
Initial MULTICS

Design Description

and

Performance Specification

3/18/68

Second Dii"'a ft
C. T. Clingen

TABLE OF CONTENTS
Page·

I. INTRODUCTION AND OVERVIEW 1-1

A. Scope of Specification 1-1

B. MULTICS Objectives 1-1

c. Initial MULTICS Objective and Overview .1-J

1. Objective 1-3

2. Overview 1-3

I I • HARDWARE CONFIGURATIONS FOR INITIAL MULTICS 2-1

Ill. PRINCIPAL CONCEPTS 3-1

A. The MULTICS Process 3-1

B. Se2mentation 3-2

1. Segments 3-2

2. Segment Attributes 3-2.

a. Definition 3-2

b. Common Attributes 3-2

c. "Private" Attributes 3-3
"-

3. Segment Sharing Among Processers 3-4

a. Data Sharing 3-4

b. Procedure Shar{ng 3-4

c. lntersegmerit Linkaee Within a Process 3-5

1. Address Transformation 3-5 .

2. Dynamic Linking 3-6

TABLE OF CONTENTS (continued)

D. Process Augmentation

1. Directories and the Directory Hierarchy

a. The directory hierarchy

b. Directory contents

2. Making a Segment Known

3. Attribute Extraction and Enforcement

4. Segment Creation

E. · I nterRrocess Communication

F. Process Creation

1. Creation

2. Process Specialization

G. Process Partitioning

1. Access Domains.

2. Access Domain Enfor0ement

3~ . Supervisor Protection·

H. Processor Management

1 • Schedu 1 i ng

2. Event distribution

t. Core Management

J. Pase and Se2ment Management

1. Segment addressing

2. Page and Segment states

Page

3-8

.3-8

.3-8

.3-9

.3-9

.3-10

.3-11

.3-11

.3..:.1_2

.3-12

.3-1.3

.3-1.3

.3-1.3

.3-15

.3-16

.3-18

.3-18

.3-19

J-20

.3-21

.3-22

.3-2.3

J. Page and Segment Management by a.Process .3-23

4. Additionai Process States

K. Secondary Stora;e Management

1. Device Overflow.and Segment Migration

L. Summary

3-24

.3-25

.3-25

.3-27

TABLE OF CONTENTS (continued)

IV. THE MULTICS SYSTEM

A. Process Groups

1~ Need for Process Groups

2. The MULTICS Process Group

J. Stopping a Process Group

B. The Initialized System

1. Initial Process Creation Sequence

2. System Control Process Group

a. System Control Process

b. Answering Service Process

Page

4-1

4-2

4-2

4-2

4-3

4-4

4-4

4..;.5

4-5

4-5

3. Universal Device Manager Processe~ -- the 4-6
1/0 System ·

4. The System Skeleton 4-8

C. The Djalup-Loein Sequence

1. Sequence of Process Creation after Dialup 4-9

2. User Control Process 4-9

3. User Process Groups 4-10

a. Overseer Process

b. Working Process

D. The Quit-Restart Sequence

E. MULTICS "Daemons"

F. Summary

V. USER INTERFACES FOR INITIAL MULTICS

A. Comrnands

1. The Shell

2. General User Commands

J. Operator Commands

4-11

4-11

4-12

4-14

4-15

5-1

5-1

5-1

5-2

5-4

TABLE OF CONTENTS (continued)

V. (continued)

B. Lan~ua~es

C.· Su~ervisor Entries and Utility Procedures

1. Segment Management Module Entries

Page

5-5

5-5

5-6

2. Directory Supervisor Entry Points 5-7

3. Segment Control Entry Points 5-8

· 4. I /0 System Entry Points 5-8

5. lnterprocess Communication Entry. Points ' 5-9

6. Utility Procedures 5-10

a. Basic File System-associated procedures 5-10

b. I /0-associated procedures 5-11

c. Miscellaneous procedures 5-11

VI • PEPfO~ANCE

A. I nt roduct ion

B. Overall Reguirements

C. Res~onse Regui reinents

' .

6-1

6-2

6-4

I. INTRODUCTION AND OVERVIEW

A. Sco~e of S~ecification

The purpose of this specification is to describe a subset of MULTICS

called Initial MULTICS in terms of functional capability and targeted

performance characteristics. Important system concepts and the

interaction of these concepts are stressed with relatively little

effort being devoted to design details. The detailed design of

MULTI CS is described in the MUL Tl CS System-Programmers 1 Manual (MSPM).

Particular attention is paid to specifying the differences between · ,

MULTICS as specified in the MSPM and ·Initial MULTICS as targeted for

implementation by mid-1968.

B. MULTICS Ob jectiyes

The objectives of the MULTICS. proj3ct have undergone surprisingly .
little modification since being published in the 1965 Proceedings of

the Fall Joint Computer Conference.

Rephrasing these objectives somewhat, they may be summarized as

follows:

. - To develop a system which provides an ~nyironment for solving

a wide class of problems, which is reliable, allowing for a

type of service similar to that of a utility, and which. is

extendable or eyolyable, permitting the rapid inclusion of the

inevitable series of hardware and software additions and

modi fi.cat ions wh~ ch become desirable as the system matures •
. .

1..;.1

B. (Continued)

-To provide each user with a "virtual compu.ter" of extreme

flexibility and possessing few limitations or restrictions so
. .

that he may solve his problems, small or large, interactive or

non-interactive in a straightforward manner with no regard for

the actual hardware involved. Problems solvable in the·MULTICS

environment represent a broad spectrum of computer application
'

development, ranging all the way from program or application

system writing, compilation. and debugging to production runs by

the ultimate users.

-To permit controlled interaction among all users of the system

ranging from the broad authority of the MULTICS system-programmer

imposing sys.tem modi fieations upon all other .users to the "small

problem solver" running a prepackaged application program or

editing a pri yate file; or from the on-iline di atribution and

sharing of a proc~dure by a pr:ogrammer with his collegues to the

cooperative processing, by many concurrent non-programmer users,

of a large applications system of a shared volatile data base.

The MULTICS design has remained faithful to these goals in spite of

the pressur.es of unanticipated schedule slippages of disappointing

magnitude. It is gratifying, however, to note that although the . .
·'

MULTICS project has suffered drawbacks, it still r~present~ the only

serious effort to implement those unifying concepts which.seem to

point the way for all large centralized. computer systems of the future.

In fact, many of these concepts are applicable to any computi~g

system of the future.· It is of overriding importance to note also

that MULTICS has greater potential for ultimate growth than any other

system under development to~

1-2

c. Initial MULTICS Ob iectiye and Oyeryiew •

1 • Objective

The objective of the Initial MULTICS development effort is to

provide a basic framework which:

-demonstrates the technical feasibility and practicality of

the unique combination of basic concepts embodied in the

MULTJCS design;

-is extensible in an orderly.fashion so that full MULTJCS

may be produced from this framework; and which·

- serves as a tool for system programmers engaged in the

continuing development of MULTICS.

2. Overview

In order for this three-part objective to be met, Initial MJLTI.CS

ml.B t demonstrate basic command, file, 1/0 and control capabi 1i ties.

Briefly, each remote user must b~ able tq:

- lQg QDiQ the system, verifying his identity by typing his

password;

-create named files;

-attach file access attributes for each possible user of each

of his files;

-input information to his files, editing and listing thi.s

information as desired. (In this way EPL and EPLBSA source

files will be created);

1-.3

2. (Continued)

- compile EPL procedures and assemble EPLBSA procedures;

execute his own procedures which may in turn call and .li..ak

to many other-procedures, and;

- lQg 2fi the system to terminate his console session.

In addition, an Initial MULTICS console·user will be able to.

QMii his running program, even while output is occurring on his

terminal, and then either restart it or begin a new computation.

Procedures wdtten and executed in the Initial MULTICS environment

will be able to:

- re~d input from and write output to the user's remote terminal;

communicate with programs running on the behalf of other remote

terminal users, allowing for the cooperative processing of

shared data bases;

- perform any of the' commands (except logging in) that th'e user

can perform at his console; and

- transfer control to (i.e., mil.) any procedure· in the system to.·

which the user has proper access privileges.

Therefore, as early as Initial MULTICS, users will t-ave the

ability to create~ large programs comprised of·a large nu'mbe~

of procedures and data bases and possessing the oapabi 1i ties

provided by EPL and EPLBSA as well as the supervisory capabilities

provided by calls to the system.

1-4

. I

2. (Continued)

•

The System Operator in charge of the running of an Initial

MULTICS configuration will have the ability to:

- start ~ the system;

-enable communications lines so users can log in;

- disable lines so when users log out no more can log in.

- dump the contents of the mass storage hierarchy onto tape;

and

- shut down the system.

There are many functional capabilities which will be provided by

MULTICS but which are not essential to meeting the Initial

MULTICS objective. Therefore, for the achievemen't of Initial

MULTICS, these features need not be implemented. For example:

-the "hardcore" portion of Initial MULTICS will not be capable

of modification or extension without first being shut down.

System compatibility will not be guaranteed from one start

up to the next as extensive supervisor changes are to be

expected during Initial MULTICS usage •

-A user's procedure may be denied access to ali per.ipheral

1/0 devices other than· the model 37 teletype. All data

accessing will be handled via the File System using segment

addressing.

-There will be no absentee users.

1-5

2. (Continued)

-There will be no batch processing.

-There need be no on-line media conversion such as;bulk

tape-to-printer or file system-to-printer information

transfers.

-There will be no user access to the alarm c!'ock feature of

the system clock.

There will be no provisions for user "traps" upon access

to File System ~iles.

- The mechanism for assigning a procedure to a particular

ring will not be completely implemented via commands

' resulting in the need for program editing in order to do so.

·-There will be no accounting facilities.

-There will be no automatic load-balancing facilities provided
. .

to optimize the use of secondary storage hierarchy devices,

optimize the numb~r of users at a given time, etc.

-There need be no on-line administrative capabilities. For

example, user identifications and passwords may be pre

assembled prior to system initialization and loaded when the

system is loaded.

