
MULTICS SYSTEM-PROGR~MMERS' MANU~L SECTION 80.8.02 PAGE 1 

Published: 8/29/66 

1dentification 

The Ca 11- Passer 
K. J. Martin, B. A. Tague (See note) 

.Eurpose 

Within Multics it is necessary that a procedure in one 
process be able to call a procedure in another process, 
passing arguments. For instance, every time a user logs 
in, three processes are created which must be able to 
communicate with one another. (The processes are known 
as the Overseer, the Device l'-1anager and the VJorking Process, 
and are, collectively, a process-group of the user). 
Both processes involved in an interprocess call must 
belong to the same process-group created for one user. 
Other means (described in Section 80.8.03 on inter-process
group communications) are available for communication 
betlrJeen process-groups. 

Discussion 

Refer to Figure 1 during the follo~;'\/ing discussion. Solid 1 ines 
are calls; small numbers indicate the order of calls. 
Dashed lines indicate references to data. When a procedure, 
the caller, wishes to make an interprocess call it issues 
the f o 1 1 ow i n g ca 1 1 : 

ca 1 1 g i ve_ca 1 1 (process-name, entry-name, event-name, 
arg1, arg2, · .•• , argn). 

process name 

entry-name 

event-name 

is the symbolic name of the process 
in which the called procedure should 
be executed. Each process-group contains 

. a process-group-wide data base associating 
an assigned symbolic name with a process 
id for each process of the process-group. 
The symbolic name of a process is 
unique within the process-group and 
is standard for each type of process. 
Section 80.1.04 on logging in defines 
the method of symbolically naming 
processes. Give_call converts the 
symbolic name to the process id. 

contains the ASCII name of the entry 
point which is being called. 

is a bit string in which give_call can 
store an event identification number 
by calling set_event in the ~'icdt-Coordinator. 



MULTICS SYSTEM-PROGRAMMER'S MANU~L SECTION 80.8.02 Pf-\GE 2 

argi are the arguments to the procedure 11 entry-name. 

The procedure give_call is one of the two procedures 
which make up the call-passer. Give_call exists as a 
procedure ih the same process as the calling procedure, 
or 11 caller11 • The other procedL!re of the interface module, 
accept_call, exists as a procedure in. the same process 
as the called procedure, or 11 callee 11 • 

The job of give_call is to accept a call of any form 
and make the arguments available to another process. 
Since the number and mode of the arguments of the call 
are not known before the call occurs, give_call cannot readily 
be written in PL/I. Give_call takes the arguments of 
the call and makes up an entry in the work queue, a data 
base which is common to both processes. The information 
in each entry is: 

1. Symbolic name of entry-name, the procedure to be called. 

2. Process identification of the process from which the 
_cal 1 i s or i g ina t i ng . .. 

3. The event, event-name. 

4. A count of the number of arguments, argi. 

5. For each argument: 

a) six words containing the four- or six-word 
specifier of the argument if there is a 
specifier associated with the argument. 
If the argument is a non-string.scalar and 
therefore has no specifier, the six words 
contain four meaningless words and an ITS 
pointer to the data. 

b) The slot name locations in the file system 
of the execution copies of the segments 
containing the arguments~ dope and specifications. 
Slot names are obtained by a special call 
to directory control, supplying a segment 
number. Two slot names are returned for 
each segment number. The slot names identify 
the directory where the segment may be found, 
and the entry (or slot) within the directory 
which points to the segment. 

The unique identification number of event_name Iivas established 
by give_call by calling set_event in the VJait Coordinator.· 



MULTICS SYSTEM-PROGRAMMERS 1 MANUAL SECTION 80.8.02 PAGE 3 

After having made the arguments available to the called 
process, give_call calls the wakeup entry in the Traffic 
Controller and wakes up the called process. Give_ca11 
then returns to the caller procedure. The caller procedure 
may do as it wishes, knowing that accept.._call will note 
the event, event_name when the callee returns. 

The called process wakes up in the procedure, accept_call. 
The calling process must be sure that accept_call will 
be invoked or returned to as a result of the wakeup. 
Accept_call operates on each of the arguments, argi, 
in an attempt to make the segments which contain the 
arguments and their dope and specifications known to 
the called process. The call, estblseg, in directory 
control is given the slot name location of a segment, 
and makes the segment known to the process. The new 
segment number of the segment is then placed in the argument 
list pointer or in the pointer(s) of the specifier (item 
Sa of the work queue entry) for the appropriate argument. 

When all arguments are known to the-process, accept_call 
builds a call to the callee procedure using items 1, 
Ll and 5 of the work queue entry. Note that the actua 1 
ar~uments have not been touched. Only the argument list 
po1nters and pointers in specifiers have been altered 
to make the arguments known in the called process. Note 
also that pointer variables and labels (which are data 
items and not specifiers) are not suitable arguments 
for inter-process calls because the segment number in 
the pointer variable or label is likely to be wrong in 

·the called process. Since error returns ~label data) 
are not allowed, status return arguments can be used 
to notify the caller of errors detected by the callee. 
On-condition and signal PL/I statement pairs may not 
occur across an inter-process call because of the existence 
of two stacks instead of one. 

Accept_call calls the callee procedure with the artifically 
built call. Because accept_call has built a normal-looking 
call, the callee operates normally; it never knows the 
call came from another process. When it has finished 
.it returns to accept_call. Accept_call then notes the 
event which is item 3 of the work queue entry, with item 
2 as the proces-s to wake up. Accept_call calls bl~ck 
in the Traffic Controller and remains blocked until another 
ca 11 occurs. 

The caller procedure can detect the completed event as it sees 
fit. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.8.02 PAGE 4 

Note: 

The author of this section, K. J. Martin, is being 
transferred to another subproject. B. A. Tague joined 
the Central System Control subproject shortly before 
publication of this section. Although he was not involved 
in the authorship of this section, he-is aware of the 
issues and will be working on the task. Therefore, comments 
and criticism of the ideas presented may be directed 
to him. 



''']· 
.~- ' 

.l 

. •. j . 

.. , 
l 
.L 

.'":J 

.., 

r---- ----·r--------1" 
l · Call-P~sser iF. IE' ,! 

' •• ~ ~ ~:c_call ! ... acccpt_call t : ~~ callee ' 

[.. _'""!:Itt--\--'·- j ~J{lf _j 
. ,, ~ I . 

caller 

Hait 1~--- a. 
,coorclinat~~~ ·se~evcnl 

directory r 
control 

l 
~ I L-~ 

wakeup 

1-
qrk 

quclne 

I 
I_L-._1 

I 

i 
.traf!fic 

controh.ler 

(; ! ;> 

~--· 
~ 

block 

--~··j Hait 
no-tee'vent" coordinato c . 

~ ~~ directory 
l control 

Calling Process Called Process 

FIGURE 1: INTE,-PROCESS CALLS 


