
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.7.00 PAGE 1

Published: 09/29/67

Identification

Overview of Intersegment Linkage
R. M. Graham, M. A. Padlipsky

Purpose

11 Linkage", in the broad sense of .communication between
separately-assembled subroutines, is of course of fundamental
importance to any operating system. Conventionally, provision
is made prior to execution for supplying addresses which
can not be known at assembly-time, thus requiring expenditure
of time to locate all external references regardless of
whether or not they will be needed in a particular run.
In Multics, however, linkage is typically performed dynamically -
that is, the address for an external reference is found
by the System during the execution of a process, at the
point in time when the address is known to be needed.
(Pre-linking, called ''binding", can also be effected;
see BD.2.) Dynamic linking, by eliminating calculation
of addresses which would not be needed during a given
run, should lead to considerable savings in execution
time; experience with CTSS indicates that a MAD program
which takes a second or two to compile, and a like amount
of time to execute, still probably requires four to six
seconds to 11 load" - where loading means essentia 11 y the
same thing as linking.

A second aspect of linkage is the area of subroutine calls
and returns, in the sense of conventions for performing
the call and return rather than simply of acquiring the
address of the routine being called. Carefully-planned
call, save, and return macros are essential in Multics,
in order to support the design ~oa 1 of furnishing 11 pure"
procedures. (A pure procedure 1s one which is not altered
at all during execution -hence, a single copy is shareable
amongst several users in a time-sharing environment.)
Further, procedures should be "recursive"; that is, they
should be capable of being re-called, either directly
by themselves, or indirectly during a series of calls
to other procedures, without confusion of 11 generations"
of storage. The call, save, and return conventions must
also support this latter design goal.

Basic Mechanisms

For a topic such as dynamic linking, a dynamic overview
should be particularly appropriate - that is, an overview
which covers the process of dynamic linking from the point
of view of the interactions of linking with the rest of
the System - rather than a "static" overview, which only

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.7.00

deals in the abstract with the mechanisms involved in
linking. Before turning to such an overview, however,
there are two basic mechanisms which should be treated
in the abstract, if only to allow the introduction of
a notation which will be useful later.

PAGE 2

The sine qua non of the Multics approach to linkage is
the 11 1 inkage segment 11 • Ordinarily, each segment, procedure
and data, has associated with it another segment; when
associated with a procedure segment, this (linkage) segment's
primary role is to contain pointers (ITS or ITB pairs)
to external addresses (addresses not in the procedure
segment) thus allowing the procedure segment to remain
11 pure" (i.e. contain no information which varies from
run to run) by doing all its external addressing indirectly.
How these indirection pointers, or "links", are created
is, of course, a major issue in the forthcoming discussion.
(That portion of the linkage segment in which the links ·
reside is called the 11 linkage section".) To the programmer,
though, external references, as well as internal locations
which are permitted to be referenced by other procedures,
need only be known symbolically. The linkage segment .
may also be used for storage of the character strings
which represent the symbolic knowledge of these intersegment
references, or 11 1 ink definitions". (11 Link defini tions 11 ,

which do not change, may in some circumstances be stored
in the procedure segment.) The 11 nkage segment, then,
has a part in references out of and into procedure segments,
and of course, into data segments. Another role it plays
also contributes to the issue of keeping procedure segments
pure (and hence shareable)a With the changeable information
involved in intersegment references taken care of by placing
it in the linkage section of the linkage segment, there
still remains the problem of keeping any variables which
a procedure segment has separate from the procedure segment
itself. A convenient place for storage of that class
of variables ca}led 11 internal static11 in PL/1 turns out
to be the linkage segment. (Other classes of variables
are more conveniently stored in other places; one of the
most important of these other places is discussed below.)
Details of the structure of the linkage segment are to
be found in BD. 7 .01.

A second sine qua non of the Multics approach to linkage
is that mechanism known as the call-save-return Stack.
The primary role of the Stack is to furnish push-down
storage for the information which is necessary to allow
procedures· to call and be called by (that is, return to)
other procedures. The Stack must. be in a segment other
than the procedure segment i~ order to preserve the pure-ness
of the procedure segment. It must be a push-down stack
in order to satisfy the design goal of recursiveness.

