
TO:
FROM:
SU8J:
DATE:

MS PM Distribution
R. M. Graham
Pointer Data
r:1l /09/68

The attached section (88.2.02) for the most part gathers
together the definitions of the Multics standard data
types and their identification codes which appear in sections
88.2, 8D.1.00, 8P.2.01, and 8P.2.02. The format for short
varying strings, soon to be implemented in EPL, is defined
here. It also exoands the definition of pointer data.
In addition, both argument list elements and specifier
elements are defined to be pointer data, thus expanding
their format. 88.2.02 supersedes those portions of 88.2
which deal with data type representation. The remainder
of 88.2 will someday be superseded by 88.2.01, User Interfaces
with the Multics System, and 88.2.03, Intra-System Module
Interfaces.

There are now three subclasses of pointer data:

i) External: This is the old its form,
0 17 18 29 30 35 36 53 w 66 I seg ~ its II ,1oc m

where seq is the segment number and ~ is the
location within seq.

ii) Internal: This is the new form,

0 17 18 29 30

m ~~
35~

1oc VJ/J//1/1!///ff/J//llA

where the se~ment number, ieg, is understood to be
the segment 1n which this nternal pointer resides
and loc is the location within seg.

iii) Link: This is the form used in the linkage section,

0 17 18 29 10 35 36 53 54 65 66 71

where both the segment number, seq, and the location
within it,~~ are defined by auxiliary information
pointed to by sand e. This is usually accomplished
by invoking the linker (either via the ft2 fault
or by direct call1 see 80.7.04).

It should be noted that the only way to be certain of
accessin~ correctly a pointer datum# without programmed
examinat1on of the datum# is to use the instruction#

eapbp datum#*

Use of the instructions (suggested in 80.7.02)

ldaq datum

staq add

to move a pointer datum will no longer work correctly
in all cases. Since link type pointer data contains a
self relative quantity (g) it may not be moved at all.
Internal type pointer data may not be moved out of its
segment. Use of the new sequence#

eapbp

stpbp

datum#*

add

PAGE 2

will of course force any link involved. To allow movements
without forcing links see the further comments in 88.2.02.
All three pointer types may also contain a modifier# m#
indicating further indirection: see 88.2.02 for further
details.

Argument lists for a standard call and specifiers are
both composed of pointer data. Hence1 the above comments
also apply to argument lists and spec1fiers. Section
80.7.02 and other relevant MSPM sections will be revised
in the near future to reflect this enlargement of pointer
data.

MULTICS SYSTEM-PROGRAMMERS' M4NUAL SECTION 88.2.02 PAGE 1

Published: 02/09/68

Identification

Multics Standard Data Types
R. M. Graham

Purpose

This section specifies the Multics standard data types
and defines their representation in the GE 645. All arguments
for normal user interfaces with the system must be limited
to data types from this set. Thus a language translator
producing programs to execute in Multics need know how
to handle only a small number of rather simple data types.

Introduction

The following topics will be discussed in the order in
which they are listed:

1 •

2.

3.

4.

s.
6.

7.

8 •.

A listing of Multics standard data types and their
identification codes.

Elements of an argument list.

Representation and detailed discussion of each non-string
scalar.

The representation of strings general comments about
free storage (for varying strings), and substitution
rules for strings.

Specifiers

Dope

Accessing of array elements.

Representation and detailed discussion of varying and
non-varying string scalars, arrays of non-string scalars,
and arrays of varying and non-varying strings.

In the following discussion a "word" is defined to be
a 36-bit, GE 645 machine word. A ''word-pair" is defined
to be a pair of contiguous 36-bit, GE 645 machine words,
the first of which is located at an even memory address.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 88.2.02 PAGE 2

Summary of Data Types

The Multics standard data types and their identification
codes are listed below. The .identification code is used
in calls (see 8D.7.02) and in symbol tables (see 8D.1 .00).

