
MULTICS SYSTEt4-PROGRAt-1MERS' tJ\ANUAL SECTION · 80.9.01 PAGE 1

Published: a2/2a/67

Identification

Gatekeeper: gate~in, gate~out, gate~switch
·R.M. Graham, M.A. Padlipsky

Purpose

The three entries to the Gatekeeper comprise a ring-a
slave procedure which coordinates the legality checking
of attempted protection wall crossings resulting from
call and return sequences and handles the housekeeping
and stack switching involved in such crossings. Two of
the Gatekeeper's entries are called by the Fault Interceptor:
gate~in is called on receipt of a Directed Fault 2, which
fault results when the-referenced procedure is ''irl' a
lower-numbered protection ring than is the referencing
procedure; gate~out is called on receipt of an
attempt-to-execute-data fault, which fault results when
the referenced procedure is ''i~ 1 a higher-numbered protection
ring than is the referencing procedure. (In discussions
of the protection mechanism, 11 inward" means tm'llard the
Hard Core Supervis·or's ri1=1g--ring a--and 11 out\i'Jard" means
away from it.) In its role as fault handler for the aforementioned
faults (the "protection11 faults), the Gatekeeper also
deals with cases where a protection fault has arisen which
did not result from a call/return sequence. The third

·entry to the Gatekeeper~ gate1switch, is called by a Hard
Core Supervisor procedure which is switching protection
rings without going through the fault mechanism.

Ca 11 s

The Gatekeeper's entries are called as follows:

call gate~in (mc_ptr, err_rtn, err_code);
call gate9out (mc_ptr, err_rtn, err_code);
call gate~switch (mc_ptr, type# ringno, err_rtn, err_code);

with arguments declared

del mc_ptr ptr, err_rtn label, (ringn6, err_code) fixed
bin(17), type bit (2);

~lc_ptr is a pointer to a copy of the faulting procedure's
machine conditions (which include the 8 ba~es, 8 re~~isters,

MULTICS SYSTEM-PROGRAMMERS' ~~NUAL SECTION 80.9.01 PAGE 2

~ instruction information, and ring number). The
Gatekeeper will alter the$e data, but cannot cause their
res to rat ion, so a copy which wi 11 subsequent 1 y be res to red
by the Fault Interceptor must be accessible to it. Err_rtn
is the location to which the Gatekeeper will return if
an attempt at an illegal crossing is detected, or if some
other problem is encountered during the wall crossing.
Err_code will contain a code indicating just what error
was encountered. The additional ar~uments for ~ate~switch
-have the following meanings: ~ Indicates wh1ch type
of crossing is desired; the .coding is 00 for inward call,
01 for inward return, 10 for outward call, 11 for outward
return. Ringno is the ring number of the target procedure;
this is necessary only for calls.

Method

There are four cases of attempted wall crossing to be
dealt with. ltJith 11 inward" and ''out\JIJard" defined as above,
they are: inward call and its converse, outward return;
and outward call and its converse, inward return. Except
in the case of entry at gate~switch, the differentiation
between calls and returns is based upon the nature· of
the faulting instruction (found in the copy of the machine
conditions): Transfer class instructions imply calls,
return instructions imply returns. The differentiation
between inward and outward is dictated by the entry called.
(In the gate~sv.Jitch case, a switch is set to 11 111 b to indicate
that certain steps in the logic which are superfluous
to non-faulting calls and returns can be branched around;
to minimize complication of presentation, only the main
stream of the logic will be treated in the ensuing discussion.)
The Gatekeeper processes each of the cases separately,
as follows:

Inward Call

Figure 1 presents a block diagram of the gate~in entry
to the Gatekeeper and of the inward call processing.
Note that if the faulting instruction is neither a transfer
nor a return gate~in rejects the attempted wall-crossing
out of hand. This is a consequence of the fact that the
descriptor segment for each ring is so constructed as
to 1 ead to ''protect ion'' fau 1 ts on references to data segments
or not according to the access information of the particular
data segments involved. Hence, if a protection fault

.MULTICS SYSTEM-PROGRAr~MERS' MANUAL SECTION 80.9.01 PAGE 3

did occur on a data reference the reference is "automatically"
known to be illegal. Another way of putting it is that
only procedure segments have 11 gatesu (see Overview, and
be low).