MULTICS SYSTEM-PROGRAMIIJERS' MANUAL SECTION 80.7.00 PAGE 3

System-standard call, save, and return macros assume the
existence of and operate upon the Stack, in a fashion
which wi 11 be dealt with in more detai 1 in the ''dynamic"
portion of this Overview. for now, however, these are
a few further structural points which should be made.
When a procedure is called with the Multics call macro,
that macro creates a "frame" in the Stack for the called
procedure. There are two portions in the frame: a fixed-ler
portion, and a variable-length portion. In the fixed~length
portion, chaining is preserved from frame to frame by
means of forward and backward frame pointers. This chaining
is important because successive calls push down the Stack
in such a fashion that the corresponding "normal" returns
(performed by the Multics return macro) pop off the procedures'
frames in order, but 11 abnorma 1" returns (which do not
go back to the caller at the point immediately after the
call -see also 80.9.05) may require the process at hand
to return to the procedure which is associated with a
stack frame other than the one which immediately precedes
the current one. In the variable-length portion of a
Stack frame, storage space is provided for that class
of variable known as "automatic" in PL/1. Thus, if a
procedure calls itself or is called recursively, the Stack
is pushed down by the call and the new frame is used for
storing a new "generation" of automatic variables -again
leaving the procedure segment pure. Details of the structure
of the Stack and the
implementation of the call, save, and return macros are
to be found in 80.7.02 and 80.7.03.

Notation

An external symbol. is one which may be referenced from
segments other than the one in which it is defined. Segment
names (strictly speaking, 11 reference names") are written
<seg name> and external symbols are written [ext symbol].
If [x] is defined in segment <s> then <s>l[x] is a reference
from oustside <s> to the location [x] in segment <s>,
where the value of [x] is defined in the linkage section
of <s> and is not known by another segment until that
segment actually tries to reference it during execution.
However, <s>lx is a reference from outside <s> to the
location ~ in segment <s>, where the value of~ is known
at translation time. If <s> is a segment, <s.l>ls.lp
wi 11 refer to the origin of the linkage section for <s>
and s# will be the segment number of <s>.

System-wide Interactions

We now turn to the dynamic portion of the overview, which
may be thou~ht of as "Some Notes on the Care and Feeding
of Segments• •

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.7.00 PAGE 4

Background (l); Addressing

The ins and outs of 645 addressing comprise a rather complex
area. partially because of the history of the hardware
development. However. it is not necessary to understand
the subject in detail in order to abstract out the key
points of the process from the perspective System treatment
of segments. What we are interested in here is the means
by which the hardware is made to interact with the software
when segments are involved.

The first hardware feature of 645 addressing which is
important to the non-hardware treatment of segments is
the 11 fault tact•. It is possible to assemble an indicator
(called a Fault Tag) into an appropriate location in a
machine word such that the processor. when reading that
word as an address in an indirect address chain. will
sense its presence and take a fault. (Indeed. indicators
exist to distinguish three distinct Fault Tags. known
as 1. 2. and 3.) Suffice it for now to say of the faulting
process that once the hardware encounters a fault-producing
condition the system gets its 11 hands11 on the existing
situation. and this is exactly what we want in terms of
segment handling. as will be seen shortly.

There is one other aspect of the hardware addressing process
which should be presented as background to this discussion.
Procedures. which 11 live in11 segments. can reference other
(11 external 11) segments. either as data or as targets of
transfers. In the appending (i.e •• address-generating)
process for external references. two entities come into
play which are of interest. and which taken together constitute
a topic which we wi 11 ca 11 11 descri ptors11 • There is a
base register called the Descriptor Segment Base Register
used in the appending cycle for external references.
This base register can only be set by the System. It
contains a pointer to a Descriptor Segment. The contents
of this segment also can only be set 5y the System. Now
the hardware simply trusts the System to have provided
appropriate information in the Descriptor Segment. because
in the appending process it takes whichever entry in that
segment is indicated by the combination of the base pointing
to it and a base containing the 11 segment number11 (actually.
this may be thought of as a index into the Descriptor
Segment) and proceeds according to address and control
information contained in that entry. The upshot of it
all is that the Descriptor Segment contains control information
which is taken into account by the hardware. Specifically.
the control information may be set (by the System) to

..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.7.00 PAGE 5

indicate that the referenced segment is to be treated
as data (and a fault will take place if an attempt ls
made to execute it), or is only to be executed (and a
fault will take place if an attempt is made to treat it
as data), or is to be responded to by a ''Directed Fault"
if referenced. So in the Descriptor Segment we have a
second way for the S.ys tern to 11 get its hands" on a situation
involving segment references, the fault Tag having been
the first.