ID Code

1

2

3

4

5

6

7

8

9

10

1 1

12

13

14

15

16

17

18

19

20

21

Data Type

single-word integer

double-word integer

single-word floating-point

double-word floating-point

single-word integer complex

double-word integer complex

single-word floating-point complex

double-word floating-point complex

non-varying bit-string

long varying bit-string

non-varying character-string

long varying character-string

pointer data (external, internal, and link)

offset data (offset from a pointer datum)

label data

entry data

1-dimensional array of type 1

1-dimensional array of type 2

1-dimensional array of type 3

1-dimensional array of type 4

1-dimensional array of type 5

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 88.2.02

ID Code

22

23

24

25

26

27

28

29

30

31

32

39

40

41

42

Data Type

1-dimensional array of type 6

1-dimensional array of type 7

1-dimensional array of type 8

1-dimensional array of type 9

1-dimensional array of type 10

1-dimensional array of type 11

1-dimensional array of type 12

1-dimensional array of type 13

1-dimensional array of type 14

1-dimensional array of type 15

1-dimensional array of type 16

short varying bit string

short varying character string

1-dimensional array of type 39

1-dimensional array of type 40

Argument List Elements

The Multics standard call is defined in BD.7.02. The
argument list described in that section consists of a
list of pointer data. What each argument list element
is actually pointing to depends upon the data type of
the :corresponding argument. There are two cases:

PAGE 3

i) Datum is a non-string scalar (types 1-8 and 13-16 above):
In this case the argument list element points directly
to the datum. If the datum occupies more than one
word the element points to the first word of the datum.

i th element in 1-----.,...
ar ument list Z ..,. datum (i th argument)

ii) Datum is a string scalar (types 9-12. 39-40) or any
1-dimensional array (types 17-32. 41-42): In this
case the argument list element points to a specifier
which in turn points to the datum (or to an area in
which the datum is found) and to dope for that datum.

MULTICS SYSTEM-PROGRAMMERS~ ~NUAL SECTION 88.2.02 PAGE 4

"'.

A specifier contains two or more its pairs. hence. it ~
is process dependent. Dope contaTnS information describing
the datum and is process independent. The datum is located
by using both the specifier and the dope.

ith element in

argument list

Non-String Scalars

The following is a description of the representation of
each of the non-string scalar data types. The identity
of each type preceeds its description.

1) Single-word integer: Stored in a single word in the GE 645
hardware format for a single-word fixed-point number.

where N is a signed integer in 2~s complement form.

2) Double-word integer: Stored in a word-pair in the GE 645
hardware format for a dpuble-word fixed-point number.

0 1
~6 7JJ l !

N

where N is a signed integer in 2 ~s complement form.

3) Single-word floating-pointa Stored in a single word in
the GE 645 hardware format for a single-word flqating-point
number.

35

J
E M·

where both E and Mare signed integers in 2~s complement
fprm. E is the exponent (base 2) and M is the mantissa.

' ..
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BB.2.02 PAGE 5

4) Double-word floating-points Stored in a word-pair in
the GE 645 hardware format for a double-word floating
point number,

Cb89 35 36 71

E
II

where E and Mare signed integers in 2's complement
form. E is the exponent (base 2) and M is the mantissa.

5) Single-word integer complex: Stored in a word-pair,

6)

real ljimaginary

where each word is a single-word integer, the first word
is the real part, and the second word is the imaginary
part.

Double-word integer complex:
word-pairs,

Stored in two consecutive

where each word-pair is a double-word integer, the first
pair is the real part, and the second pair is the
imaginary part.

7) Single-word floating-point complex: Stored in a word-pair,

8)

real I imaginary I
where each word is a single-word floating-point number.

Double-word floating-point complex:
consecutive word-pairs,

t-------•i ----11 ~::~inary
Stored in two

where each word-pair is a double-word floating-point
number.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 88.2.02 PAGE 6

13) Pointer: Stored in a word-pair. A pointer datum defines~
directly or indirectly~ aGE 645 machine address.
The indirection may be more than one level~ i.e.~ the
pointer datum may be an arbitrarily long indirection
chain. Let s7q be a segment number and loc be a
location with1n that segment, where both seq and loc
are unsigned 18-bit integers. In addition, let m be an
indirect modifier. Then a pointer datum consists of a
chain which is a mixture of the following three types
of elements all of which contain an indirect modifier,
except for the last one. Stated another way, a pointer
datum is such that the machine address which it defines
may be obtained by executing a single effective address
type instruction.

i) Externc;ll:

0 17 ~30 3, 36 ,3 ~66 7.1 I seg ~ its ll 1oc • m I
where both seg and Joe are explicitly stated and!!! is the
indirect modifier (if any). The shaded part of the
word-pair is ignored, but should, in general, be zero.

ii) Internal:
0 17 18 29 30 35 36 71

l1oc-ml~

where]Q£ is explicitly stated and seq is the number of
the segment in which this datum resides.

iii) Link:

\ h

0 17 18 29 30 35 36 53 54 65 66 71

~ ft2 ~
I

d ~m~
where h and d lead to descriptive information which defines
both seq and-12£. This definition is usually accomplished
by the'linker, either because of an ft2 fault or by a
direct call to the 1 inker: see 80.7 .04.