1 • Save return information. a) To facilitate returns
and "unwinding" (see 80.9.05), certain items of
information must be saved at this point. The items
are the faulting procedure's stack pointer (referred
to hereinafter as oldsp), ring number (oldring), and
"validation level". The notion of "validation level"
is discussed in 80.9.00; briefly, it may be
thought of as the gg jure ring number as opposed
to the de facto ring number. That is, when
an outer procedure calls an inner procedure it is
frequently necessary that the process involved appear
DQi to have the real ring number of the inner procedure
because the latter is too highly privile~ed; so the ·
inner procedure uses the ring number of 1ts caller as
its current validation level. As an example, consider
the case of a linkage fault in a user's procedure: The
Linker calls the Segment Housekeeping Module, which
will manage the sear~h for the segment involved. If
the SHM, which is in ring 1, does not already have the
segment in its Segment Name Table, it must call the
Basic File System, \'Jhich is in ring 0. HovJever, this
particular call to the BFS is in behalf of the user's
procedure and should not be treated as a call from ring
1. Therefore, the SHM will have set the validation
level to the ring number it was called from before itself
calling the BFS. In general, then, the Gatekeeper must
get the current va1ue directly from fts fixed location,
sbl3, and insure· that the existing value is not less than the
value of gldring. (Outer ring procedures may themselves
raise their validation levels above their ring numbers, but
they must not be permitted to lm"ler them belovJ their ring
numbers.) Oldsp and oldring are found in the copy of
the machine conditions. b) The saving is done on a
per-process push-do\ilm stack kept in a segment ca 1 1 ed
rtn_stk. Each entry in rtn_stk is 4 words long,
with oldsQ. in the first t\i-JO words, oldring in the third,
and validation level in the fourth. The index of the
last (latest) entry is kept in< rtn_stk > I 0.

2. Verify access. Call the Basic File System procedure
get_ring (see BG.3.01), which will check the access

·control information o-F the segment to vJhich the transfer
is being attempted and return its ring number if the
transfer is legal:

Ml,JLT ICS S YSTEr4-PROGRAMMERS' MANUAL SECTION BD.9.01 PAGE 4

call get_ring (address~ ring~ new_ring 1 err_rtn 1

err _code);

where address is a pointer to the location being
transferred to 1 rlng is the ring number of the faulting
procedure~ new_ring is a return argument ~tJhich wi 11
be set to the ring number of the target procedure~
and err rtn is the label of an error return which
get_ring will take if the crossing at hand is not legal 1

after indicatin~ the type of illegality in err_code.
(After determin1ng that the ring relationships are
permissible 1 get_ring also checks that the specific
transfer at hand is directed at a legitimate entry
point - or rrgate". The file system maintains 1 ists of
gates for segments; see BG.9.00.) On return to error 1

the Gatekeeper sets err_code to 3 and transfers to
err_rtn.

3. Change ring number. On normal return from get_ring 1

new_ring is stored into the apparent machine conditions
and processing continues.

4. Switch stacks. Each protection ring has a specific
stack associated with it. This is necessary in order
to insure the integrity of the data belonging to more
protected procedures; if less protected (and less
trusted) procedures cannot even use subsequent frames
of the same stack which is used by 11 inner11 procedures,
much less get at previous frames~ then the opportunities
for accidental (or even willful) "clobbering11 are
eliminated. The apparent machine conditions must be
altered such that the new ring's stack will be in use
after the Fault Interceptor restores machine conditions.
This is a rather d~licate process~ involving the following
ordered steps (refer also to Figure 2):

a. Get new stack frame pointer. By convention 1 the
zeroth location of a stack segment contains a pointer
to the last used "frame" in the stack 1 \'\lh ich frame~ in
turn 1 contains a pointer to the next empty frame. (See
80.7.00 for a discussion of stack frames.) To access
this information 1 however~ it is necessary first to
determine where the base of the new stack actually is.
An ordered list of such locations is kept in the proces~
definitions C12df) segment 1 starting from symbol stacks.
(See BJ.1.06 for a discussion of the pdf.) Hence, the
pointer to the base of new_ring's stack is accessible at

<pdf>l [stacks]+2i•ne\'J_ring.

