
MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BB.4.01 

Identification 

General specifications for segment formats 

c. Garman 

The uses of segments in Multics fall into three broad categories: 

PAGE 1 

1. Procedure segments which provide a source of instruction words for 

execution by a processor attached to a Multics configuration; 

2. Data segments which are to be manipulated by the procedures in (1) 

above; and 

3. Temporary or "scratch" segments, used in the production of new editions 

of (1) and (2) above, as well as for stor~ge of variablES required to properly. 

perform the processing functions required, or for the maintenance of particular 

Multics Standards (e.g., the (per-process) stack and linkage segments used 

to assist the implementation of pure-procedure segments.). 

various attributes are attached to segments found in the Multics hierarchy, 

of which the following are the most important: 

1. location (directory path-name) 

2. identifier (entry name(s)) 

3. length (in multiples of 1024 words) 

4. Access ("TREWA" and ring brackets) 

5. Segment number (when a segment has been made known in a process) 



MSPM SECTION BB.4.01 PAGE 2 

(Many other attributes serve to more rigorously describe individual segments, 

but their range of usage or interest is not so universal (e.g., the unique 

ID for· an entry in a directory, or Whether or not a segment has any pages 

in core.) 

Location of Segments in Directory Hierarchy 

Each segment in Multics is a branch in some directo;y (at least nominally, 

in the case of hardcore system segments) which is itself a branch in a 

directory, etc, until the chain· stops at the root directory (See BG.O, Over-

view of the Basic File System, and BD.6.02, System Skeleton). Of most 

importance, perhaps, are (1) user_dir_dir, a directory containing the vatious 

directories for user-associated segments, (2) process_dir_dir, which contains 

one directory per process known to Multics, and (3) the system library 

directories, which contain the segments generally available to user processes 

when'required for the purposes of searching for dynamically linkable procedures 

and data bases. 

Entry name(s) of Segments 

Each segment in a directory has at least one ~ associated with it to 

be used as an identifier. This identifier may be any string of bits of 
.;-u51~~ --to k 

length 288, but by convention the bits are ~onsigered as any combination1 

~-of the ASCII graphic characters, 

Lwith the ASCII character SP used 

of length 32 or less, left justified, 

as padding on the right~ 



MSl'M SECTION BB.4.01 PAGE 3 

Length 

The Basic File Systems maintains information about the length of a 

segment in terms of the number of 1024-word blocks which it occupies. 

Since this number is slightly on the coarse side, (36864 bits, or 4096 9-bit 

ASCII characters) the Basic File System maintains an item in each branch, 

the bit-count, which by convention tells precisely how much information is 

of value in the segment when it is treated as data. All system procedures 

set or rely on these bit-counts, e.g., a context editor would 5et the bit 

count to 9 times the number of legitimate characters in the segment, while 

a command to .provide print-out of that segment would examine only bit-count/9 

characters. 

Procedure segments, while intrinsically self-identifying, still would have 

their bit-counts set for the cases in which they themselves would be treated 

as data (e.g., for inclusion in an "archive" segment). 

Segments in the process directory for a given process need not, in general, 

have their bit-counts set; thus the length of the stack segment, as deterr. 

mined by the forward pointer of the current stack frame, may change 200 

times per second, so it would be useless to try to maintain the bit-count. 

Likewise the next available location in a combined linkage segment is at 

a known place in that segment, such that the single program which needs 

the information may always easily find it. A third example might be a 

scratch segmen~ used only by a compiler, which knows the structure and format 

of the segment and thus does not need to know the bit-count. 