Background(II): Software

We have seen above how the hardware provides ''handles"
for the software when segments are addressed. It turns
out that the manipulating of Descriptor Segments is essentially
dynamic and is better left for discussion below, as an
aspect of execution. The use of the fault Tag, however,
comes into play at assembly/campi latlon time, and will
be dealt with here.

In Multics, standard assemblers and compilers must reference
external segments by means of a 11 linkage section". Recall
that the linkage section is a known area in the linkage
segment where the indirection words used by a procedure
for external segment addressin~ are placed, by the assembler/
compiler. The linkage segment s number is kept in a speci fie
external base register (lb), and the offset within the
linkage section Is kept in the paired internal base (lp).
That is, at any point in time the linkage section of the
executing procedure is referenceable through lb.-lp.
How this is accomplished wi 11 be covered below. Hence,
in view of the fact that the actual location and number
of an external segment are unknown at translation time,
a reference to an external segment is generated as follows:
In the procedure, the operand of the appropriate instruction
is an address in the linkage section and an indirection
tag. In fixed positions in the entry in the linkage section,
a Fault Tag indicator, a pointer to the symbolic name
of the external segment, and any offset (symbolic or numeric)
within that segment are indicated. Then, if and when
the generated code is executed the appropriate fault wi 11
be taken by the hardware, and the System will come into
play to find the desired segment--11 knowing11 the symbolic
name and the offset.

Execution(!): First Reference

The foregoing background information should be enough
to allow an investigation of what happens in Multics when
a procedure segment, <proc>, references an external se9ment,
<ext>, for the first time during execution. (Distingu1shing
between the cases when ext is procedure and when ext is
data will be postponed as-1ong as possible.) ---

MULTICS SYSTEM-PROGRAMMERS' W\NUAL SECTION BO. 7.00 PAGE 6

Fielding the Fault

The first thing that happens on the first reference to
~ is that the hardware encounters the Fault Tag 2 duly
planted in <proc>'s linkage section by the translator.
This fault is taken and the Fault Interceptor Module (BK.3)
takes over. The Fault Interceptor recognizes the Fault
Tag 2 as being (by definition) a linkage fault and calls
the Li~ker (B0.7.04).

The Linker

The role of the Linker basically is to "fill in the blanks11

in the linkage section of a procedure which had a linkage
fault. That is, the Linker must take the symbolic name
of the external segment which was referenced {11 ext11) and
somehow come up with an ITS pair to <ext> which-rt can
put into the linkage section of <proc> in place of the
words which caused the fault. Actually, the Linker handles
only the mechanics of this job--it "knows" the format
of linkage sections and can extract and plant information

-there--but it passes the task of finding the segment in
question along to the Segment Management Module {BD.3).

Segment Management

The Segment Management Module (B0.3) is the primary interface
to the Basic File System (BG.). In a way, its role may
be thought of as the maintaining of the Segment Name Table,
which on a grossly oversimplified level is a table of
symbolic names of segments and corresponding segment numbers,
for a 11 process" in Multics. (Segment numbers, of course,
are indispensable parts of the ITS pair we are trying
to build to put into <proc>'s linkage section.) So names
go into Segment Housekeeping and numbers come out. To
get the number, if the name is not already in the SNT,
the Basic File system is called appropriately, where

11 appropriate 1 y" is meant to cover the poss ibi 1 i ty of
specification of file directories to search and order
to search them in (Search Module, B0.4).

Basic File System

Once the Basic File System is entered, all manner of tables
must be updated and all manner of details must be attended
to. For the purposes of this discussion, only a few salient,
qualitative points will be dealt with--and those largely
in terms of effects rather causes. There are two basic
tasks performed by the Basic File System at this point
in the segment-getting process. First, it must come up
with a segment number to be passed back to the Linker.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.7.00 PAGE 7

Second, it must make the segment "known", by recording
the segment number and the segment's mode in the Known
Segment Table. Now, the mode comes from the branch in
the appropriate directory; how all this comes about is
irrelevant here. At any rate, a mode is found and recorded
for future use, and the segment number is returned to
Segment Housekeepin~t which records the number and the
symbolic name (11 ext') in the Segment Name Table and in
turn returns the number to the Linker.