If this pointer is nu11 1 the stack segment for nevJ_ring

MULTICS SYSTEM-PROGRAMt•1ERS' t-'lANUAL SECTION 80.9.01 PAGE 5

does not yet exist. In this case, call appendb and
estblseg (8G.8.02) to create the new segment; then
initialize it. (See Appendix A, for details of stack
creation). Call this se~ment new_stack. Then,
<new_stack>IO points to • last_used", and last_used+18
by definition points to the next empty frame in the
new stack. Call the beginning of that frame newso.

b. Update stack bases. On leaving a ring and its
stack, it is necessary to update the last_used pointer
at the stack's base; therefore, <old_stack>IO is set
to point to oldsp. On entering a stack, the needs of
the signalling mechanism (see 80.9.04) dictate the
updating of the "invocation number" which is stored
immediately after last_used at the base of each ring's
stack; therefore, <new_stack>l2 is set to the current
value of the rtn stk index (contents of <rtn stk>ID).
Also, <new_stack>l3 must be set to the same validation
level value which was saved in step 1a.

c. Set up new stack frame. So that the eventual
return from the called procedure can return to the
proper stack at the·proper place (i.e., to <old_stack>
at oldsp) and so that processing can continue in the
new stack as if the call had not come from a different
stack, the frame in ne\\l_stack must be carefully
fabricated. First, copy all of the first 32 words of
the calling ring's stack frame (i.e., from newsp to
newsp+31). The bases, registers, and return information
is thus preserved.

At this point it is necessary to verify the legitimacy
of the planned return. The faulting procedure's
segment number, reflected in the copy of the
machine conditions furnished, is checked against the
se~ment number of the return 1 ocat ion vvh ich is
po1nted to by spl20 in the faulting procedure's
stack. If the- numbers are not the same, an error
condition exists: set err_code to 2 and transfer to
err_rtn. If the numbers do agree, the copied frame (in
new_stack) is secure from the possibility of accidental
tampering which could have resulted from the fact that
old_stack, being a segment, is shareable. That is, it
is in principle possible (though in practice quite a
delicate undertaking) for process A and process B both
to be using old_stack: then if a procedure of A were
to make a legitimate invJard call and B were to become
the running process after an interruption of the
Gatekeeper's processing of that call, the information
at oldspl20 might have been altered any \vay at all by
the time A became the running process again. Hence,

_ _./

MULT lCS SYSTEM-PROGRAMMERS "' MANUAL SECT ION BD. 9. 01 PAGE 6

checking· the return from the copy in new_stack assures
that th~ return is not only preserved# but rightfully
preserved.)

However# the last-and-next-frame information which was
copied into new_stack is only good for old_stack.
Therefore# newsp+16 must be set to point to new_stack's
last used frame (the "last_used" of 4a.)# and newsp+18
must be set to point to newsp+32 which is known to be
the beginning of the next available frame in new_stack
(because the frame we are fabricating is 32 words long).

d. Set cross-ring flag. The perceptive reader will
have noted that a certain amount of mendacity has been
introduced# specifically at newsp+16. The last stack
frame the process "saw" was at oldsp# to be sure; however#
the last frame "seen" on a per-ring per-stack basis is
the one at last_used# and it turns out to be important
to such programs as the debugging aids to be able to
trace through the frames of a given stack in sequence.
(Provision for frame-tracing is LlQ.1 required by the logic
of the Gatekeeper.) Therefore# in order not to break
the chaining of stack frames in new_stack# newsp+16 was
set to point to last_used instead of to oldsp. (Oldsp
is known to the Gatekeeper via <rtn_stk># so the return
to old_stack is not jeopardized.) Of course# the chaining
within new stack is not intended to cover
cross-ring/cross-stack cases# but merely to allow
successive frames to be inspected without introducing
breaks in the chain; therefore# some indication must
be given that the stack frame at hand is merely a place
holder in the chain (a freak link# perhaps). The means
chosen to indicate the cross-ring nature of a stack frame
is the placing of a 1 in the op code field of the
last-frame po1nter location# newsp+16 (the op code field
is# of course; ignored by the hardware when the pointer is
used). This step is duly taken. To allm·J for the
possibility of a debugger which is sufficiently privileged
(and interested) to inspect stacks in other rings#
cross-ring/cross-stack tracing is provided for by
setting newsp+28 to point to oldsp •.

e. Set sp. The stack pointer in the apparent machine
conditions is set to point to the frame just manufactured
in the target ring's stack; that is# sp=newsp. (The .
called procedure wi 11# on entry# "climb the stack"-
i.e.# set up a new frame relative to ne'J'JSp# according to

MUL T !CS S YSTEM-PROGRAt'iM£RS' MANUAL SECTION 80.9.01 PAGE 7

the next-frame pointer at newsp+18. Call this frame
newersp. Then ne\Nersp+ 16 wi 11 be set to point to nevJsp,
newersp+16 being the last-frame pointer. Hence, when
the called procedure effects its return it will find the
information fabricated in step 4c. and will wind up--after
some untan~lin~ per!ormed by the Gatekeeper:s outward
return process1ng--1n the stack of the call1ng procedure.)