As an aid to· understanding pointer data and its manipulation
we w i 1 1 ca 1 1 ,

0 17 18 29 30 35 36

I seg ~ its II loc

53 54 65 66 7~

~0

MULTICS SYSTEM-PROGRAMMERS"" ML\NUAL SECTION 88.2.02 PAGE 7

the normalized form of a pointer datum. This form, since
the modifier is zero, directly defines the machine address
(seq, loc). The most important character.istic of all
three types of pointer data is the following: If datum
is the location of a pointer datum, then executing the
instructions,

eapbp

stpbp

datum,*

temp

will place in the word-pair at temp the normalized form
of the original pointer datum. Use of the pair of instructions
above is the simplest, foolproof method of moving pointer
data. It has the disadvantage, however, that any links
in the chain of indirect word-pairs are established.
A link is established•by invoking the linker. The linker
replaces the link by an external type pointer (its).
In order to obtain the segment number to put in~e its,
the segment must be located in the file system, even-rf
it is never actually referenced.

If the premature establishment of links is considered
to be too costly, one of two alternative methods for moving
pointer data may be used. The first alternative is to
construct an indirect external pointer to the pointer
datum and move it. For example,

eapbp datum

stpbp temp

lda =020,dl

orsa temp+1

The contents of~ wi 11 then be,

*

A disadvantage of this method is that comparison of pointer
values will give unexpected results. For example, suppose
that a and b are both pointer type variables, then after
the substitution, · ·

a = b

the contents of 2 are not equal to the contents of £!
Rather, s points to whatever£ points to by means of pointing
to Q with an indirection modifier:

b: !es/1 ~jJ its II loc W£,4 0

a: lWJi! M its lllocbofWIJA * 1-

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 88.2.02 PAGE 8

Another disadvantage of this alternative is that the indirect
chain increases in length each time the pointer datum
is moved.

The second alternative is to test for the type of pointer
and only if it is not external build the indirect external
pointer. The following code sequence will test to see
if datum contains an external pointer,

lda datum

ana =077,dl

cmpa =043,dl

tze extptr transfer if external pointer

If the datum is an external pointer it is moved with the
instructions,

ldaq datum

staq temp

Using this alternative, the be~inning of the indirect
chain is always an external po1nter after the first move
of the datum. Hence, the chain will not grow in length
on successive moves.

External pointer data is process dependent since its
representation includes a segment number. On the hand
it is not location or segment dependent, hence, it may
be moved about freely. Internal pointer data is segment
dependent, hence, it may not be moved out of its segment.
Link pointer data is location dependent and may not be
moved at all. However, both internal and link pointer
data are process independent, which is their principal
advantage since they may be generated at compile or assembly
time, whereas external pointer data must be generated
during execution.

14) Offset: Stored in a single word,

I 0 17 18 36

. delta Wf/1/ff§J/Jg]

where delta is an offset relative to some pointer.
An offset is process independent. The connection
between an offset datum and the pointer for which
it is an offset is a function of the procedure
using the datum.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 88.2.02

15) Label: Stored in three consecutive word-pairs~

I-Ll program_point

_ _ _ stack frame

error check

PAGE 9

where the first two word-pairs are both pointer data
(type #13) and the last word-pair has not yet been
defined. Label data is usually used to communicate
an abnormal return point to some other procedure:
see 80.9.05. Program_point is the address (recall
that pointer data defines a machine address)~ in
~ linkage section 2f the procedure~ which the
label~ defined~ of instructions wh1ch will re-
establish the correct value of the linkage pointer
(lb.-lp base pair) and transfer to the proper
location within the procedure: see 80.7.01~ 80.7.02,
and 80.7.03. stack frame is the machine address of
the base of the stack frame in use at the time when
the label datum was defined~ i.e.~ the contents of
the sb~sp pair at that time. error_check may
someday contain error checking information.

