
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.l0.02 PAGE 1

LrJentific;,tion

Clock Conversion Routines
Arthur Ev~ns, Jr.

eur pose

Draft for approval
Pub 1 i shed: 03/04/66

As explained in Section BD.l0.01, the hardware Calendar
Clock contains an integer which is the number of
micro-~econds since one micro-second after ~idnight on
January 1, 1901, Greenwich Mean Time (GMT), and the term
"Calendar Clock time" ah>~ays refers to such a quantity·. All
times stored in the system will be Calendar Clock times, of
course, but a more readable form of time must be provided
for the user. Further, times supplied by the user to the
system must be in a format convenient to him. This section
describes the conventions and techniques ~sed in converting
Calendar Clock times to a format convenient for the user
(output conversion) an~ in convertin~ times produced by the
user to Calendar Clock ti~es (input ~onversion).

Reguire~ents

In general, it is expecte~ th~t th~ user will want times
printed on his console to a~ree with the time on the clock
on his wall. Since r1ost users \·Jill he physically close to
the comout~"'r, the local time at thP. comouter \'lill usually be
what is wanted. "Local time" must of course he "current
loc.::!l time", so the conversion routines !'T'USt ~e co£r.nizant of
dayli~ht saving time. The user who is far enough from the
computer to be in a different time zone presumably wants
times to be printed in his local ti~e, and such a user must
be accommodated. Finally, it should be noted that a· user
giving a time to the system (for example, the time when a
process is to be awakened) surely w~nts to give it in his
own local time. Thus the input conversion routines are als6
concerned with thi~ problem.

There is one final requirement -- that the user concerned
with dates before 1901 or far in the future be able, if he
wishes, to use the standard syste~ time conv~r~ion routines.
Although the 52-bit hardware clock will overflow on October
21, 2042, the conversion routines must handle properly times
further in the future than that. They must also process
properly negative calendar clock times, representing dates
before 1901.

The mechanism use~ is to include in each process profile
(i.e., us~r's oroflle --see Section 8X.O.Ol, The SHELL) the
necessary data indicatin~ how he wants time conversion to be

MULTICS SYSTEM-PROGqAMMERS' MANUAL SECTION BD.10.02 PAGE 2

done. At first glance it appears that all that is needed
for this purpose is a constant to. be added to the calendar
time before the conversion, the constant usually being some
integer (perhaps negative) times the number of micro-seconds
in an hour and representing the separation between the
user's time and GMT. Actually, however, things are a bit
more complicated, because of daylight saving time.

~Time Conversion Table

The input and output conversion routines have available to.
them a table of correction factors, called the Time
Conversion Tal·l]e (TCT). ~ach "line'; of this table has·three
entri~s, so that the i-th line is:

time(i) constant (i) strinv.(i)

When~ver a time is to ~e conv~rterl ~Y the output conversion
routine, thp tirne is loo~ed uo in the first column of the
TCT. Let ti~e(~) be the first time found which exceeds the
argument. Th~n constant(k) is adied fo the argument before
doin~ the conversion, and strin~(k) identifies the time.
For exa~ple, the stand~rrl T~T at the Project MAC computer
might be

.
24 Apr 1965 0600 -5 hours EST
30 Oct 1966 06 00 -6 hours EDT
30 Apr 1967 0600 -5 hours EST
29 Oct 1967 0600 -6 hours EDT
29 Apr 1968 0600 -5 hours EST
28 Oct 1968 0600 -6 hours EDT
28 Apr 1969 0600 -6 hours EST
27 Oct 1969 0600 -s hours EDT

(end of table) -s hours EST

(The "time" entry on the last line of the table is to be
filled in with the largest number which can be stored· into
the available field.) The times shown in column one are in
GMT, and it is to be understood that the TCT in the computer
will contain the corresponding calendar clock time. Column
two will he a sie:ned inteqer which is the equivalent n~mber
of micro-seconds. The dates ~iven reoresent the last Sunday
in April and in October, an~ the times ~iven are the times
when ~ayli~ht savine: time q-oes in .anrl ouL , (0600 GMT is
0100 EST.)