-There will be no incremental backup; instead file dumping

will occur after all users have been logged out of the

system immediately prior to system shut down •.

1-6

2.' (Continued)

-There will be no capability to~ a program i.e.,

suspend the execution of a running program indefinitely

and resume its execution at a later date.

System performance in terms of ability to handle large numbers

of users will not be a principal concern at first. However, the

system is to accommodate a small number of remote users initially.,

that number increasing at a targeted rate as scheduled in the last

part of this specification.

With the possible exception .of the fi rs.t item, the removal of

all the above restrictions is planned to begin upon the accomplish-.

ment of the Initial MULTICS objectives.

1-7

I 1. HARDWARE CONFIGURATIONS FOR INITIAL MULTICS

The GE 645 hardware configurations_required to support the initialization,

running and dumping of an Initial MULTICS system consist of the following

equipment:

Description Quantity 1 Quantity2

645 Central Processor Unit 1 2

645 System Controllers 2 4} .

{1:8X · 64KJ ··
or

Amount of core p~r controller (words) 128K

System Clock 1 2

EMU-302 Drum System 6 (4 x 10 words) 1 1

DS-10 Disc Storage Unit 1 2

Generalized Input/Output Controller 1 2

Magnetic Tape Controller 1 2
(with 4 Tape Drives)

Extended.Character Printer 1 2

Card Reader

1) Minimum configuration recommended for specified performance -- see

Part VI·.

2) Minimum configuration recommended for "continuous operation" with

only brief interruptions for reconfigur~tion in case of trouble or

preventive maintenance. Not required for I ni tiai Multics.

Remote consoles may be limited initially to Model 37 Tele~ypes, with the

possible additional availability of 1050 terminals. See Part VI for

number of consoles to be accommodated by l~itial MULTICS and its immediate

successors.

2-1

.

I I I. PRINCIPAL CONCEPTS

Incorporated into Multics is a set of key concepts. Although these

features are not necessarily unique to Multics, tbeir integratio~ into

a single system 1s un1que. An understanding of these underlying concepts

is necessary to an appreciation of Multics.

The principals and concepts embodied in Multics can be divided into

two classes: intrinsic, that is dealing with the facilities provided

somewhat independently of the hardware limitations imposed by any

realistic hardware environment; and technological, having to do with

the management of actual hardware and software resources in order to

provide the desired intr_insic features.

Concepts intrinsic to Multics include the following and assume the

existence of a virtual machine of essentially unlimited capacity for

the execution of each program.

A. The Multics Process

Definition: A Multics process is the execution of a time-varying

collection of all the procedures and data bases needed to perform

a task.

On the GE-645, a special segment called a descriptor segment is

associated with each process. A descriptor segment defines the

span or address space of a process by listing all the procedures

and data currently comprising the process. The contents of a
I

descriptor segm7nt may be changed as the process progresses.

J-1

A. (Continued)

No more than one processor can execute on behalf of a process at.

any one time.

B. Seementation

1. Segments

Definition: A seement is a directly addressable collection of

data and/or instructions, which collection preserves its identity

even upon becoming incorporated into a process collection. All

procedures and data bases in the Multics environment are contained

in segments.

This is in contrast to the more common approach of binding

copies of data files and procedure files into a program, whereupon

such copies can no longer be identified nor their atlrihies

respected.

2. Segment Attributes

a. Definition: Seement aHr i butes are rules of usage or

quantities associated with a segment which may be enforced

. or observed while a ~roces~ is using the segment. Although

many kinds of attributes may be associated with a segment,

the most important attributes in a shared environment have

to do with the protection of segments from unauthorized
'

usage.

b. Common attributes

Some segment attributes are identical for all users of a

segment. In Initial Mult ics, these include:

- segment size -- a segment may contain as many as 256K words

3-2

b. (Continued)

- segment location, either in core or on secondary storage

- time segment was last access~d

time segment was last modified

c. "Private" attributes

Other of the attributes associated with a segment -- the

access attributes --can be different for each user of the

segment. In Initial Multics, permissi.ble access attributes

are:

- read

- read and write

- read, write and append

- execute only

execute and read

-execute, read and write

- execute, r·ead, write and append

In most cases, the read and write attributes are used for

segments being treated as data and the execute attribute

for segments containing procedures.

Multics access attributes not to be implemented in l·nitial

Multics are:

-write only write but do not read

- append but no read and/or write -- add to the end of

a segment but no updating or reading of data interior

to the segment text

- trap -- transfer to a specified routine, usually to

compute a new access attribute.

J-3

B. (Continued)

3. Segment Sharing Among Processers

Because segments do not lose their identity when incorporated

into a process collection, the same segment m~y be shared by

more than one process at the same time. This has implications

fundamental to the understanding of Multics.

a. Data sharing

Since segments can contain information considered to be

data by the incorporating processes, the ~ version of

a data base can be provided simultaneously to more than

one process, permitting data sharing. This leads to a

notion of cooperative processin~·whereby a community of

processes can extract information from and modify a single

data base.

b. Procedure sharing

Since segments can also contain procedures, the notion of

more than one process executing in a single copy of a

procedure is natural. To be successful, however, no one

process must be allowed to change any instructions in the

procedure while it is being shared. This is enforced in

Multics by a convention requiring that all shared procedures

be invariant or pure, i.e., contain no modifiable data or

instructions and no process-dependent addresses.

Pure procedure introduc~s two more Multics concepts:

linkage sections and stacks.

Each Multics procedure makes references to other segments

indirec.tly through a linkage section associated with the

3-4

b. (Continued)

procedure. A~ of the linkage section is prepared for

each process using the procedure and maintained in a separate

data segment private to each process. All process-dependent

addresses are placed in the linkage section, thereby permitting

the procedur.e to remain free of process-dependent addresses.

Also, as a result of procedure invariance or purity,_each

Multics process is provided with a call stack which is a

data segment used by all Multics procedures in passing control

from one procedure to the next. Each procedure appends to

the stack a frame of information including volatile register

values at the time of the call, temporary working storage,

and argument information for the target procedure. Because

of this method of implementation, all Multics procedures are

recursive, i.e., they may call themselves directly or

indirectly before returning control to their callers.

C. lntersegment Linkage Within a Process

Segments referenced by a Multic~ process col~ection are referenced

directly, not "read" or "written" as are conventional files. When a

procedure in one segment calls a procedure in another segment, a

direct transfer (plus the required stack frame manipulation) occurs.

When a procedure references data within ~ data se~ment, a single

"load" or "store" instruction is executed by the processor. However,

the preparation of. machine-interpretable addresses is· necessary if

such intersegment references are to occur.

1. Address transformation

When a procedure is written and compiled or assembled, machine

interpretable addresses for called procedures or referenced

J-5

1. (Continued)

data in other segments are not yet known. In fact, such

information does not become ·known until the target segments

are incorporated.into the process collection of the referencing

procedure and it is different in general for each process. So

instead of assigning addresses at compile time, intersegment

references are made indirectly through the linkage section

which is prepared to containfault indicators, called linka~e

faults, initially and may be thought of as being empty.

In addition, each linkage section contains the symbolic name

or call name used by the programmer to name the target object.

For example, "sin" might be the call name of a sine routine

(and its corresponding procedure segment) referenced from

within a procedure. Thus, the linkage section conqists of a set

of "empty" locations reserved for machine addresses and a

corresponding set of symbolic names by which the ~rogrammer

knows the referenced objec~s.

The problem is to insert into the linkage section the addresses

corresponding to their respective symbolic names.

2. Dynamic Linking

In Multics, address insertion occurs dynamically and only upon

initial reference to the target object. In this way the work

associated with linking is performed only for those items

actually referenced in a particular process, other references

remaining un 1 inked.

To accomplish dynamic linking, each Multics process is provided

with a private data base called the Segment Name Table (SNT)

.3-6

2. (Cant i nued)

and a set of procedures, one of which IS tffi Linker.

The SNT contains entries each of which is a symbol pair

consisting of a segment call name and its corresponding machine

interpretable address, which on the GE-645 is a segment number.

Further refinements to the l~nkage section permit the translation

of names of items within a segment to machine addresses.

(Since the segment number for a given segment in general differs

in different processes, linkage sections containing references

to a given segment will differ by process and hence cannot be

shared.)

Upon initially attempting an intersegment reference, the processor

encounters the linkage fault in the linkage section and is trapped

to the Linker. The Linker and its associated procedures, running

as a part of the process, check the linkage secti~n in which the

fault occurred and finds the cali name corresponding to the fault,

search the SNT for that name discovering the corresponding

segment number, and (simplifying somewhat) replace the fault

indicator with the machine-interpretable segment number. Then

processing resumes at the point of the fault.

The link is thus completed and subsequent references occur

without the occurrence of a linkage fault.

For the sake of accuracy it is to be noted that the above

simplified description of intersegment linkage and dynamic

linking has ommitted a discussion of the Initial MULTICS

capability link to symbolically named procedure entry points or

3-7

2. (Continued)

data items within the target segment, representing a further

refinement of the ideas presented here.

D. Proce~s Augmentation

Thus far it has been assumed that all segments required by a process

are somehow made available to the process when it begins. This is

not the case; a Multics process has the capability of augmenting

(or reducing) the number of segments comprising its own process

collection while the process runs. That is, segments contained in

the system may be known or unknown to a particular process and may

chang~ from one state to the other. A known segment has been asffi gned

a segment number within that particular process; an unknown seg~ent

has not.

Thus the notion of a dynamic process address space presents itself.

1. Directories and the Directory.Hierarchy

Since segments need not be known to any process at all times,

a convenient structure for locating them and recording information

about them must be provided. The Multics directory and directory

hierarchy has been provided for this purpose.

a. The directory hierarchy

The hierarchy can be thought of as a tree structure, each

non-terminal node of which is a directory. The branches

leaving a node can lead to inferior dir~ctories or, in the

case of terminal nodes, to data or procedure segments. The

tree-like structure makes it easy to uniquely name and locate

large numbers of segments and to group them into libraries

of vari'ous kinds.