5. Report change. The Basic File System needs to be
informed of iall ring changes to rings other than ring 0
so that it can arrange to vJire down the new ring's
descriptor S?gment (ring D's descriptor is always wired
down, so long as the process is active). Therefore

6.

call setup_ring(new_ring,err_rtn,err_code);

where the arguments are all ~s previously defined. See
BG.3.05.

Return to the Fau 1 t Interceptor. The ca 11 may no\:J be
completed. The Fault Interceptor will restore machine
conditions from the copy altered by the Gatekeeper,
after further altering them to prevent the reoccurence
of the Directed Fault 2.

Qutward Return

Figure 3 presents a block diagram of the gate~out entry
and the Gatekeeper's outward return processing. Gate$out
filters transfers and returns in the same fashion as does
gate~in. Note that the outward return case is the converse
of the invJard call. That is, after an inward call has
been effected and the inner ring procedure encounters
a return instruction, an attempt-to-execute-data fault
will cause the Fault Interceptor to call gate~out, and
the fact that a return instruction rather than a transfer
instruction has faulted will cause the Gatekeeper to perform
its outward return processing.

1. Retrieve return information. The current entry in
<rtn_stack> is pulled off the list and the list popped
up one level (i.e., decrement the index to the ~urrent
entry which is kept at <rtn_stk>IO). Recall that
the entry contains the stack pointer, ring number, and
validation level of the (previously inward-calling)
procedure being returned to. ·

2. Change ring number. The ring number in the apparent

MULTICS SYSTD~-PROGRA~1~1ERS' MANUAL SECTION 80.9.01 PAGE 8

3.

., .

machine conditions is set to the value which was saved
in <rtn_stk>.

Switch stacks. The process of stack switching described
above must'be reversed at this point. The discussion
uses the terminolo~y of Figure 2, with 11 new11 and 11 old11

relative to the or1ginal sv<Jitching, that is, 11 new_stack11

is being le~t, 11 old_stack11 is being entered.

a. Update hew_stack. The fabricated frame in the
inner ring's stack (at newsp in Figure 2) must be
released. This is accomplished by setting its zeroth
location to point to the contents of newspl16, for that
location will be used to point to the last used frame
the next time the stack is used. (Newsp comes from the
copy of the machine conditions; the base of the stack
being entered comes from <pdf>, in like manner to 4a.,.
above.)

b. Set up old_stack frame. The value of oldsp was
stored in <rtn_stk>; it is now placed into the apparent
machine condi.tions as the stack pointer, so that the
proper stack and frame will be used when the machine
conditions are restored.

c. Update invocation number. As mentioned in 4b above,
when entering a ring it is necessary to update the
invocation number stored at word 2 of its stack.
Therefore, <rtn_stk>IO is stored into <old_stack>l2
at this point.

4. Restore validation level. The saved validation level is
restored into sbf3.

5. Report change. Call setup_ring, as in 5. above.

6. Return to Fault Interceptor. The return may now be
completed. The Fault Interceptor will restore machine
conditions from the copy altered by the Gatekeeper,
after further altering them to prevent reoccurrence
of the attempt-to-execute-data fault.

Outward Call

Figure 4 presents a block diagram of the Gatekeeper's
outv.Jard call processing. The out\"Jard call is a more sensitive
proposition than the two cases discussed previously, as

i
~'*""'-·

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.9.01 PAGE 9

particular care must be taken to make available the data
which belong to the more protected inner ring and to protect
them from unauthorized tampering by the less protected
outer ring proc~dure which is being called. To this end 1