Linker

If an offset is involved, the Linker will have to repeat
the above process for <ext>'s linkage segment and will
then have to continue the segment-getting process in order
to read the linkage section and be able to compute the
offset from information in <ext.l> (<ext>'s linkage segment).
For our purposes, only the result of this process matters.
Assume that the Linker now is in possession of the necessary
information to produce the desired ITS pair and places
it in <proc>'s linkage section at the location where the
linkage fault (FT2) arose. After altering the machine
conditions which were stored on entry so that execution
of the previously faulting instruction can continue when
the Fault Interceptor restores the machine conditions,
the Linker then returns to the Fault Interceptor, which
called it. The Fault Interceptor then restores the machine
conditions.

Procedure

Control is back in <proc> a~ain, but not for long. The
fact of the process of link1ng, after all, does not necessarily
imply the desire for using the linked-to segment. Hence,
the System does not finish the process of making the segment
accessible until some indication occurs that access is
really wanted. The means by which the indication is given
brings us back to the Descriptor Segment. <proc> is,
of course, a procedure in some working process, and that
process, of course, has some Descriptor Segment associated
with it. As a matter of fact, that Descriptor Segment
is whichever one is pointed to by the Descriptor Segment
Base Register, which only a System program can set. So
a vital aspect of giving control to a process is setting
up an appropriate Descriptor Segment Base Register and
Descriptor Segment. This sort of thing was taken care
of by the System prior to the period we are investigating,
but, of course, no provision could be made then for an
entry pertaining to <ext>. No explicit provision, that
is. H01111ever, Descriptor Segments are always constructed

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.7.00 PAGE 8

in such a fashion that "all the rest" --that is, any segment
not otherwise already dealt with--causes a particular
kind of fault when the appending mechanism uses the descriptor.
This fault is the "missing segment fault". When it occurs,
off we 90 a~ain through the fault handling software to
the Bas1c F1le System.

Basic File System

Once again to do an injustice to the intricacies involved,
we may view this trip to the Basic File System as having
two purposes. First, the segment is made 11 active" • For
our purposes, this means that certain entries are made
in certain tables so that the file system's books balance
and it's necessary to be active before you can be used
(if 11 you" are <ext>). More interesting to us is the second
purpose: the production of an appropriate Descriptor
Segment entry for <ext>. This is a tricky process. Briefly,
there are two broad areas which are considered: modes
and protection rings! information about which is maintained
in the Access Contro 1 List of the file hierarchy 11 branch"
for <ext>. The descriptor is generated such that <ext>'s
mode with respect to <proc> is taken into account, and
such that one of two faults will occur if <ext> is called
by <proc> and they are not in the same ring. (Actually,
<proc> may be in a ring which is not in the range of permission
specified by <ext> if this is the case, a descriptor is
~enerated which wi 11 cause a "no access" fau 1 t.) If <ext>
1s in a lower-numbered ring than <proc> provision is made
for a Directed Fault 2 to occur when the descriptor is
usedJ if <ext> is in a higher-numbered ring than <proc>,
provision is made for an attempt to execute data fault
to occur when the descriptor is used. Of course! if <ext>
and <proc> are in the same ring no extra effort s taken
with the descriptor and only the mode of <ext> is operative.
Finally, if <ext> were being referenced as data rather
than being called, again no extra effort is taken and
only the mode is operative. At any rate, an entry is
made in the Descriptor Segment., and back we go through
the Fault Interceptor to <proc>.

Protection Mechanism

The story is now over in the cases mentioned above where
11 no extra effort" was taken in generating a descriptor.
However, if <ext> was being called from a different protection
ring than its own, one of the two planted faults described
above will take us through the fault handling mechanism
to the Gatekeeper (BD.9.01), which is the primary organ
of the Multics protection mechanism. Let us assume that
we are indeed dealing with a 11 ring-crossing". The Gatekeeper

MULTICS SYSTEM-PROGRAMMERS .. MANUAL SECTION 80.7.00 PAGE 9

has two basic tasksa verification and housekeeping.
First, the crossing must be checked for legality. The
file system is called upon to determine that the address
being transferred to is a listed entry point of the target
procedure (and to specify the ring number of <ext>).
Second, provision must be made for enabling <proc>'s process
to operate in <ext>'s ring. This provision includes swltchinn
Stacks from the one ring to the other. (The needs of
the protection mechanism dictate that 11 the Stack11 -which
is conceptually a single entity from the user's point
of view- is actually implemented as a separate segment
for each protection ring the process entersJ see 80.9.00.)
Information which will be necessary when <ext> returns
to <proc> is a 1 so noted. Then the fau 1 t hand 11 ng mechan 1 sm
is returned to (by the Gatekeeper) and suitably altered
machine conditions are restored so that execution of the
transfer to <ext> can continue.