3-8

1. (Continued)

b. Directory contents

Directories are segments. Their purpose is to contain all

the segment attributes for each directly inferior segment,

be it a directory or a non-directory segment.

Each directory has one or more owners. An owner can modify

the contents of the directory thereby altering the attributes

of the directly inferior segments described in the directory.

In addition to the common attributes, such as length,

described in a directory, there is associated with each

inferior segment a list of entries-- one for each user who

may access the segment. Each entry d~scribes the exact·

access privileges to ~e permitted the corresponding user.

2. Making a Segment Known . . .

A major Multics objective is that of allowing a procedure to

successfully reference a segment which is unknown to the procedure's

process at the time of the reference. This implies that the.

segment must be made known dynamically so that dynamic linking

can then take place.

Normally a segment is made known as an indirect resu·lt of a

1 inkage fault. When a 1 inkage fau 1t occurs for an unknown segment,.

the dynamic linking mechanism discovers no segment number for the

call name responsible for the linkage fault. As a result, a set

of supervisory modules are invoked (as a part of the process)

to search tffi directory hierarchy for the segmen~ with the desired

call name.

3-9

. ·,

2. (Cant i nued)

The search is directed us1ng a set of search rules (which in

Initial Multics will be the same for each process and will in

general refer to standard libraries of segments) by a set of

modules, the most important of which are the Segment Management

Module, Directory Control and Segment Control. These modules

jointly cooperate to make known to the process du,ring the course

of the search those directories specified in the search rules.

3. Attribute Extraction and Enforcem~nt

Once the desired segment has been located, another supervisory

module, Access Control, check~ to insure that the. desired

segment is accessible by the owner of the process requesting it.

If so, that segment.attribute information which is appl io•ble to

the requesting user is extracted from the directory and placed

in data bases private to the process for rapid access.

A segment number is next assigned to the segment, which then

becomes known, and access attributes extracted from· the per-process

data bases are prepared for' the appropriate word in the Descriptor
Q

Segment so that each attempted access of the segment by the processor

running on behalf of this process will be monitored, insuring

that only that type of access specified by the segment owner is

permitted. In this way attribute enforcement is hardware assisted

and consequently relatively efficient.

Finally, the Segment Name Table is updated and dynamic linking

can begin.

.3-10

D. (Continued)

4. Segment Creation

There is another extremely important aspect of process augment~tion

namely that of segment creatipn. Each process has the ability to

create a segment of required size (from 0 to 256K words) and to

give that segment all the desired segment attribute~ by naming it

and describing it in an appropriate directory.

Thus it is possible for a single procedure contained in a process to

initiate a chain of calls to initially unknown procedure segments

resulting in the ultimate inclusion i".nto the process of all the.

procedures and data bases required for the task implied by the first

procedure.

E. lnter~rocess Communication

Definition: lnter~rocess communication is the act of one process

infor.ming one or more other processes of the occurrence of some

awaited event. This is the method used to synchronize cooperating

processes so that orderly sharing of data and sequencing of computations.

can occur.

The single requisit~ for inte~process communication is the abilit~

for more than one process to share a single mutually known data

segment. However, conventions must be established among all communicating

processes if the business of informing is to go smoothly.

Multics formalizes a set of interprocess communication conventions .
by providing each process with a set of supervisory modules to create

system-standard shared communication areas called eyent channels.

In addition, a·set of supervisory procedures are provided to each

3-11

E. (Cant i nued)

process permitting si~nals to be "sent" over these channels by

setting events and giving "recei,ving" processes the ability to easily

determine the existence of and nature of such signals once they have

been sent by testing events. Conceptually, the receiving process can

be thought of as being in a loop waiting for the occurrence of an

event until it occurs before continuing its task. Supervisory

procedures performing the functions of notify and wait are provided to

manage the use of event channels. Wait causes the receiving process

to wait for the occurrence of an event subsequently signalled by

notify in the informing process.

An additional facility making use of the lnterprocess Communication

module is the Locker, designed to aid processes in the locking and

unlocking of shared data bases so that orderly updatingiof the data

is possible.

F. Process Creation

In the Multics environment, processes are made and G.estroyed'as the

need arises. For example, when a user is granted access to the system

he is supplied with several processes to perform his tasks. This is

done by allowing a process to create and destroy one or more addiiional

processes.

In Initial ·Multios, only certain privileged processes are granted

the right to create a process the user will .not have this

capability under his control.

1. Creation

Conceptually, process creation is rather simple. First, it

consists of'creating several segments on behalf of the new process.

3-12

1. (Continued)

Among ·these segments are the Segment Name Table and other per

process supervisory data segments so that ~he~collection can

survive on its own in the Multics environment. Secondly, it

requires the recording of certain·information in system-wide

data bases so that the existence of the new process is properly

acknowledged.

2. Process Specialization

It is necessary to provide a means.by which a newly created

process can be specialized --not all MULTICS processes are

identical. This is accomplished in two ways.

First, when each process is created it is assigned to a "user";

either a person logged into the system or to the system itself

as a special process. Since different users have different

segment access privileges, the future makeup of processes owned

by different use~s is effectively controlled by the privileges of

its owners.

Second, the process creator passes to each created process, by

means of a segment called the ~rocess Initialization Table, a

procedure name to be called by the created process. When the

created process begins to run, it first calls this procedure which

in turn by a chain of calls, linkage faults, and making segments

known can cause the new process to take on the·desired structure.

G. Process Partitioning

1. Access Domains

All data and procedures referenced by a Multics process become

known to the process; as such they could be indiscriminately

3-13

1. (Continued)

referenced by each procedure 1n the process unless somehow

restricted 1n availability.

Perhaps the most compelling reason .for restricti.ng access to

segments known to a process is the need to permit some procedures

to read and write information in a known data segment while at

the same time denying uncontrolled access to the data by other

procedures (in the same·process) v.hich might vi.olate either the

conventions assumed by the data therein or the intended use of

the data. Similarly, indiscriminate access to procedures operating

hardware on behalf of ~he process can lead to chaos.

Therefore, the notion of access domains ordered by degree of

privilege are an essential feature of Multics. Because of the

ordering, access domains are envisioned as 64 concentric annuli,

called rings, numbered from the center outward as 0 to 63 with the

most privileged 11 ring 11 being the 11 bullseye 11 or ring zero. The

interfaces separating rings are called walls.

Since a process collection consists of segments, process

partitioning into rings _implies that each segment possesses an

access domain attribute or ring number describing the privileges

to be granted to it. This 1s so 1n Multics~ with an additional

segmen't attribute called the access bracket being associated with

each segment. The access bracket, which describes the rings from

which a segment may be accessed, is stored in the directory

describing each segment and, as is the case for the other access

attributes, may differ for each user ,permitted to attach the

segment to his process.

3-14

G. (Continued)

2. Access Domain Enforcement

The general strategy to be enforced is as follows:

- No procedure is allowed to access data residing in a

more privileged (inward) ring~

Procedure calls to other rings must be intercepted.

The implementation of ring-structured processes is complex.
I

However, a gross understanding can be achieved from the following

greatly over-simplified overview:

For each ring within which a process runs, imagine for the

process a collection of segments for ring n (n = 0,1, ••• ,63)

consisting of:

- A descriptor segment describing all segments known to the

process but permitting access only to those residing in

ring n. T.his is a "fragment 11 of 11 the11 'C!escri'ptor segm~nt.

A stack to be used for interprocedure calls in ring n.

This is a 11 fragment" of the call stack.

-A linkage segment containing only those linkage sections

for ring n data and procedure segments.

Each descriptor segment is initialized such that an outward

data reference to a. less privileged segment 1 s permi Hed

provided the other access attributes allow the atlempted reference

but such that an inward data reference to a more privileged segment

is prohibited.

In addition, each descriptor segment is initialized so that

outward calls from one procedure to a less p~ivileged procedure

which may be accessed or inward calls from less privileged· to

3-15

2. (Continued)

more privileged procedures which may·be accessed from outer rings

cause a wall-crossing fault. Illegal inwar-d call' attempts are

prohibited upon initial reference by placing an "illegal access"

fault in the appropriate ring n descriptor segment entry when

it is prepared as a result of checking the access bracket for the

target procedure.

When a wall-crossing fault occurs, the process traps to a set

of .supervisory proc~dures which:

On inward calls, check the validity pf USing a pa~ticular
segment "entry point 11 ·to insure that the location being

referenced corresponds to a vaiid procedure entry.
the

-On inward calls, copy argument pointers into/inner ring and

check the validity of arguments being passed.

-On inward returns, check the validity of using a particular

segment 11 return pointt' to insure that the location being

referenced corresponds to a valid procedure return.

-Switch the process to the target ring so that it uses the

appropriate descriptor segment, stack and linkage information.

Initial Multics will not allow arguments. on outward'calls.
•'

J. Supervisor Protect ion

In Initial Multics, the main application of process partitioning

will be that of supervisor protection. That is, each process will

be partitioned such that the sensitive procedures and data bases

essential to the proper !unni~g of a process will reside in

highly privileged rings so that only a few entry points are

accessible to less privileged user-provided procedures known to the

process.

J-16

G. 3. (Continued)

In Initial Multics most supervisory procedures and data will

reside in ring 0 and ring 1 with user segments restricted to

ring 32.

So far, the concepts introduced describe those aspects of a Multics

process which are independent of hardware contraints such as the number of

available central processors or the amount of core storage. They represent

those facets of a Multics process which are to be presented to the user

of a process. In reality, technological con~traints are such that it is

impossible to have a dedicated processor running for each process and

enough core memory to contain all the segments in the directory.hierarchy.

As a result, a set of concepts have been i~tegrated into each Multics

process giving each process the capability of 11 simulating11 the ideal

environment by sharing the actual hardware with all other processes.

Each pros:ess manages its own facilities in a manner compatible with all

other processes by accessing shared system-wide data bases describing

the exact state of each facility. In this context, the term facility

refers not only to hardware resources, but also other 11 objects 11 which

must be managed by a process such as segments and pages. This represents

an excellent example of the cooperative processing made poss'ible in"Multics

by segment sharing.