The ta~le shown provirles that all times hefore 24 April 196~
or after 27 October 1969 will ~e printed as EST, and that
times hetween these two dates will he printed correctly as
EST or EDT. As the systen ages, the table will he extended
so that, at any given inst.:lnt, a·ll times vlithin the next
(say) three years \·li 11 be printed correct 1 y. If it seems
desirable to keep the table length constant, lines can
simultaneously be deleted from the top of the table.

.-..

MULTICS SYSTEM-PROGRAMMERS' MANUAL ·SECTION 80.10.02 PAGE 3

Note the thir~ column of the table. This string is printed
with each time ·cand is, in~~ed, p,art of the character string
which is the time) to make unambiguous the ·meanin~ of the
printe~ time.

N0\'1 consider th~ user in, say, los . .an!!'eles~
profile there will be a similar table
entries, reflectin~ these differences:

I n
with

his user
different

1. Los An~eles is -8 hours from Greenwich, not -5 hours,
so that the magnitudes of the times in the second
column \>'ill (in general) be increased by three hours.

2. Daylight saving time starts and stops on
dates in California and Massachusetts. Th~

different
dates in

the first column must be altered accordingly.

3. The strings in column three will be "PST" and "PDT".

Clearly, an appropriate table could be constructed for any
place in the world-- even one like Afghanistan which is +4
hours 26 minutes from Greenwich.

Now consider the man who usually uses the computer at
but who happens to be using it from, say, Phoenix for a
days. The first time h~ logs in from Phoenlx, he may
find it useful to have a constant two hours added to
column two entry.

Now consider the user who ha~itually travels around
world usinq the system. He may choose to .c;et all times
GMT, so his TCT would contain the sin~le entry

(enr:l of tal)le) +0 hours GtH

MAC,
fev1

we 11
each

the
in

As above, "end of table" represents the largest integer
which can be stored in th~ avaliable field.

Finally, consider the user who is concerned with times
before 1901 and/or after the upper limit of the (hardware)
Calendar Clock. Clearly, such a user will need input and
output conversion routines of greater sophistication than
those needed by most users. For example, ~oing before 1901
or after 2099 requires knowing that neither 1900 nor 2100 is
a leap year; going before 157~ re~uires kno~i~g about the
Gregorian and Julian Calendars; and going more than 1965
years into the past requires knowing about AD and BC. On
entry, the conversion routines check vJith a quick test tha·t
t h e d a t a i s vii t h i n t h e " s t an d a r d " r a n ~ e • I f s o , a 1 1 i s
well. If not, a more sophisticated routine is called to do
the conversion. Although this Tatter routine is part of the
supervisor, it vlill only be fetched into core v1hen (and if)
it is actually needed. Thus no one "pays for" this routine
unless he uses it.

MULTICS SYSTP1-PROGRAr1t,1ERS' t-1ANUAL SECTION 80.10.02 PAGE 4

One final point.should be noted: The
are all on the user's side of the outer
is free to replace them by rout i n'es of
chooses.

conversion routines
security wall, so he
his, own if· he so

~ Outout Conversion Proces~

We now consider in more detail the process of converting a
calendar time to a form interesting to a user. Actually,
the output conversion is done in two steps, only the first
of which will be discussed here. Given a calendar time, the
output conversion routine \AJill produce for the caller the·
following eight values:

YEAR An integer, four r:lec i rna 1 digits precision, which .
LS

the calendar year.
~10 NTH fJ.. two r:li ~it integer from one to t\AJe 1 ve which i s the

month number.
DAY A two r:ligit nurniJ~r from one to 31 which is the day

of the MOnth. (DAY \·I i 1 1 never he ?.reater than the
numher of days in thP. month in question.)

HOUR A two rli~it inteP.:er fran zero to 23 \'lh i c h i s the
numher of hours since mir:lniq;ht.

r~ IN A two di~it inteq;er fro':1 zero to 59 which is the
nurn.,er of minutes since the hour.

SEC A tV'IO di.~it Jnte"ger -f=rom zero to 59 \•Jh i c h i s the
number of seconds since the minute.

USEC A six di~it integer from zero to 999999 which i s the
number of micro-seconds since the second.

ZONE A three character string \'/hi c h id,entifies the time
zone, such as "EDT".

It should be clear that all of the information in the
calendar clock time is reflected in these eight quantities,
and that the calendar time could be recreated from them.
Further, it is clear that it is easy to write a routine
which, given these eight quantities, will produce a
char~cter string such as

1323.2 EST 13 Jan 1966

or any equivalent strin~ that seems desirable.