Procedure

Whether or not the protection mechanism comes into play,
<ext>'s status as a segment in the address space of <proc>'s
process is now secure. From the point of view of the
care and feeding of segments, we can consider <ext> weanedJ
the first reference is done.

Execution(Il); Recursive References

If the same portion of <proc>'s linkage section is recursively
referenced after linkage has taken place, things go smoothly.
All of the above considerations are bypassed--linking,
searching, 11 knowing11 , "actlvating11 , and the like--and
the only impediment to direct access to <ext> is the protection
mechanism, if applicable, for of course the descriptor
of <ext> in <proc>'s ring's Descriptor Segment is still
set up to trigger any protection faults it may have triggered
at the first reference. This is as it should be, for
there is no guarantee that the reference still is legltlmatea
a legitimate call to a protected procedure could have
been followed by some sort of unscrupulous diddling of,
say, the linkage section (in particular of, say, the offset),
so there's no guarantee that just because the segment
<ext> has been previously referenced legally, subsequent
references will also be legal.

Execution(lll); Other References

A final interesting note is that when some other point
in <proc> refers to some other point in <ext>, considerable
savings in time a1·e achieved in the linking processing.
This comes about in the Segment Management Module, which
discovers that <ext> is in the Segment Name Table and
does not need to go off to the file system to search for
it, but can return the segment number directly to the
Linker.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BD.7.00 PAGE 10

Calls. Saves. and Returns

The foregoing description deserves some amplification
in the area of calls and returns. Suppose that <proc>
calls <ext>. Previously, when <proc> itself was called,
the base pair sb~sp was set to point to the beginning
of a Stack frame for <proc>. Call the beginning of that
frame sp_proc, and for the purposes of this discussion
call the Stack segment <stack>. The call macro begins
by saving the current values of the 645 bases and registers:
bases at <stack>fsp proc+O (eight locations~ worth) and
registers at <stack51sp_proc+7 (eight locations' worth).
In other words, bases and registers are saved (for subsequent
restoration, when the called procedure returns to the
calling procedure) at the beginning of the current Stack
frame. Next, an ITS pointer to the argument list is stored
into ab4-ap. Then the return location information (essentially
a pointer to the current location plus two) is stored
at <stack>lsp_proc+20, and we transfer to <ext>. (As
no particular entry is specified, the transfer will by
convention be to <ext>f[ext], actually.) The transfer
is really an indirect one, through the linkage section
of <proc>, and generation of an address for <ext>! [ext]
proceeds essentially as described above. However, to
get the linkage pointer set to <ext. link>, and to execute
the standard save sequence, it turns out that the address
generated should be to an appropriate point in <ext.link>
rather than in <ext>. The Linker determines that it is
to generate an address in <ext.link> rather than <ext>
on the basis of a "class code11 in the external symbol
definition for [ext]. (Class codes exist for causing
the Linker to interpret the value in an external symbol
definition as 1) an offset from the top of the segment
in question, or 2) an offset from the top of that segment's
linkage segment, or 3) an offset from the top of that
segment's symbol table segment -see BD.1 regarding symbol
tables; see BD.7.01 for details of class codes.)

Because [ext] must be declared to be an entry point (either
explicitly or implicitly), its translator will have made
preparations for a save sequence at [ext] in the following
fashion: Two instructions are placed in the linkage segment
(<ext. link>) to be executed when <ext>l[ext] is called.
The first of these switches lb+-1 p from <proc .link> to
<ext.link>, by means of a rather tricky use of the 645
eaplp instruction (BD,7.02 will repay close study on this
point). The second instruction is an indirect transfer
through a link in <ext.link> to [ext] in <ext>. This
link, of course, wi 11 also cause the Linker to come into
play on the first reference through it; that is, the indirect
transfer is through a word pair containing an FT2 modifier