The following concepts can thus be thought of as a means by which each.

process implements a virtual machine ~ith a dedicated pseudoprocessor for

each process and essential~unlimited virtual memory directly accessible

by the pseudoprocessor. It is on this virtual machine that the above

intrinsic capabilities of intersegment linking, process augmentation,

interprocess communication, process creation and process partitioning

have been implemented.
3-17

H. Processor Manaoement

The fundamental problem of processor management is that of providing

each process with its own pseudop~ocessor, each slower on the average

than the real processor, given a small number of real processors.

The Multics solution is to time ·share or multiplex all available

processors among the eligible processes as follows.

1 • Schedu 1 i ng

Each process IS provided with a supervisory module, called a

scheduler, with which to schedule itself for f.uture use of a

processor. Also, each process shares a supervisory mcdule called

the Process Exchange which allows the process, when elrgible, to

receive a processor from a retiring process or, when a process's

tim~ quantum has expired, to pass the processor to the next

eli~ible process. These functions are performed with the aid of

a share~ system-wide data base containing the ready list, a list

of processes each awaiting the services of a processor for some

limited time quantum.

/

When a process has been using a processor for a duration equal

its time quantum, it is interrupted by a hardware timer. This·

causes the process to trap to its scheduler. The scheduler.makes

an entry for the process at some appropriate location in the

ready list according to the rules defined by the scheduling

algorithm; Initial Multics will use a "round robin" rule at first.

Then the Process Exchange module will select the process at the

i2g of the ready list and yield the processor to that process.

In addition~ a third state exists the blocked state. When

a process is block0d it is unable to proceed in its computation

3-18

H. 1. (Continued)

until the occurrence of some eyent. A blocked process does not

appear in the ready list.

2. Event distribution

Since it is not economical for a process to loop, waiting for the

occurrence of an event for long periods of time, the waiting

process blocks itself. The·refore, ~ means must ~e devised for a

sending process to remove the intended receiver of ~n event from

the blocked state and return it to the ready list. This is

accomplished by allowing the I nterprocess Communication functions

"wait" and "notify" ~o i.nteract with the Process Exchange directly;

when a process wishes to wait, instead of testing the awaited

event variable change by looping, it blocks itself by removing

itself from the ready ~ist of processes eligible to share a

processor. When the event variable is changed by the sending

process it then, by programming convention, must nofi fy the

recewing process by calling the Process Exchange and restoring

the blocked process to the ready list, making it again eligible

for processor tim~

Thus, lnterprocess Communication and the Process Exchange corrbine

to provide a means for distributing event s.ignals to processes

which have relinquished a processor indefinitely so as to improve

processor multiplexing efficiency.

It should be noted that the processing of hardware interrupts

such as 1/0 interrupts -- which in general interrupt a process

other than the interested pr~cess -- are treated as events and

processed accordingly.

3-19

.. I

I. Core Management

Although more than one process can have portions of its segments in

core at any one time, there may not be enough core for even one entire

process. In general, the size of the address space for any one process

may exceed the size of core memory available on any technically
•

feasible hardware system. Since segment addressing requires that the

portion of a segment being accessed reside in core memory before the

processor can access it directly, it is clear that ·there exists a

problem of manag.hng the available core and distributing it to processes
I

as required so that the required information can be placed in core.

Each Multics process does its own core space.allocation. This is

accomplished by a set of supervisory procedures comprising Core Control

known to each process and a shared system-wide data base called the

Core is allocated in fragments called grou~s. Gr~ups are comprised of

integral numbers of physically contiguous 64 word blo.cks of core and may

be of various sizes. The core map describes the exact status of each

group of core in the entire system and, greatly oversimpLifying,

each group of core is either available for use--~-- or it contains

information for some process -- used.

When a process needs core, Core Control acting on behalf of the process,

locates the appropriate group of free core and reserves it for this

process by marking it "used". That group of core may then be filled
. ,

with information for the process.

When the number of free groups falls below a threshold value, free

core must be re~lenished. The only way this can be done is to move

3-20

I. (Continued)

information in used groups to secondary storage ano then marking these

groups free again. In the case of information which has not b.een

altered, such as pure procedures or read-only data, a valid copy of

the information already- exists on secon.dary storage ~o it need not be

written out before the group is freed. In either case, the previous

contents of the group are overwd Hen or zeroed when the group is· a~signed

to contain new information so that the previous contents will not be

unintentionally revealed to subsequent users of the group.

Selection of which groups to free is determined by a replacement

algorithm which maintains a record of the recency of use of all used

groups by utilizing aGE 645 hardware feature which jndicates whether

or not a group has been referenced. The strategy then used is, using

this recency information, to free those used groups which have been

referenced least recently. ·

J. Page and Segment Mance ement

On the GE 645, all segments are subdivided into units of equal si'ze

called ~ages. The page is an ~llocation unit of logically contiguous

information as opposed to the group, which is an allocation unit of

core s~ace us.ed t·o contain a page (or hyperpage). On the GE 645

a page can have a length of either 64 words or 1024 words. In Multics,

each segment is divieed into hyperpages of equal size, where a hyperpage

is a set of adjacent pages considered to be a single unit. For

simplicity, however, it is adequate to discuss' the management·of pages

by a Multics process, hyperpage management being a generalization

of this.

.3-21

J. (Continued)

1. ·Segment addressing

A quick sketch of segment addressing on the GE 645 is an app~o-

priate introduction to page and segment management in a Multics

process.

Segment referencing is done via a segment address pair; the

first element of the pair is a segment number, the second an

offset. The segment number is the machine interpretable address

for a segment known to a particular process and is taken by the

processor to be an index to a segment descriptor word in the

descriptor segment of that process. Different processes may

assign different segment numbers to the same shared segment.

The segment descriptor word, besides containing access information

for the corresponding segment also contains the address of the

~ table for the segment.

Multics segments may be fragmented in the sense that pages

comprising a segment need not be in adjacent groups of core and

not all ~ges need be in core. A segment ~ table is simply a
,

table of machine addresses, the first address being that of the

first page, the second that of the second page, etc. The offset,

which is the second part of a segment address pair, is the location

of the desired word relative to the beginning of the segment and

1s used by the processor in determining in which page to find

the desired word. If a segment is shared by more than one process,

the page table is also shared.

Thus the processor locates the referenced wo:d by using the segment

number to locate the segment's page table and the offset to select

the proper page.

3-22

J. (Cent i nued)

~·!. Page and Segment states

In Multics, a page is either in core or missing. If missing,

a missing~ fault is placed in the corresponding page table

word. If not missing, the corresponding page table word contains

the address of its page.

A segment is either loaded or'unloaded. If loaded, there exists

a page table for the segment and the segment descriptor words in

each process to which the segment is known contain the address of

the page table. If unloaded, there is no page table for the

segment -- typically it has been destroyed to make room for more

actively referenced information --and a missing segment fault

is placed in each segment' descriptor word referencing the segment~

3. Page and Segment Management by a Process

Each Multics process contains a set of supervisory procedures

called Page Control and Segment Control by which it manages i:ts

own page and segment requirements. Since segments and their

associated pages can be shared by several processes, a shared

system-wide data base called the Active Segment Table is maintained

by Page Control and Segment Control to permit page and s'egment

management.

The Active Segment Table contains an entry for each segment

being accessed by one or more proc~sses in the system. Each entry ·

contains information in the form of a ~ ~ describing the

location of each page on secondary storage for the associated

segment. Also, each entry contains a list of all the processes

using the segment and the segment number by which th~ segment is

known to each process.

3-23

J. 3. (Continued)

When a process references a page which is in core, the reference

occurs immediately. If the page containing the desired word is

not in core, however, the processor encounters a missing page fault

and traps to Page Control in the address space of the running process.

In an unused portion of the page table wo~d containing the fault,

~e Control finds an index which locates the prop~r segment entry

in the Active Segment Table. After acquiring from Core Control a

group of the proper size to contain the page, Page Control then uses

the file map indicated by the System Segment Table index to locate

and bring into core the desired page. The page table word is then

updated to contain the address of the newly fetched page and

processing continues from-the point of the fault.

If a process references a segment for which no page table yet exists

in core, a missing segment fault is taken, when the processor

references the associated segment descriptor word, invoking Segment

Control. The action taken is similar to that taken.by Page Control

except in this case the additional effort of constructing a page

table must be undertaken.

Note that when Core Control frees core groups, it first calls Page

Control and Segment Control to remove pages from those groups.

and, if the last page of a segment has been removed, to discard

page tables, filling-the appropriate page table words and segment

descriptor words with the appropriate faults and Active Segment

Table indices.

4. Additional Process States

In order for a process to run, certain per-process segments must

be loa·ded. When these segments are loaded, the process is said to

3-24

J. 4. (Continued)

be loaded. In Initial Multics, when a process 1s created, it

will be loaded ~nd may remain loaded until destroyed. This

implies that there may exist a relatively small upper limit m

the number of processes which can exist under Initial Multics

at any given instant as determined by the amo~,Jnt of core memory

available to the system. When a mechanism is provided to unload·

dormant processes, reloading them when their services are again

requeste4 the core storage restriction on the number of processes

which can exist in the system at a given time is removed.

The decision to include process unloading and reloading 1n

Initial Multics or to delay it for.a subsequent version ha~ not

yet been made as it depends upon performance issues not yet

resolved.

K. Secondary Storage Management

SinGe all required segments can not fit into core, a hierarchy of

on-line secondary storage devices is available to the system. Each

Mul tics process cooperates in managi:ng the space on these devices

and in moving information among them. For Initial Multics, the

secondary storage hierarchy will be limited at first to one drum and

one disc.

1. Device Overflow and Segment Migration

As segments and processes are created during the normal course

of operation of Multics and as more and more information is

entered into the system, the need for space to store segments

grows. As a secondary storage device fills up, it becomes

necessary to remove segments from it and move them to another device.