an additional s~ep is performed in the outward call processing
which is not needed for inward calls. (Otherwise 1 the
logic is essentially the same for the two cases.) After
making the standa.rd stack switching preparations~ the
outward call log~c dictates a call to a routine named
arg_pull. The routine is discussed in detail in section
B0.9.02; briefly1 it takes as arguments the faulting (inner)
procedure's argument pointer and the called (outer) procedure's
stack pointer and'copies the indicated arguments into
the 11 nevJI stack. It should be noted here that arg_pull
requires the appearance of data descriptions (see 80.7.02)
in the argument list; this appearance is assured by use
of the "callback11 option in the compilation or assembly
of the calling procedure (see 1 e.g. 1 8P.O.OO). After
the arguments have successfully been pulled through the
protection wall 1 the outward call processing parallels
the inward call processing in appropriately altering the
apparent machine conditions and returning to the Fault
Interceptor. One sma11 1 out crucial 1 difference in the
two cases is that the outward call must alter the apparent
argument pointer to the proper value in the new stack 1

so that when the machine conditions are restored by the
Fault Interceptor the copied 1 accessible arguments will
be employed by the called procedure. This tactic was
unnecessary in the inward call case because the arguments
are accessible when they are in an outer ring.

Inward Return

Figure 5 presents a block diagram of the Gatekeeper's inward return
processing. Being the converse of the outward call 1 this
case 1 too 1 is sensitive to argument security. The logic
parallels that of the outward return 1 with two additional
steps. The additions involve~ of course 1 undoing the
corresponding steps taken in outward calls. After the
standard stack switching preparations have been made a
call must be made to a routine named arg_push. This routine
is discussed in detail in 80.9.02; briefly 1 it takes·as
arguments. the faulting procedure's argument pointer and
the tar~et procedure's stack pointer and copies into the
appropr1ate members of the target procedure's argument
list the return arguments in the faulting procedure.
(Only return arguments, which have their 11 set bit11 on 1

are dealt with 1 so that any possible tampering with other
inner rin~ data is automatically ignored.) Finally 1 the
other dev1ation from the Outward return processing is
handled: The argument pointer in the apparent machine
conditions is restored to its old (pre-call value.

.. ...

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9 .• 01 PAGE 10

Appendix A. Stack Creation

As even a casual reader of the MSPM will have noticed~
there are many "stacks" in f4ultics. All too frequently 1

however~ references are found simply to "the stack"; even
the current section is not innocent in this respect.
For the records 1 then 1 "the stack" in this context is
meant to refer to that (call-save-return) stack used by
the standard 1 user- procedure call 1 save 1 and return sequences.
It is 1 in otherw0rds 1 that segment of which an appropriate
portion must be pointed to by the stack pointer when a
~procedure is exec~ting if that procedure is to be able
to invoke another procedure and have control returned
to it eventually. A more comprehensive discussion of
the stack (or "Stack") will be found in BD.7.00. However~
for present purposes it is necessary to accept as given
the existence and nature of Stack 1 and to introduce a
complication rather than a clarification: in order to
implement the Multics Protection Mechanism it is necessary
to have a separate Stack "for each ring" - that is, "for
use by procedures executing in each protection ring ••-
but these Stacks must present 1 at least conceptually~
the appearance of-being~ single stack from the point
of view of the user (and his working process).

Now, the problems of stack switching and frame changing
have been dealt with in the body of the current section.
The problem of stack creation~ which is not particularly
germane to the main stream of the Gatekeeper's logic~
is taken up here 1 with the precedin~ paragraph offered
as background ·and some sort of impl1cit motivation.

The Gatekeeper is in charge of Stack creation. If 1 when
a ring crossing is about to be effected, the process in
whose behalf the Gatekeeper is operating has not entered
the particular target ring before~ there will be no stack
in existence in the target ring for the Gatekeeper to
switch to. (Unless the target ring is ring 0 1 which has
a preinitialized stack.) Such a condition is indicated
by the presence of a null pointer at <pdf>l [stacks]+2*n~
where n is the ring number of the target ring. Creating
a stack segment is almost straightforward~ except fer
one consideration: segments need names. Therefore~ we
do hereby establish and declare a

CONVENTION: For a given protection ring~ n
(O~n~63) 1 1!J.g stack (or Stack), in .the sense of
the call-save-return stack of section BD.7, is
named <s tack_n>.

MULTICS SYSTEM-PROGRAfu,~1ERS' f'.1ANUAL SECTION BD.9.01 PAGE 11

(The semantic purist may object that <Stack_n> would be
more appropriate. He would be right. However, case shifts
are a nuisance.)