,

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION 80.7.00 PAGE 1 1

and pointers to a linkage definition, just as the transfer
through <proc.link> was. In <ext> itself, then, the save
sequence continues as follows: The first issue to deal
with is the chaining of the Stack frames. <stack>lsp proc+18
was set on entry to <proc> to point to the next frame7 s
origin; that is, to directly after the variable-length
portion of <proc>'s frame. So sp_proc, as the location
of what is to become the last frame, must be stored into
a conventional location in the new frame (call the beginrdih;
of the new frame sp exp) in order to maintain back-chaining:
The location is defined as <stack>lsp_ext+16. Then the
length of <ext>~s frame must be calculated, in order to
set <stack>fsp_ext+18, on the basis of information provided
by the translator of <ext>. Details of this undertaking
are to be found in 80.7.02. When the length of <ext>'s
frame is known sb~p is set to point to sp ext, and ·
the argument llst pointer is preserved at <stack>fsp_ext+26.
Execution in <ext> may then proceed. In the event that
<ext> performs any calls, the call and save sequences
as just discussed will come into play- the effect being
to push down the Stack by another frame for each
(unreturned-from) call.

When it comes time for <ext> to return to <proc>, the
return sequence simply loads the base registers indirectly
through sp_ext+16 - that is, from the beginning of <proc>'s
Stack frame, where <proc>'s bases were stored when <proc>
called <ext>. Then sb~sp points to sp_proc again (and
lb~lp points to <proc.link> again), and the registers
may be restored directly from sp_proc+8. Final1y, control
is returned to <proc> at the point immediately after it
left by means of 645 rtcd instruction, using the return
location information which was stored at sp_proc+20 during
the call. The return sequence pops off <ext>'s frame
from the Stack. (Note that we have covered here only
the normal return; for "abnormal" returns see 80.9.05.)

Details of the extensions to the above basic process for
the execute only and master mode cases may be found in
BD. 7. 03.

Linkage Utility Routines

Having concluded the "dynamic" portion of this Overview
of linkage, we must make note of one more point before
concluding the section at hand: Beyond the "automatic"
aspects of linking as discussed above and in the subsections
of 80.7, there also exist aspects which may be though
of as ''manual". That is, the Multics user may directly
manipulate linkage segments via subroutine calls. The
Linker itself may be called (see 80.7.04), and various
utility routines exist (see BY.13).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.7.00

Summary

The foregoing discussion having been somewhat diffuse~
we conclude with a summary of the major points touched
upon:

PAGE 12

From the programmer's point of view, references to segments
other than the current procedure segment are performed
by specifying the symbolic names of the segments and locations
(i.e.~ entry points or variable names) in question. From
the System's point of view~ such references are accomplished
by means of indirect addressing through 11 links11 ~ where
links are machine addresses created during execution of
the user's procedure by a System procedure known as the
Linker. The linkage segment approach allows for the inter-user
sharing of pure procedure segments. Before a link has
been established~ its position in the linkage section
is occupied by a word pair which will cause a particular
fault when referenced~ and by pointers to the ''link definltio~• -
that is~ to the symbolic name(s) involved. When a linkage
fault occurs~ it is handled by the Linker~ which establishes
links, replacing the symbolic information with machine
addresses (ITS pairs). It accomplishes this by getting
a segment number for the reference name in question from
the Segment Management Module (which may in turn employ
the Basic File System)~ and by computing an appropriate
offset if need be.

For subroutine calls~ standard call~ save, and return
macros must be used for all intersegment communication
involving System segments. These macros manipulate a
Stack segment in such a fashion as to allow for recursive
procedures~ and support the address base register conventions
discussed below. During calls, the Stack is pushed down;
during returns, the Stack is popped up. There is a Stack
11 frame" for each ca 11 made.

Finally, certain hardware facts and conventions should
be mentioned: First, it should be noted that the descriptor
segment (that segment pointed to by the descriptor base
register) defines the address space of a process in Multics;
introduction of segments into the descriptor se~ment is
managed only by the Systemo The address space 1s two
dimensional, with segment numbers representing one dimension
and offsets within segments representing the other. Second,
the address base registers of the 645 are always paired
and assigned functions in the following fashion: abf-ap
points to the argument list on calls; bb'-bp is an unreserved
pair~ for use by compilers and by user programs; lb~lp
points to the origin of the linkage section of the currently
executing procedure; sbE-sp points to the current frame
of the call-save-return Stack. Last, Fault Tag 2 is reserved
to indicate linkage faults.