3-25

K. 1. (Continued)

Eventually, Multics will have· an open-ended storage hierarchy

with removeable magnetic media permitting an unlimited amount of

overflow to off-line storage. In Initial Multics, however, the

amount of storage will have a fixed upper limit. Also, Multics

will eventually bave a storage balancing capability which will

adjust the resident location of a segment according to the usage

characteristics required of the segment and the .retrieval

characteristic~ of the available secondary storage devices 1n

the hierarchy. In Initial Multics, this balancing capability 1s

not fully implemented.

Initial Multics will, however, have the ability to cause a _

segment to migrate from one device to another as follows. When

a process takes a missing segment fault while referencing a

segment, and further discovers that no Active System Table entry

exists for the segment, it checks to see:jf the device upon which

the segment resides is overloaded or if the segment should be

moved to a device whose access characteristics better match the

access requirements of the segment. If so, it locates a device

which is not overloaded and prepares to allocate space on the new

device to accommodate this segment. This space is called a ~

file. Then an Active Segment Table entry for this segment is

created to contain not only the file map but also a move file map.

Processing then continues as usual, with th~ exception that when

ever a page for the migrating segment 1s removed from core it goes

to the new device as indicated by .the move file map. When migration

has completed, the old file map is discarded and the move file map

becomes the· new file map •

.3-26

I I I. (Continued)

L. Summary

This section has described the following concepts key to determining

the nature of a generic Multics process.

- segmentation

- intersegment linking

- process augmentation

- interprocess communication

- process creation

-process partitioning

- processor management

- core management

- page and segment management

secondary storage management

All of these concepts are supervisory in nature and fall into two

classess -- intrinsic, dealing with those features to be provided to

the user independent of the machine used; technological, dealing with

the simulation of a virtual machine upon which to implement the

intrinsic concepts.

It is important to understand that these capabilities are included in

each process running in the Multics environment. This sharing of

supervisory responsibility arid the segments implementing these

functions by all processes has led to the use of the term distributed

supervisor to contrast the Mul tics implementation of supervisory tasks

with the usual method in which the supervisor is treated as separate

from user programs.

3-27

L. (Continued)

Given the above capabilities of a single generic process, it is

now possible to describe the way in which processes are specialized

and interact to form a coherent system of mutually cooperating'

processes.

IV. THE MULTICS SYSTEM

The generic Multics process, described in terms of its significant

concepts in Part I I I, can be considered to be the_ basic building block

of the Multics system. Although the attributes of a process determine in

large measure the capabilities provided to each Multics user, the actual

assignment of one or more processes to a user requires the intervention

of a set of specialized system processes. These special-purpose processes

together with the user processes.belonging to Multics users, jointly

comprise the Multics System.

In some cases, special-purpose processes are nothing more than generic

processes performing relatively restricted control functions which are

nevertheless best implemented as separate processes; the ~ontrol processes

and overseer processes·described below are cases in point. Another class

of specialized processes deals "directly with the exclusive management of

system resources, and as such represents a partial retraction of the concept

of the distributed supervisor; the Universal Device Manager Process Group

members are examples of such processes.

It 1s useful to regard the Multics System as the first applications system

to be implemented in the Multics environment, although its implementors

are Multics system-programmers with more privileges than the usual system

programmer will have. Thus, most sub9equent system applications will be

superimposed upon the Multics System structure. The design is sufficiently

modular, however, that it can be significantly modified for special

applications or even allow the concurrent residence of more ~han one Multics

like System on the same hardware, s:hould the need arise, by combining the

building blocks in different ways.

4-1

IV. (Continued)

A. Process Grou~s

1. Need for Process Groups

A Multics process cannot run on more thary one processor at a time;

therefore, it is not possible to implement asynchronous tasking_

logic using a single process.

The ability to implement asynchronous tasking logic is important

for two reasons. First, it allows for the ~ossibility of

simultaneous pre.cessing of two or more sub-tasks compri~ing a

larger task or job. Secondly, and more importanto/ in an

environment with only a few real (as opposed to virtual) processors,

it permits a mar~ natural description of sets of non-sequential but

interrelated tasks than is possible within the constraints of the

sequential logic of a single process. For example, th~ implementa-

tion of the control logic embodied in the Multics Sys tern is best

done as a set of asynchronous but mutually dependent tasks.

2. The Multics Process Group

Asynchronous tasking
. .

is provided 1n Multics by the ~rocess ~·

A process group is a set of processes which cooperate towards

the accomplishment of some task. Each process group has a unique

identification and each member process shares certain information
I

and segments with all other processes in the group. There is a

system-wide data base called the Process Group Directory Directory

(see Section A.4 below) containing an entry for each process group

in the system. Individual process groups each possess a Process

Group Directory describing the group and certain segments shared

by all processes in the group.

4-2

A. 2. (Continued)

The wait and notify functions of lnterprocess Communication are

the means by which processe~ coordinate their processing with.

other processes in their group, much analogous to the call and
. .

return·· by which procedures within a single process communicate.

In Multics, access to segments, resource allocation and, in general,

1/0 are on a per process group basis.

3. Stopping a Process Group

Any well-designed system must make provisions for the fickleness

of its users-- in the case of humans, they make mistakes and they

change their minds. Therefore, the ability to stop the running of

a process group has been included in the Multics System.

A special process.interrupt, ~jalogous to a hardware interrupt,

has been implemented in Multics. It is called the quit interrupt

and is a means by which one process can stop another process by

causing it to be interrupted in the midst of whatever instruction

sequence it is executing.

It is not sufficient to stop just a single process, however, as it

may be a member of a process group. For this reason, each process

group which is stoppable is provided with a special-purpose process

called an overseer process. The remaining processes in the group

are called working processes. A system convention has been

established whereby, whenever a process group is to be stopped, its

overseer is signalled, whereupon ~he overseer sends quit interrupts

to each of its working proce65:S stopping th.em all in an orderly

fashion.

-4-3

IV. (Continued)

B. The Initialized System

The structure of the Multics System is best understood by observing

its behavior as a function of time. Once th~ sequence of process

creation has been outiined, the individual processes·and process

groups will be described in more detail.

1. Initial Process Creation Sequenc~

The problem is, given a 11 cold 11 machine, to bring it to a level

of which it can accept input from external users.

This is accomplished by loading a small boatload program into

the machine, which program in turn begins to input system tapes

containing Multics modules. The first of these modules are a

set of initialization procedures which conutruct an environment

in which a Multics process, with all its 11 intrinsic11 and "technological 11

functions, can run -- for example, a stack segment is provided so

that interprocedure calls can occur. Once this environment is

initialized, the initialization program creates a System Control
I

Process Group initially containing one process, the System Control

Process, and 11 retires 11 by calling wait, waiting for the system to

shut down.

The System Control Process the,n creates (see Figure 1.) a

Universal Device Manager Process Group containing, for Initial

Multics, only a single process, the Typewriter Manager Process.

Next, the System Control Process creates another process in the

System Control Process Group -- the Answering Service -- and

retires, waiting for system shutdown or system operator messages

specifying hardware or software configurations.

4-4

Figure 1 INITIAL MULTICS SYSTEM DEFINITION

t
time

I

initial i za t ion
---~--- ---!.

i

I
post

initialization

user #1
dial in

operator __________ ...;,.

login finished

· user #1

PROCESS CREATION SEQUENCE

System
Control
Process

Answering
Service
Process

- - - -:-----;-;-----. User
Control
Process

SYSTEM CONTROL
PROCESS GROUP

___ (Sfor 1- ____ _
ystem

0 erator)

Overseer
Process

(

Working
Process

-~.--------- ---------
login finished

l
time

I
I

SYSTEM OPERATOR
USER PROCESS

GROUP

Overseer
Process

Working
Process

USER lf.1
·USER PROCESS

GROUP

Teletype
> Manager

Process

UNIVERSAL
DEVICE MANAGER

PROCESS GROUP

Overseer
Process

Working
Process

USER #2
USER PROCESS

GROUP

Tape
Manager
Process

Overseer

Pro cess

Working
Process

USER li.n
USER PffiCESS

GROUP --

B. 1. (Continued)

Eventually a Load Control Process to optimize the potential number

of users on the system at any one time wi 11 be created by the

System Control Process as a part of its group; however, this will

not be implemented in Initial Multics.

2. System Control Process Group

Initially, only two processes exist. in the System Control Process

Group: System Control and Answering Service.

a. System Control Process

The System Control Process serves two functions. First, it

creates those processes necessary to permit the System Operator

to login -- the Answering Service and the Teletype Manager

Process. Secondly, i.t serves as a kind of "manager" for system

operator requests regarding desired optional system configurations.

In Initial Multics, however, these requests will be limited to

a minimal set of capabi 1 i ties, basically allowing the System

Operator to enable and disable telephone lines and to create a

Dump Process and Tape Manager process when a. F'ile System dump

is required.

b. Answering Service Process

The Answering Serv.be Process manages all eligible, but as yet

unused communication lines. Immediately subsequent to

initializatien, the Answering Service Process will respond to

a dial-up signal upon only one line-- the System Operator's

1 ine. After th~ Syst·em Operator authorizes -general remote

usage of the system, the Answering Service then 11arms 11 a set

of lines as specified by the System Operator, permitting

incoming calls to be serviced.

4-5

B. 2. b. (Continued)

The Answering Service has responsibility for initiating the

the chain of process creation which results from each dial-up

to the system. As soon as the appropriate ptocesses exist,

the Answering Service relinquishes logical control of the

communication 1 ine, regaining it again only when the user

hangs up. Thus, the Answering Service can.be regarded as a
. .

"switchboard", connecting lines to user processes as users log

into the system.

3. Universal Device Manager Processes -- the 1/0 System

The Multics 1/0 System employs a special convention for managing

peripheral devices other than on-line storage devices; this is to

devote a specialized process-- called a Deyice Manager Process--·

to the servicing of al~ members ~f a particular class of peripheral

device. All other processes desiring ·the servic~s of a peripheral

must make requests of the appropriate Device Manager Process by

means of lnterproces Communication conventions.