16) Entry: Stored in three consecutive word-pairs~

entry_point

stack frame

error check

where the first two word-pairs are both pointer data
(type 1/13) and the last word-pair has not yet been
defined. Entry data is usually used to communicate
a procedure entry point to some other procedure.
entry_point is the :address~ in the linkage section
of the procedure for which this datum is an entry
point~ of instructions which will establish the
lb~lp base pair and transfer to the proper location
in the procedure: see 80.7.01~ 80.7.02~ and 80.7.03.
stack_frame is either a null pointer if entry_point
is an external procedure or the address of the base
of the stack frame in use at the time when the entry
datum was defined if entry_point is an internal
procedure: see 80.7.02.

MULTICS SYSTEM-PROGRAt+1ERS .. Ml\NUAL SECTION 88.2.02 PAGE 10

Representation of Strings

There are two kinds of strings: bit and character.

i) Bit Strings: An n-bit string may begin at any bit position
within a word and extends into as many consecutive following
words as are required to contain the string. All words~
except possibly the first and last~ contain 36 bits of the
string. The first (leftmost) bit of the string is bit
1~ while the last (rightmost) is bit n.

ii) Character Strings: Individual characters are coded in 7
bits~ as specified in BC.2.01~ right justified in 9-bit
bytes with leading zeros. An n-character character string
is represented as if it were a 9*n-bit bit string~ except
that it must start at bit position 0, 9, 18 or 27 within
a word. The first character of the string is character 1
and the last is character n.

There are two classes of strings: varying and non-varying.

i) Non-varying strings: A non-varying string has a fixed
length and remains in a fixed memory position throughout
the scope of its definition. When substituting a string x~
of length lx~ for the contents of a non-varying string y,
of length ly, the following rules apply~

a)

b)

if lx < ly; a copy of the string x is extended (padded)
on the right until its length is ly and then substituted
for string y. The padding is zeros for bit strings and
blanks for character strings.

if lx >ly; a copy of the string x is truncated on the
right so that its length is ly and then substituted
for string y.

A non-varying string may be a substring of a longer string
extending either to the right or left or in both directions.
Hence• s~bstitution into a non-varying string must not
change any bits on either side of the string.

ii) Varying strings: A varying string has a fixed maximum length
throughout the scope of its definition; however~ both its
length and memory position may vary during this time. The
substitution rules for varying strings are slightly more
complicated than those for non-varying strings. When
substituting string x~ of length lx~ for the contents of
a varying stringy, of maximum length my~ the following rules
apply~

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 88.2.02 PAGE 11

a)

b)

if lx > my; a copy of the string x is truncated on the
right and substituted for stringy so that its length
is my and the length of the updated y is my.

if lx < my; a copy of the string x is unmodified, i.e.,
ng1 extended in length and s~bstituted for string y;
the length of the updated y 1s lx.

Hence, the length of a varying string may change each
time its value changes, while the length of a non-varying
string never changes when its value changes. A varying
string is never a substring of a longer string (in the
sense of sharing memory locations). When the value of
a varying string changes the memory location of the string
may need to change. There are two cases:

a) The new value of the string is either shorter or its
increase in length is not large enough to require
additional memory words for its storage. In this case
the same memory locations may be reused (note
however, EPL will reuse the same memory locations
for short varying strings, while for other varying
strings EPL will never reuse the same memory locations).

b) The new value of the string is enough longer than the
old value that additional memory words are required.
Since, in general, words on either side of the memory
location of the old value may be in use, new memory
locations will have to be used for the new value.
To facilitate this storage management problem all
non-short varying strings must be stored in some
free storage area. Four library procedures exist to
carry out the bookkeeping required in the management
of a free storage area. These procedures are:
area_man~initial which initializes a free storage area,
area_man extend which extends a free storage area,
free man allocate which allocates space 1n a free storage
area: and free man$free which returns space in a free
storage area to a list of available space. These
procedures and the free storage management algorithm
are described in 8Y.16.01.

Finally, string data may be packed or unpacked (aligned).
Varying string scalars and arrays of varying strings are
never packed. An unpacked string scalar or element of
an array of unpacke~~trings always begins at bit position
0 within the word. Each element after the first of an
array of packed non-varying strings begins at the next
bit position immediately following the last bit of the
preceeding element. Stated another way, unpacked strings
always begin on word boundaries while packed strings need
not. There are no unused bits between elements of an
array of packed strings.

MULTICS SYSTEM-PROGRAMMERS' MANUAL . SECTION 88.2.02 PAGE 12

Specifiers

A specifier consists of two or three contiguous word-pairs.

