
TO:
FROM:
DATE:
SUBJECT:

MSPM Distribution
M. A • Pad 1 i psky
02/03/69
88.2.01

The attached issue of section 88.2.01 defines a subset
of EPL which is more restrictive than the PL/I subset
defined in section 88.2 (06/24/66). 88.2.01 supersedes
88.2 on any points where there is conflict. Pending
detailed review of 88.2, however, any information which
it contains which is not superseded by 88.2.01 (or by
88.2.02) remains valid. (The cover letter to 88.2.02,
02/09/68, which anticipated a section on user interfaces
to occupy the 88.2.01 position, may be ignored ·in that
respect.)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 88.2.01 PAGE 1

Published: 01/31/69

Id~ntification

EPL Subset for System Programming
· R.M. Graham and R.C. Daley

Puroose

The current implementation of EPL generates very inefficient
code in certain cases. This section describes a restricted
subset of EPL. This restricted EPL, REPL, excludes all
of those constructions which generate inefficient code.
All future use of EPL by Multics system programmers should
be limited to REPL except by special permission. There
are two aspects to the definition of restricted EPL.
The fir'st is the precise definition of the subset. The
second is a set of stylistic forms and standard practices.
The purpose of these rules is to suggest ways of accomplishing
standard functions·which result in the most efficient
code.

Definition Qf ~

REPL is defined to be EPL with the following features excluded.

1 •

2.

3.

4.

s.
6.

7.

All varying strings.

All adjustable strings, arrays, and structures (including
the use of asterisk for parameters) .•

All fixed length strings longer than 36 bits or 4
characters.

The substr function and pseudo-variable.

Blocks.

Strings, arrays, and structures as arguments.

Fixed binary variables with precision greater than 18
(except as noted in the next paragraph). .

The following exceptions to the above rules are automatically
approved. ·

1. The use of a prohibited data type as an argument
or a parameter in order to interface with another

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 88.2.01 PAGE 2

module which has not yet been recoded in REPL or
one whose interface was engineered for users.

2. Fixed binary variables of precision greater than
18 ~hen the.ma~nitude of the quantity.involved must
by 1ts definit1on exceed 18 bits in s1ze. (Actually
the object is tc; avoid~ whenever possible~ any intermediate
results which have fixed precision greater than 35.)

Style and Standard PractJce

The following standard practices and stylistic rules have.
been observed to produce expecially good code and sh~uld
be used whenever possible. There·may, in fact, be equally
efficient ways of achieving the same functions; however,
the following rules are known to produce as good code ·
as EPL can be expected to produce for any method of carrying
out the same function.

1. Any scalar argument which is to be used more than once
in the procedure should be copied into the stack immediately
upon entering the procedure. Note that REPL does not
permit other than non-string sea lars as arguments· to
procedures.

2. To conmunicate a string which does not exceed 4 characters
or 36 bits~ to another procedure~ pass a pointer to the
string. The callee then uses based storage to refer to
the string.

3. Whenever strings are refe'rred to using based storage they
must be a 1 igned.

4. To communicate arrays to another procedure pass a pointer
to the zeroth element of the array. The callee then uses
based storage to refer to the array.

5. Arrays should be limited to one dimension and should be
declared with lowest subscript equal to o. This rule
is necessary to make rule 4 work. It also estab.lishes
a uniform practice.

6. If a called procedure requires the length of an array or
string, the length should be passed as a separate argument.

7. To represent a string longer than 4 characters or 36 bits
use an array whose elements are ~ characters or 36 bits

..

...... ,..

MULTICS SYStEM.;.PR'OGRAMMERS .. MANUAL · SECTION. 88.2.01 PAGE 3

or some sub-multiple. F. or. example, the pro.ce~ure cal flr
Is passing a _s_tring of characters to the procedure cs ee,

ca ller:proc;

del x(0:10) char(4),

n f i xed b in (18) ,

p ptr;

p == addr(x(O));

n = 8;

ca 11 ca 11 ee (p, n) ;

callee:proc(p,n);

I* This is an example of word by word accessing */

dc_l (p,q) ptr,.

(i;~,m) fixed bin(l8),
\.

w(0:10) char {4) based(p);

de 1 y (0 : 1 0) c ha r (4) ;

q • P; m • n;

do i = 0 tom; y{i). q -> w(i); end;

end· ,
8. To scan a string cnaracter by character, the string I

should be treated as an array of single character
elements using based storage, rather than using the
substr.function. For example, callee has been passed
an argument which is a string of 41 or fE;!wer characters.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BB .2 .01 . PAGE 4

ca llee: proc (p, ri) 1

I* This is an example of character by character accessing*/

del (p,q) ptr, (i,n,m) fi"xed bin(17),

endJ

de 1 1 w based (p) ,

2 c(0:40) char (1),

1 y,

2 c(0:40) char(1)

q • PJ m • n1

do i•l tom; if q -> w.c(i) • 11 a11

then y .c(i) • 11 b11 1

else y.c(i) • q -> w.c(i)J

9. Concatenation should not be used unless the maximum length
of all results does not exceed 36 bits •

..