A p:rocess invokes the services of the Multics 1/0 System just as it

invokes any·other supervisory functions-- by calls to ring 0 or

ring 1 supervisory entry points provided for user access. The

actual mechanics of processing 1/0 requests differ radically from

those of most other supervisory requests, however. Most supervisory .

requests are·satisfied by ring 0 and ring 1 segments "known" to the

requesting process. In the case of 1/0, this is not the case. After

some of the 1/0 processing is done in the initiating process, it

places the necessary information, e.g., a line of output text, in

a segment shared with a Device Manager Pro'cess and then n~t i fies ' '

4-6

B. 3. (Continued)

the Device Manager Process that a task is ready for it. Since

there is only one Device Maney er Process for. each class of

peripheral device, many processes may use the same Device Manager

Process. The initiating process may then wait or continue its

working depending upon the amount of synchronization desired

between the logical 1/0 and phys.ical 1/0.

When a hardware interrupt signalling the completion of an 1/0

action occurs, the interrupted process restores the appropriate

Device Manager Process,. if it is blocked, to the ready 1 ist;

as ·soon as a processor becomes available to the Dev.ice Manager

Process, it processes the interrupt and, if appropriate,. notifies

the process on behalf of which the 1/0 is being performed.

This splitting of 1/0 functions across two processes has two

principal advantages. First, it provides for the. possibility

of asynchronous 1/0, with the Device Manager Process accepting 1/0

requests from another process which continues on without waiting

f'or the physical 1/0 to begin. Secondly, it permits an orderly

processing of special interrupts, the console quit interrupt

being an important example. (See D below)

In Initial Multics, because of the limited peripheral complement

to be first included, the Universal Device Manager Process Group

may contain only two processes -- the Teletype Manager Process for

. Model 37 Teletypes and the Tape Mana_ger Process used in obtaining

File System dumps.

4-7

-- ··-~---·· --------------------·---· .. •--..,---~··••-'-"•; ---~:·- ··~-.-.....~~ ~-......... .

1 ·-· I

~ .•. ---~:"'4 . ~~ :-,. ·r-~~~~~~~~-=~~-----:~~""'"':"~-:-'---~~-~~~""-~---'"~ 'l>-~~'"'-

r
MuHic~

Root
Dirac-

~
I

System_Root

(Process
'!Directory
Directory

!Project
,Directory
Directory

Login
Directory

r--'--..1....1--.... __ - I I I 1 I .
S~stem Log_· System I nit- Basic Fi.~e I!O System ·Hardcore' 11Backup I
Dtrectory ial ization System Dtrac- Dtrectory 1/0 Dir- ·Directory

Directorl! tory "BFS" "1/0" ·ectory I I
I

I ,

Traffic fSystem Coo
Co .. ntrolle ~rol, Use•.
Dir. "TC" rontrol D

T-
11 1nitialtzer 1 _ .

T I I I ·--1---''----i --···

~ Process ~~~~~~~~i D.i rectory

l
reject reject ~ ~ irecto~ irecto~y

I . Harilcore 1/0 Backup Sys-
Personnel. System lnitiali- File System Non-hardcore ·Segments tern Segments

zation Segments Segments. 1/0 System
Segments

T ra ffi c Con- Syst<
troller Seg- Canto
ments User

Contt
Segmeni ~-':.

••• per-pr~cess super
visory; data segm~nts

I
Pr.ocess Grou
Directory
Directory

p.erlprocess ---r
group data •••••
bases.

User ProAl e •• Uiser Profile Information for
information each project user--e.g. us.er' s

working directory

Registry
File
Directory

I
Information
about each
devi'Ce

ystem Pro
asses' Stor

Aren.Dir:u
"9'-""o..i-¥'-"!.!_.o ry

r---'-'-.......,. :-";:'-:·---, Answering
Service
Directory I ~~!~~1 ' I

.· Directory

Telephon I
line Operator
lnforma- Command-related
tion information

Table templates for System
Processes

L.
The Users'
System·Dir
procedures

,;s
library proced- &ubseJ of

'users for gener- system.
al user refer- procedures
ence.

subsel' of
system
procedures

Figure 2. Sv$em Skeleton For Initial Multics--Directories Only

.. ·-
System_
1 i brary_:5

subset of system
procedures

B. (Continued)

4. The System Skeleton

Upon completion of initialization, a system-wide set of directories

called the System Skeleton has been established. The System

Skeleton for Initial Multics is shown in Figure 2.

Rectangles in figure 2 represent directories. Note that Figure 2

gives an overview of the entire Directory Hierarchy within the

Multics File System; all procedures and data segments --both user-

oriented and system-supplied-- fit within this structure.

Procedure and data segments inferior to terminal directories are

not documented here.

In Initial Multics,·all segments will be inferior to the System_

Root as shown in Figure 2. System-Library_1 through System-Library_5

serve as repositories for the numerous system segments loaded from

tape as the system is initialized •

. In subsequent versions of Multics, segments inferior to the

System_Root will be those segments involved in the initialization
.

of the System. Segments inferior to the Multics_Root for the

most part will serve as special data bases for the Multics System

processes described above. However, the User Directory Directory

and the inferior User Directories-- one for each user-- will be

an important exception, these directories being used as root

directories for all user-supplied segments.

C. The Dialup-Login Sequence

Perhaps the single most imporhnt function of the Multics System is

to provide users with appropriate process groups once they have dialed

up and have been logged 1n. This sequence is described below:

. 4-8

C. (Continued)

1. Sequence of Process Creation afte"r Dialup

When the Answering Service detects a ringing data set it "picks

up the phone", creates, in the System Control Process Group, a

special process called a ·User Control Process (see Figure 1) and

11 attaches 11 the 1 i ne to the newly created process. The User Control·.

Process logs the user in by checking the.password he gives against

his user identifieation as stated in the login command, and then

creates a User Process Group containing an Overseer ,Process,

passing the communication line from the System Control Process

Group to the newly created User Process Group. The Overseer

Process then creates a (single, in the case of Initial Multics)

Working Process which is able to accept commands from the user

console.

2. User Control Process

Each potential user of the system is given a. User Control Pr.ocess.

The purpose of a User Control Process is to logfn one user. This

is accomplished by requesting the user 1 s password and comparing it

against the password saved in a Password File for the user 1 s stated

identity. Until this validation occurs, the user is assumed

unknown. Because a User Control Process runs for a potenti~lly

invalid user and because its access mLS t be carefully restricted

to special segments, including the Password File, each User Process

is "owned11 by the System Control Process Group.

The first 11 user" of the syste~, immediately after initialization,

1s the System Operator who will dial in on a special line and log

in as a System Operator. An ordinary User Control Process is

4-9

C. 2. (Continued)

created for the System Operator, but once his identity is

validated, all subsequent processes created on his behalf will

have sufficiently privileged access rights that the procedure

and data segments required to'bring the system up ci:an be . .
dynamically attached to his processes as needed.

All subsequent users will be "normal" users with access privileges

appropriate to their identities·as verified by the User Control

Process assigned to each at login time.

Thus, it is the responsibility of a User Control Process to

validate the identity of any user who attempts to log in, and

having done so to propagate his identity to all subsequent

processes created on his behalf.

In versions of Multics subsequent to Initial Multics, the User

Control Process will also have accounting responsibilities,

insuring, for example, that an otherwise valid system user is not

allowed system access if his account is out of funds.

J. User ~recess Groups

Once logged in, each user is assigned his own User Process Group.

This is done in two steps: first, his User Control Process creates

a User Process Group with an Overseer Process. Next, the Overseer

Process creates a Working Process for the user. In Initial

Multics, only one Working Process will be allowed to each user

a restriction which may be lifted 1n later versions.

4-10

C. 3. (Continued) .

a. Overseer Process

As explained in A-3 above, the principal function of the

Overseer Process is to control the orderly stopping of a

process group. In Initial Multics the stimuli to the Overseer

Process are the console quit interrupt ~nd the hangup received

indirectly through the TTY Manager Process. Most of the life

of an Overseer Process is spent in the blocked sta.te, waiting

for a signal requesting that the Working Process be st6pped.

In later versions of Multics, it is planned that the scope

of the Overseer Process be widened to accept other signals,

e.g., automatic logout requests from the Load Control Process,

and to permit the stopping of more than one W~rking Process.

b. Working Process

The Working Process is the most important process 1n the

Multics System since it is the one which does all the direct

work for the user.

When a Working Process is created by its Overseer, its 'Process

Initialization Table contains the name of a special procedure

called the listener, which thus becomes the first procedure

executed in the process. This procedure 11 listens 11 to the

teletype, waiting for a command to be issued. When a command

is detected by the 1 i stener, it invokes the mach.i nery

necessary to properly interpret the command and its arguments,

thereby initiating a 11 chain 11 of calls eventually leading to

the accomplishment of the userfs task.

·4-11 .

C. 3. b. (Continued)

Thus, it ts the Working Process which interprets all user

commands (other than login) and performs or initiates ~1e

work implied by these comrr;ands.

D. The Quit-Restart Sequence

One of the most important control functions provided by the Multics

System is that of permitting a console user to stop a set of processes

running on his behalf and subsequently either restart them or start

a new set of processes instead. This capability is essential to

any well-implemented interactive computer system •.

In Initial Multics, this capability is implemented by,means of. the

Typewriter Manager Process and the Overseer Process of a Working

Process Group.

When a console user decides that his computations are not proceeding

satisfactorily, he may push the quit button on his console. This

button causes an immediate interrupt called a console guit interrupt

at the processor even if the user's console is currently outputting

information.

Whichever process happens to be executing at the time will trap to

its interrupt interceptor, discover that the interrupt is intended

for the Teletype Manager Process, notify the Teletype Manager Proc·ess

of the event and then continue from the point of the interrupt.

When the Teletype Manager Process acquires a processor, it interprets

the nature of this particular interrupt, discovers it to be a console

quit interrupt and notifies the Overseer Process of the target procf)ss

group by sending it a stop event.

4-12

D. (Continued)

When the notified Overseer Process, which is usually blocked waiting

for a stop event, acquires a processor, it is able to quit all processes

in the Working Process Group, regardless of_ their current activity.