-1--------1~+---------l:data_origin ~ 'dope origin t-____ -·~--- ___ free=storage

all of which are pointer data (type #13). The third pointer
appears only in specifiers for non-short varying strings.
Data_origin is usually the address of the first word of
data (although not alwaysa see the next paragraph on
~). dope_origin is the address of the beginning of
the dope. If the datum is non-short varying string free_storage
is the address of the base of a free stora~e area in which
the datum is located. In this case data_or1gin is the
address of further information which locates the datum
in the free storage area~

There are three major formats for dope.

i) string scalar

Addressing Offset

String Breakdown

ii) 1-dimensional array of non-string scalars
Addressing Offset

r-
- Array

Breakdown - (5 words)
~- -

iii) 1-dimensional array of string scalars
Addressing Offset

String Breakdown

t- -
1- Array -

Breakdown - -(5 words) - -

MULTlCS SYSTEM-PROGRAMMERS' MANUAL SECTION BB.2.02 PAGE 13

The addressing offset is a single word and contains an
offset relative to the data origin given in the specifier.
Its interpretation differs depending on the data type.

The first word of any breakdown contains a code, id, in
the leftmost nine bits (bits 0-8) which partially-rdentifies
the data type. This code has the following interpretation,

. 2 3 6 8

short varying string
if datum is packed, = 0 otherwise

= 1 if array, = 0 otherwise
= 1 if datum is string, = 0 otherwise

where size is the size in words of the elementary data item,

size = 0 for non-varying strings and short varying
strings (types 9, 11, 25, 27, 39-42)

= 1 for single word non-strings (types 1, 3, 14, 17,
19, 30)

= 2 for double word non-strings and long varying
strings (types 2, 4, 5, 7, 10, 12, f3, 18, 20,
21, 23, 26, 28, 29)

• 4 for four word non-strings (types 6, 8, 22, 24)

• 6 for six word non-strings (types 15, 16, 31, 32)

A string breakdown has the format,

1
0 id 8-12 n 35

1

where n is the length for a non-varying string or the
maximum length for a varying string. The length and maximum
are always expressed in bits.

Accessing of Array Elements: Array Breakdown

An array breakdown has the format,

0
id 1

length

multiplier

lb

ub

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 88.2.02 PAGE 14

length is the smallest number of contiguous words (bits
if the array is packed) which will contain the array.
multiplier is the separation, in words (in bits if the
array is packed), between two elements whose subscripts
differ by exactly one. It must be at least as large as
the length of the elementary data item (size from 1£),
however, it may be larger, i.e., data elements need not
be contiguous in memory, but they must be evenly spaced.
lb is the lower subscript bound and y£ is the upper subscript
bOund, i.e., the elements of the array, A, are: A(lb),
A (1 b+ 1) , ••• , A (ub).

The following formulae are used for computing the machine
address of the first word of an element, A(i), of an unpacked
array of scalars,

address of A(O) = [data_origin + addressing_offset] mod 2**18

address of A(i) ~ [address of A(O) +delta] mod 2**18

where, delta = [i *multiplier] mod 2**18

and data_origin comes from the specifier and addressing_offset
and multiplier from the dope. for all packed arrays of
scalars, the formulae for computing the address of A(i)
are the same as above except that delta ~ integer part
of ([i * mu 1 tip lier] mod 36*2**18). ,..J

Non-Varying String Scalars (Types 9 and 11)

The layout of specifier, dope, and datum for a packed
string is,

ecifier

datum

where d is the offset, 240(8) is the id code, and n is the length
of the string.

Both n and dare expressed in bits. If the string is
unpacked n Ts still expressed in bits but dis measured
in words and has the form,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BB.2.02 PAGE 15

s ecif·er
data origin

Long Varying String Scalars (Types 10, 12)

The layout of specifier, dope, and datum is,

s ecifier

~e

~202(8)i; max
0 I

area

k words

datum

d words

A long varying string datum is always unpacked and ~s
located in a free stora9e area, while auxi 1 iary data,
which specifies the pps1tion of the string in the free
area, is found at the data origin. The addressing offset
in the dope is always zero. ·

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BB.2.02 PAGE 15A

. Short Varying String Scalars (Types 39, 40)

The layout of specifier, dope, and datum is,

data ori in

d words

where g is the offset (in words), 220(8) the id code,
~the maximum length of the string (in bits), and n .
the current length (in bits). A number of memory locat1ons
sufficient to contain a string of maximum length is initially ~
allocated g words from the data origin. The string always ~
begins at bit 0 in the word at data origin+d. The word
immediately preceeding this (data_origin+d-1) contains
the cur.rent length of the string.