The routine that r:loes inout conversion of times must have
av~ilable to it a tahle of time zone abhreviations. The
user may type "~1ST" as part of a tiMe in orrJer to mab~
unambi~uous what he mea~s, so the input conversion routine
must kno>·J tl-tat the stri n.P: "r .. lST" means -7 hours from GnT.
The Time Zone Table CTZT) has two entries on each line: a
three-character string and a siEned inte~er which is the
nur:1ber of micro-seconds fro:r~· Gf.1T. A stanrlard table is
available to the system containing the time zone

.. - --·-. -- _· ------'--'---~----:.·..:;.""

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.10.02 PAGE 5

abbreviations most used at the installation, but the user
may suoply in ht~ profile a TZT t.ailored to his own use.

The process of processing a time zone abbreviation supplied·
by t he user t a k e s o 1 ace as f o 11 ow s : I f t he us e r h as h i s own
TCT, the ahbreviation is first looked up in the third
column, the assunotion hein~ that he is unlikely to input an
ahbreviation unless he has orovision to output it. If the
abhreviation is found, th~ column· 2 entry on that line is
use~ as the correction co~stant; hut if it is not found,
further sP.archin~ t~kes place. If the user has suoplied his.
own TZT, that is searched. If not, thou~h, the system
standard TZT is used.

~ Input Conversion Process

A time SUDPlied by the user to the system falls into one of
two cases: Either a .time zone abbreviation is explicitly
given or one is not. In either case, though, the first part
of the input conversion process is the same the typed
time/date is converted to a binary integer as if it were·
GMT. If the user has supplied a time zone abbreviation
(such as "EDT"), it is looked up as described above. The
appropriate correction is then subtracted from the binary
integer to get the prop~r calendar time •

.
If a time zone abbreviation is not supplied, the binary
integer is looked up in the usual way in the TCT and the
corresponding constant is suhtracted from (not added to} it.
I f t h e r e i s no am h i g u i t y (s e e be 1 m-1 } ;---t" he r e s u 1 t i s the
desired calen~ar time.

There are several ano~alies or ambieuT-ties that may be
detected in the input conversion ~rocess, a few of which are
as f o 11 O\·J s:

1. T.,e tine zone
incompatible with the date
reasonahll!' to acceot "EST"
improper to refer ~o "EDT 11

supplied hy the user may be
and time typed. Whilr it may be
in June, it is almost surely
in December.

2. The time 0130 does not exist on the last Sunday in
April (in Massachusetts), since at 0100 EST on that date the
legal time jumos to 0200 EDT. Presumably a reference to
0130 EST means a time 31 minutes l·ater than ~~59 EST, but a
reference to 0130 with no qualification is probably wrong
and a reference to 0130 EDT is surely wrong.

3. The time 0130 is ambiguous on the
October, since there are two of them. (At
becomes 0100 EST.) Of cour~e, either 0130
is unambiguous and acceptable.

1 ast Sunday in
0200 EDT the time
EST or 0130 EDT

MULTI CS SYSTEM- 0ROGR~~~~<t~RS' ~1ANUAL SECT I 0~ BD. 10. 02 PAGE 6

4. The data may be poor. The time "1168" (where the
last two ~igits are the numher of· minutes after the hour) or
the time "2505" are probably \'lron,e:, as is tne 32-nd of the
month, the 30-th of February or month number 13.

5. Abbreviated date-times may be permitted. For
example, the user may omit typing the year if he is
referring to "this year", or the date if it is "today".
However, there are cases where the intended meaning is clear
to the user, but not so clear to the program. (For example,
at two minutes past midnight, does 11 2358" refer to today or.
to yesterday? Similarly, on January 5, does December 28
refer to last year or to this year?)

The processing of problems such as the above is dependent on
the current setting of the "no questions" switch in the
process profile. Unless the user has indicated no
questions, he will be giv~n an error (or warnin~) message
and aske~ to correct the ~at~. Otherwise, the conversion
routine will ~~ke a default interpretation of the data and.
go on. In absentee-user processes th~ problem need never
arise if th~ user makes a oractic~ of always specifyin?.
times comoletely. ·

•