(In Initial Multics, this entails only one Working Process). When

the Overseer receives a stop event, it issues a special process

interrupt, the quit interrupt, to the Working Process. This interrupt

causes the Working Process to block itself even if it happens to be

executing on another. processor at the time and to ignore all subsequent

attempts to awaken it by processes other than its Overseer.

In this way, the console user is able to stop his Working Process

regardless of its current activity.

However, in order for the user to be able to proceed after quitting

his Working Process, hem~ t have another process which can interpret

his subsequent commands.

Therefore, immediately upon quitting the Working Process, the Overseer

Process creates a new Working Process for the user and it becomes the

effective Working Process.

The user now has two choices in Initial Multics. He can either restart

his original Working Process or he can forget' about it and use the

newly created process as his new Working Process. To restart, the

user merely types "start". This causes the new Working Process to

signal the Overseer that a restart is desired. The Overseer then

restarts the old Working Process at the point which the quit interrupt

occurred and destroys the new Working Process as it has already served·

its use-- namely to interpret the command 1mmediately following the

console quit.

4-1.3

D. (Continued)

To destroy the old Working Process, the user merely types any command

other than "startt', whereupon the new Working Process assumes the

role of the Working Process and the old Working Process is discarded.

E. MULTICS "Daemons 11

The Multics System employ~ many processes to regulate the use of its

facilities. Many of t_hese processes are invi"sible to the user, but

nevertheless are running concurrently with his processes. Processes

which are assigned to no particular user, and do not perform direct

work for the user, but instead "belong" to the system, are called

"daemon" processes. Typically, they perform load balancing and resqurce

management functions and are required in order to keep the System well

balanced.

Initial Multics will have relatively few daemons; they include at

least the following:

An ''idle" process. This process runs when no other process in the

system needs a processor.

- The File System Device Mbnitor Process. This process is notified

whenever an interrupt occurs for the drum or disc being used for

the File System. It is the only process which can interpret such

interrupts.

- The Teletype Manager Process

The Tape Manager Process

-The Initial Multics File System Backup Daemon

("Brute Force 11 Dumper Process)'

- The Answering Service Process.

4-14

E. (Continued)

In subsequent versions of Multics, additional daemons a~e planned

for implementation.

-The Multilevel Monitor Process. This daemon will be· responsible

for m~intaining a proper level of occupancy on all on-line

storage devices comprising the File Syste~ device hierarchy and

for matching the access speed requirements of each segment residing

in the hierarchy to the responsiveness of available storage devices.

- The Storage Backup and Storage Reload Process Groups. These

daemons will control the copying or segments onto removeable

storage for subsequent reloading 1n the event of a storage

·hierarchy failure, in which case it will reload the ·system.

- The Load Control Process. This daemon will limit the number of

.concurrent users on the system in order to maintain an acceptable

level of response and throughput.

-The Absentee Monitor Process. This daemon will run "background"

jobs.in the Multics environment.

- The Clock Manager Process. This daemon will be responsible for

the ealendar alarm clock.

-The Administrative Process Group. This daemon will perform

periodic auditing and accounting fuctions.

- Device Managers for other peripherals.

F. Summary

This section has described the administrative logic in Multics as

embodied in the Multics System. The building blocks used to build

this governing body of logic are the process and the process group.

The Multics System may be viewed as the first applications system to

be implemented using the Multics -process. The purpose of this

4-15

F. (Continued)

11 applications system 11 being to provide each user with his own working

process and a means by which to communicate with it and control it.

4-16

V. USER INTERFACES FOR INITIAL MULTICS

The user's view of a system is influenced primarily by the commands by
'

which he may communicate with the system, the languages with which he

can implement applications on the system and the services which his

programs can request of the supervisor. These features are described

below for Initial Multics.

A. Commands

All personnel communicating with the Multics System are conqider~d to

be "users", where the term applies to non-programmers conversing

with pre-packaged applications, Multics system programmers and even.

the Media Operators and System Operator in charge of the system. The

interface between all these users and the commands available in Multics

is a software module, known to each interactive Working Process, called

the Shell."

1. The Shell

The Initial Multics Shell serves several functions. The primary

function served is as an interpretive interface between the user

console and the command procedures in the Library Directory~

When a character string comprising a command and its arguments .
are typed, the Shell intercepts the character string and removes

the leading substring which it interprets.as a command procedure

-name. The Shell then calls the Segment Management Module, known

to each process, requesting that the named cot'M'land be located in

the directory hierarchy using standard search rules and made known

5-1

1. (Continued)

to the process. Finally, once the command has been made known,

the Shell calls the named command procedure, passing the remaining

substrings in the input character string as arguments to the

command procedure. The command then commences execution like any

other procedure. Upon completion of the command action, the

command returns to the Shell which may then request the next

command.

In addition to this primary function, the Shell a1so recognizes

a few punctuation marks forming a 11meta-syntax 11 which can be used

to combine more than one command in a single request from the

console. For example, the user can specify a sequence of commands

to be i.ssued and the Shell wi 11 forward them one at a time until

the last one has been completed. Also, the Shell syntax permits

the notion of an· immediate value command --any valid command can

assume this role by its being enclosed between the proper delimeters

which permits the user to nest commands so that; for example, an

immediate value command can be used as an argument for another

command, the occurrence of the immediate value command being

replaced by its value which IS in turn used as an argument to

the enclosing command.

2. General User Commands

Commands available to the general user of Initial Multics are

abstracted below:

login
I

permits the user to identify himself and verify

his identification by means of a password. Not

a generalized command in the sense that it must

be the first command issued after dialing in.

5-2

2. Continued)

list -displays the contents of a directory file,

listing file names, types, access modes, lengths,

and dates created and modified.

rename -changes the name of a file.

delete -deletes a file.

listacl - lists the access control information for a file.

setacl - sets the access control information for a given

file with respect t~ a given user.

delacl - deletes the access control information for a

given file with respect to a given user.

link -creates a link --a "pointer" --to a file in the

file hierarchy and places it in a specified.

directory.

edit -permits context editing of an ascii file, including

selective printouts and selective deletio~,

replacement, and insertion of text.

epl -compiles a file using the EPL compiler.

eplbsa - assembles a file using th~ EPLBSA assembler.

logout - causes the systematie termination ·of the user's

processes.

In addition to these commands, the user will be able to write

his own commands so that his own procedures can be executed.

After a process has been stopped by the console quit interrupt,

the following command convention will be followed by Initial Multics.

start -'causes the quit p~ocess to resume at the point of

interruption.

5-3

2. (Continued)

any other-causes the quit process to be discarded and a

command new process sLi.bstituted ·in its place.

3. Operator Commands

Multics provides for the recognition of Media Operators to

manage tape reels and unit record devices and one System Operator.

who has the authority to control the entire system. rn Initial

Multics these two functions will be combined.

The Operator, in addition to the general user commands will be

able to issue the following special commands:

op_here - typed after the operator logs in or quits to

permit him to type any of the following special

operator commands.

get_line- reports the status of communication lines attached

to the Generalized Input/Output Controller.

set_line -enables or disables the specified number of

communication 1 ines, allowing the operator to

permit or augment remote access to the system or

prepare to shut it down.

startup -causes the creation of the specified System Process

Group. In Initial Multics, this will be used to

initiate the dumping activity.

media lists any messages for the Media Operator. In

Initial Multics, will be used to receive messages

from the dumper regarding !;ape mounting requirements • .
shutdown -shuts down the enti~e system.

5-4

B. Lanpuaees

The languages to be provided for Initial Multics are:

- EPL (compiler)

- EPLBSA (assembler)

All features described in the specification for these languages will

be provided under Initial Multics, including the signalling and

11 non-local go-to 11 facilities ofEPL in the ring-structured environment

of Initial Multics.

The EPL language 1s of particular significance in Initial Multics

since the system 1s implemented almost exclusively in EPL. Therefor.e,

all supervisory entry points are described in EPL and obey the EPL

conventions regarding data declarations and names.

Other candidates for inclusion into Initial Multics and subsequent

versions of Mul tics include BCPL, SNOBOL 3, PAL, and F.ORTRAN IV.·

C. Supervisor Entries and Utility Procedures

There are a large number of supervisory entry points in Initial

Multics which may be called by the user from ring 32. In addition,

there are some utility procedures, some of which are designed to

intervene between the user and certain supervisory entry points

so ·as to simplify the user/supervisor interface. Many of these

entry points a~d utility procedures allow the user ~o write procedures

which can perform the same functions which the Shell invokes as the

result of user commands from the console, thereby permitting commands

to be invoked not only by a user from his console but also indirectly

by procedures he has written and attached to his process.

Initial Multics will include but need not be limited to the

following Supervisor entries and utility procedures.

5-5

C. (Coni. i nuod)

1. Sogrnent Management Modulo Entries

smrn$initiate

smm$get_segment

smm$get_set_ptr

smm$get_path_name

rrakes an entry in tho Segment Name Table

associating a given call~ (i.e., the

name by which a procedure references a

segment) with a segment located in the file

hierarchy by a given path~. (i.e., the

list of all directories between the segment

and the "root" of the hierarchy), and returns

the segment number. The segment is made

known if necessary.

- returns two segment numbers; one for the

segment whose call name is supplied and the
I

other for a related segment, such as the

named segment's.linkage segment. The segments

are searched for and made known if necessary.

An entry is made in the Segment Name Table.

This call is tailored primarily for the Linker.

returns a segment number for a segment, g1ven

the segment call name,:provided an entry for

the call name alr~ady exists in the Segment

Name Table.

returns the path name of a segment given its

segment number.

smm$set_name_status - a general-purpose call combining many of the

above capabilities. Permits, for example,

the location of, creation of, or ·copying of

a segment.

5-6

1. (Continued)

smm$terminate - "d i sassoc ia tes" a call name from a

segment number, remov1ng an entry from

the Segment Name Table. Is the converse.

to smm$initiate.