..

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION 88.2.02 PAGE 16

1-Dimensional Arrays of Non-String Scalars (Types 17-24, 29-32)

The layout of specifier, dope, and datum is (supposing the name
of the array is A),

words 1 mp l words

s
-}mp

---,
lb .__.__ ___ : __ fmp

where g is the addressing offset. m (i.e •• the low order
octal digit of the ID code) the size of the elementary
data item. ~ the length of the array in words, mQ the
multiplier. lb the lower subscript bound. and ub the upper
subscript bound. The address of A(O) = data origin + d.
If lb > o. A(O) does not actually exist and d is negative
(in 2's complement form). If lb < 0 then d >O. In fact,
if ub < o. again A(O) does not actually exist. Of course
if lb = o. d = o. Even though A(O) may not exist. the
address of A(O) is used as a base for computing the subscripts
of the elements of A. The address· of A(i) =address of
A(O) + i*mp.

1-Dimensional Arrays of Non-Varying Strings (Types 25. 27)

If A is a packed array. the layout of the specifier, dope,
and datum is,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BB.2.02 PAGE 17

A(lb)

r-~~~~-IJ A(lb+l)

~ A(lb+2)
~~~---) 

where g is the addressing offset expressed in bits, n 
the length in bits of each string in the array (a 11 strings ._J 
must be the same length), ~ is the length of the array 
in bits, !!!J2 the multiplier in bits, J.e the lower subscript 
bound, and ub the upper subscript bound. The first element 
in the array, A(lb), always begins at bit 0 within the 
word at the data origin. The location of A(i) is computed 
by determining k = i-lb. The s~ring A(i) then starts 
at bit k*n counting from bit 0 within the data origin. 

As an example suppose A is a packed array of non-varying 
character strings, each 3 characters long, with subscript 
range (-4, 2). The dope for A would look like, 

27 

1 

189 

27 

-4 

2 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 88.2.02 PAGE 18 

and the datum looks like, 

data origi .... ( 4) --~·J-u- r----~-~~-'-"'-"-~A - --- ~-- --r 
A( -3) ~·~- ~·-~----+ -------.A ( -2 ) 

_L 
-._,__'--A ( -1 )~ 

_.., ___ '-_ 

I 
4-'-~ (0 )----------~'-

A(l) 
_l ---, ..... 

~----.t 

To locate A( -2 ), 

add A(O) = data_origin + 108 
delta= (-2) * 27 = -54 

l-
-1~ 

-A(2) 

add A(-2) = data_origin + 108 - 54 = data_origin + 54 
which is bit 18 in first word after data_origin. 

If A is an unpacked array the layout of the specifier, 
dope, and datum is, 

data 

s 

s 

lb 

ub 

where d, ~ .. and IDQ are expressed in words and each string 
begins at bit 0 within the word. 

(lb) 

A(lb+l) 



' MULTICS SYSTEM-PROGRAMMERS"" MANUAL SECTION BB.2 .02 PAGE 19 

1-Dimenslonal Arrays of long Varying Strings (Types 26, 28) ~ 

The format of specifier, dope, and datum is (supposing 
the name of the array is A), 

s 

where g is the addressing offset and max the maximum length 
of strings in the array A. The array breakdown applies 
to the array of auxiliary information beginning·at the 
data origin and s is its length, m2 the multiplier, Jh 
the lower subscript bound, and yg the upper subscript 
bound. The auxiliary array is composed of two word elements, 
one element for each varying string in the array A. The 
lth auxiliary element specifies the current length, n(i), 
and location relative to the base of free storage, k(i), 
of the ith varying string A(i), in the array A. The strings· 
in free storage need not be in any predictable order and 
may be located anywhere in the free storage area. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BB.2.02 

1-Dimensional Arrays of Short Varying Strings 

The format of specifier. dope. and datum is (supposing 
the name of the array is A), 

data ori in 

s ecifier 0 0 0 

A(lb) 

n 

s 
A(lb+l 

~ax-bits·---z 

n ub 

PAGE 20 

A(ub) 
4-z__max-bits~.....::"--__..,~ 

s 
mp 

lb 
ub 

The dope specifies a 1-dimensional array which looks (except 
for the id code) like an array of unpacked. non-varying 
strings of length ~. The current length of the string 
A(i) is stored Just preceeding the string. n(i) in the 
diagram. Each length may be different. however, each 
must be < max. 

d 

>- mp 