The Gatekeeper ~oncatenates "stack_" with new_ring (after
converting the latter to character), ca 11 s the resu 1 t
~~ and invoke:s the file system primitive apoendb in
order to have a Vbranch" created in the Process Directory
(see also BD.6.09):

'
ca 11 appendb(. di r < name, type, u id, mode, copy, max 1,

. errtn, ~odeJ;

where dir is the path name of the Process Directory, vJhich
is obtainable from an invocation of the library routine
Qdir. (BY.2.06), name is as above,~= "O"b (indicating
branch is a non-directory), mode is R\·J, and the other
arguments have values appropriate to the meanings established
for them in BG.8.02. If appendb reutrns to errtn, the .
Gatekeeper sets err_code to 4 and transfers to err_rtn.

If the branch is successfully appended, it is necessary
to call the file system primitive estblseg .. with appropriate
(but not relevant to this discussion) arguments as dictated
by BG.8.02.

Next .. <stack_n>IO must be set to 8, the "last-used" frame
(which is the first frame in the stack, of course).
<stack_n>l8+16 is set to null, as the last-frame pointer ,
is meaningless in the first frame of a Stack. <stack_n>l8+18,
the next-frame pointer of the first frame, is set to point
to <stack_n>l8+32, allowing for the standard fixed length
of a stack frame. ltJe now have a Stack.

MULTICS SYSTEM PROGRAMMERS' MANUAL

Figure 1.

r- Initialize
new_ stack

Gate in and Inward
Call-Processing

err code
= 3

-a 11 appendb,
establseg

No

Setup, store
<rtn stk>
· entry

Increment

Call
get_ ring

Change
ring number

----------------------------~----~~Yes

old_stack>jO

= oldsp

SECTION 80.9.01

err_code
= 1

err code
= 2

PAGE 12

newsp jl6 =
ew_ stack> 10

newspll8
newsp + 32

Set cross_.
ring flag

call
setup
·ring

~···
I

MULTICS SYSTEM-PROGRAtJ\MERS ~ MANUAL SECTION 80.9.01 PAGE 13

Figure 2. Stack Switching,

<D 0 A (<Old_stack> {0) E B
0 :---

(<:new_stack>j 0)

2 2 invocation :/1:

~~
,

~1 ~
r ~ ~ 0

(oldsp) 0

Q bases
,,

I, bases
I

(newsp)

8 \ 8 \
registers G)

%
registers

0-16
last lb last sp sp

18 18 next sp Gr- next sp

Flagged

20 return
20

return0

22

G)
. "'- 28

-j
oldsp

30 ~)
32

~ ~

;. ~

Stack A belongs to the ring of the calling-procedure (old_ring), stack B to

the target procedure (new_ ring).

Legend: Arrows indicate pointers.

Pointers marked ~ exist prior to stack-switching.

Numbered pointers are set in the order indicated by the numbers.

Areas marked 0 are copied from A to B.

Note that <:new_stack>l2 receives (C <rt~stk>jO), and that the op code field

of newspjl6 is set to 1.

,~

MULTICS SECTION 80.9.01 PAGE 14

., ;

Figure 3.

Gate_out Outward

Return Processing

"New" and 11 old"

follow Figure 2.

r

\
\

Decrement

Restore
validation
level

Get <new_stack> JO
from <Pdf:> ~tacks]+2:kn~ ring . -

<new_ stack> JO
= C (newsp jl6)

sp=oldsp

Get<old_stack>jO from
df>j[stacks]+2*old_rin

old_stack>j2
C (<I' tn_ s tk> jO)

Call
setup_ ring

err code

= 1.

~'
/

" MUlL TICS SYSTEM-PROGRAMMERS"' MANUAL

Figure 4.

Outward Call

Processing

"New" and "old"

follow Figure 2.

•
I , .

I

I'
\

\

ogic, per
igure 1,
hrough settin
ewsplsp

Set cross

ring flag

Call

ar!Lpull

newspll8 -
nextsp

sp = newsp

ap = newsp+32

call
setup_ ring

SECTION 80.9.01

err_code

= 2

PAGE 15

MULTICS SYSTEM-PROGRAMf4ER~' MAtJUAL

/'"' Figure 5. Inward Return Processing
., .

I

\
Follow out rt
logic, through
immediately
prior to retum

Call
ar&,_push

Restore ap

SECTION 80.9.01

Call

setup_ ring

J

PAGE 16