2. Directory Supervisor Entry Points

1-ist_dir - itemizes the contents of a directory.

status

chname

del entry

readacl

writeacl

set$copysw

appendb

appendl

- .itemizes the contents of a single specific

entry in a directory.

changes name of an entry in a directory.

- deletes a specified entry in a directory,

first deleting the segment to which the entry

points.

- returns the Access Control List of a non

directory or the Common Access Control List

of a directory.

- replaces the entire (Common) Access Control

List for a specified directory or non-directory.

- change the setting of the~ switch for a

specified segment. If on, each user of this

segment will get his own private copy.

- creates a new branch, i.e., set of segment

attributes, in the file hierarchy by appending

it to a specified directory. This is how a

segment is created.

-creates a new li~k in a specified directory.

A link is a "pointer" to a segment described

elsewhere in the file hierarchy and can be

used to reference the segment by pointing to

its branch.

2. (Continued)

setml

movefile

changes tffi maximum length of the segment

specified.

- moves a segment from one section of the

hierarchy to another.

3. Segment Control Entry Points

uim$truncate_seg

oheck_ring

- reduces. length of a segment by discarding

information at the end of the segment.

- checks whether a given set of segments 1s

accessible from a specified ring. Important

for.validating arguments passed on inter_ring

calls.

4. 1/0 System Entry Points

attach

detach

associates an ioname to a device (or another

ion.04me) within the framework of a process

group; defines the ~ and the mode associated

with the attachment. An ioname is a symbolic

name which identifies a device or a frame

(a frame is a data item which may be read

from or written into as if it were a device}.

The~ of the attachment specifie~ the nature

of the object associated with the ioname (tape,

.printer, file, etc.). The mode describes

certain characteristics related to the attach~

ment (e.g., readable, writeable, appendable,

random or sequential access, etc.)

- removes the association established by an

attach call. .

5-8

4. (Continued)

1 ocala Hach - identical to attach but the scope of

attachment is specific to the process rather

than to the group.

divert suspends any current 1/0 on the specified

attached device and allows immediate

initiation of new 1/0 on the .specified new

i oname.

revert - reinstates the original attachment suspended

by the previous divert call.

reset read - deletes unused read-ahead data associated

with the specified ioname.

resetwri te -deletes unused write behind data associated

with the specified ioname.

abort cancels any physically incomplete previous

read and write calls with the specified ioname.

read - reads into the specified workspace, the

. requested number of elements from the frame

specified by the given ioname.

write -writes from the specified workspace the

requested number of elements onto the frame

specified by the given ioname.

5. I nterprocess Communication Entry Points

ecm$create_ev_chn

ecm$delete_ev_chn

ecm$decl_ev_call_chn

ecm$decl_ev_wait_chn

- creates and deletes an event channel

declares an event channel to be of type
"event .call" or "event wait".

5-9

' .

5. (Continued)

ecm$set_call_priority

ecm$set_wait_priority

ecm$give_access

ecm$set_event

wc$wait

wc$test_event

6. Utility Procedures

assigns priority to event~call channels or
to event~wait channels in the proces5.

-gives access of an event~channel to a list
of process groups.

- records the occurrence of an event in the
appropriate event_channel and wakes up the
corresponding process.

-causes a process to wait.for an event to occur.

-tests if an event has occurred.

Only the more important utility procedures are listed here.

a. Basic File System-associated procedures

These procedures serve as simplified interfaces with many of

the Directory Supervisor entry points described above.

change_name

delete_entry

·- removes an old name from a directory and

adds a new name.

- deletes an entry (and the associated

segment if it is a branch) from a directory.

append_branch -adds a branch to a directory.

append_link -adds a link to a directory.

set_max_length - sets the maximum length of the segment

associated with a branch.

move_f!ile -moves information associated with one entry

to another in a directory.

set_ copy - sets the copy switch for an entry so that

each user of the segment gets his own copy

of the segment.

5-10

a. (Continued)

set_reterHion_date - sets the retention date for an entry.

truncate_seg

check_ access

- truncates a segment.

- obtains the effective mode of a segment.

b. I/O-associated procedures

read_cs

wri te_cs

read_in

wri te_out

- obtains a string of characters from a

segment.

- puts a string of characters into a segment.

- reads a string of characters from the user

console.

-writes a string of characters on the user

console.

c. Miscellaneous procedures

get_calendar - obtains the current calendar 'clock reading·

in microseconds and converts it to a readable

data-time fol'lll.

5-11

VI. PERFORMANCE

A. I ntrodudion

The purpose of the following set of performance specifications is

threefold:

1. It is meant to define consistent sets of capabilities and performanc~

goals representing the achievement of useful systems at specified

times.

2. It is meant to help focus attention on those Mul tics functions

the performance of which is critical to the usefulness of the

system.

J. It is meant to serve as criteria in balancing performance vs.

function as the system is modified and augmented throughout its

pr~liminary development sta~es.

The following specifications are not intended to represent a se.t of

rigid performance and schedule requirements by which to judge the

failure or success of the Multi cs System;. c:learly many acceptable

trade-offs are possible. Instead they are intended to serve as a

commonly agreed-upon reference about which to define further refinements

and·extensions as actual system performance becomes more sharply

defined.

6-1

VI. (Continued)

B. Overall Requirements

Before stating the performance goals, it should be noted th~t the course

of action for the Multics project is to continually integrate modules

into the system so as to add new ~pabilities while continually

tuning various system components so as to improve performance. Hence,

the system will have both increasing capability and performance as ·

time progresses.

The short range goal is to produce what is specified within this

document as Initial Multics, with a small number of users utilizing the

system as a Multics development tool and obtain_ing reasonable response

time. The medium range goal is to produce what is often called.Prototype

Multics which is a sy.stem capable of replacing CTSS with some thirty

users obtaining."reasonable 11 response time.

For the purpose of this document, "reasonable" response time is

defined as being r~ughly equivalent to that obtainable on CTSS. The

maximum number of users who can use the system is defined as that

number which allows each user to obtain reasonable response irrespective

of what the other users are doing. Of course it is assumed that the

users are not cooperatively trying to o~erload the system; therefore,

there will be a "normal" distribution of various types of work being

done by the users.

No attempt will be made to define and measure tbe cost of using Multics

beyond stating the minimum acceptable number of concurrent users at

various stages of development given the hardware configuration outlined

in Sect ion I I •

6-2

B. (Continued)

A graph of targeted performance and capability goals 1s g1ven 1n

Figure 3.

3;::

Number of users (f)

0

1E -+-"
r-i I II
::J

to fully load
::2:

r-i

c ro
II -+-"

the system

" ·-
II

c

Months 1 2 3 4 5 6 7 8 9 10

Figure 3.
Tareeted Performance and Capability Goals for Multics in 1968

-The system numbered I contains Initial Multics without

languages,quit-start capability or Backup Dumper.

-The system numbered II is Initial Mul tics.

-The system numbered I I I is Initial Multics with improved

(f)

0

-+-"
r-i

::J
::2:

(J)
CL
>-.

-+-"
0

-+-"
0
1...

CL

11

capability for the Backup-Multilevel system and various new

commands.

-The system numbered IV is I I I with an accounting system and

various new commands for general usage.

12

Although this specification deals primarily with Initial Multics

(System I I in Fig. 3), the performance of system I on May 1 is of

IV

·--

interest as it can be used to 'get a reasonable judgment on the likiihood

of Initial Multics attainment by July.

6-3

. I

VI". (Continued)

C. Response Requirements

Listed here is a set of possible "transactions" to be performed with

the value of maximum allowable mean response time. Each transaction ·

is specifred by its beginning and ending point. The times given are

goals for the fully loaded systems defined by _Fig. 3 and the single

processor configuration of Section I I.

1

2

3

4

5

6

7

8

9

Transaction

dial-up

dial-up and login

command
acknowledgment

trivial commands:
commencement of
result delivery
(echo) .

5 invocations of
t r i v i a 1 (echo)
command requiring
minimal typing

typeout of 30
lines by edit

type-in of 30 lines
to edit

trivial edit; e.g.,
modify a line

epl compilation of
"end statement"
program

Beginning Pt.

Camp. of
dialup

Camp. of
dial-up

depression of
carriage
return after
command type- .
in

depression of
carriage
return after
type-in

commencement
of type-in of
command

start of
typeout

start of
type-in

Ending Pt.

response from
system that
dialup is rec 1 d

·response from
sy~tem that
user is logged
in and may type
a command

"wait" typeout
signifying ·
command has
been receiv~d

commencement
of typeout.by
command

"ready 11 print
out after
completion of
5th echo

finish of
typeout

end of type-in

depression of completion signal
carriage return at console
after type-in

type-in of
epl command

6-4

ready typeout•at
command completion

.10 sec

1 min

3 sec

10 sec

.. 70 sec

. I

,/
t

1.2x ../
typewriter
speed .

40 words/min /

10 sec

~ min

C. (Cant inued)

10

11

12

13

Transaction

eplbsa assembly
of 11end statement 11

eplbsa assembly of
2-J source page
program

epl compilation
of 'ltyp ical 11 program
of 2-J source pages

sequence of links,
lists, edits

Beginning Pt.

type-in of
command

type-in of
command

type-in of
command

beginning of
command
sequence

Ending Pt.

ready typeout
at command comp.

ready typeout of
command completion

ready typeout
at command
completion

end of
command
sequence

5 min

30 (nin

time to
perform
similar

/

runs on CTSS

14 quitting

15 quitting and
starting

16 interactive resp.
within some
procedure

17 tight computation
loop which would
take 10 sees if
wired down with
only one user on
system.

depression
quit button

depression of
quit button

depression of
carr iag.e
return

start of
computation
by clock read

response b.y
quit responder

continuing of
operation

beginning of
typeout

end of
computation
by clock read

10 sees

JO sees

10 secc

1-2 mws

Times should be considerably better for a lightly loaded system or a

system with more resou~ces; e.g., 2 processors.

It is suggested that system performance b~ measured by h?-ving the

r:equ ired number of users perform a standard ~'script" comprised of

some or all of the above transactions, the response tg each .of which

would be measured and averaged.

6-5

·/

