence as hcs_\$ initiate_count. See comments under phcs_\$ initiate phcs-\$ list-size See phcs-\$ assign ## phcs-\$ring-0-message ``` Entry: ring_0_peek$message This entry will print a message on the 645 operator's console. Usage call ring_0_peek$message (string); or call phcs_$ring_0_message (string); 1) string(character(*)) is a message to be printed on the operator's console. (Input) ``` # phics-\$ring-0-peek Entry: ring_O_peek\$ring_O_peek This entry will move data from any location readable in ring 0 to any location writeable at the user's validation level. ### <u>Usage</u> call ring_0_peek (p1, p2, n); or. call phcs_\$ring_0_peek (p1, p2, n·); 1) p1(pointer) is a pointer to first word of data to be read. (Input) 2) p2(pointer) is a pointer to the first word of the region the data is to be moved to. (Input) 3) n(fixed binary(17)) is the number of contiguous words to be moved (0<n<1024). (Input) Phcs-\$ safety See phcs-\$assign phcs_\$tdem_attach Same as hcs_\$tdcm_attach Not called phcs_\$tdcm_detach Same as hcs_\$tdcm_detach Not called phcs-\$tdcm_iocall Same as hcs-\$tdcm_iocall Not called phcs_\$tdcm_reset_signal Same as hcs-\$tdcm_reset_signal Not called phcs_\$tdcm_set_signal Same as hcs-\$tdcm_set_signal Not called phcs-\$unassign • Lee phcs-\$assign