
TO a 
FROM a 
SUBJECT: 

MSPM Distribution 
J. M. Grochow 
80.9.04 

DATEr 1'1./15/67 

This revision of 80.9.04 reflects the changes described 
in 80.9. 04A ( 8/4/67). The fo llowlng addi t lona t changes 
are also includedr 

1. The final argument of condition and reversion 
has been deleted. 

2. S orne changes have been made ln the management 
of default condition handlers. 

3. The condition-handling primitives now reside 
in ring 1 through ring 63. 

4. Calling of condition handlers is now done by 
11 helpers'' in the ring in which the handler was 
established ln order to avoid protection violations. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.9.04 PAGE 1 

Published: 12/15/67 
(Supersedes: 80.9.04, 05/08/67) 

Identification 

Condition handling in Multicsa condition, reversion, signal, 
set default, find condition. 
R. M. Graham, M. A. Padlipsky, J. M. Grochow 

Purpose 

During the execution of a process in Multics, certain 
conditions may be encountered which necessitate action 
outside of the normal flow of control. That is, they 
must be dealt with whenever they happen to arise. In 
PL/I jargon, these conditions may be "on-conditions" or 
"interrupts"; in general Multlcs discourse, they are simply 
to be called "conditions11 (usually prefaced with 11 system-defined" 
or "programmer-defined"), and are to be viewed as software 
analogues of hardware faults. Because individual programmers 
may define their own "conditions" and may signal the fact 
that these conditions have arisen, examples of conditions 
are difficult to give; they may range from the occurence 
of arithmetic overflow or a divide check (both system-defined) 
or something 1 ike "X_007" (clearly programmer-defined.) 
Indeed, despite the fact that some "conditions" do arise 
from actua 1 hardware faults (overflow, e.g.), the fau 1 t-handling 
mechanism has been subsumed under the condition-handling 
mechanism in Multics. The role of the Fault Interceptor 
(BK.3) may be looked upon as the turning of a hardware 
fault into a condition "signal" as soon as possible. 
This view of fault-handling greatly facilitates the 
implementation of both user-provided fault handling for 
non-reserved faults and protection of system-required 
fault-handling for reserved faults. 

Conditions of interest may, of course, arise at any time 
during the execution of a process. (This is particularly 
true of error conditions, which as a matter of Multics 
policy are to be treated by means of condition signals 
and condition handlers 1 see BY.11.) Also, specification 
of handlers for conditions may be changed at almost any 
time during the execution of a process. This unpredictability 
of timing means that there is no a priori way of determining 
which protection ring con'l;rol will be in when a "condition" 
arises 1 therefore, condition handling must be under the 
aegis of the protection mechanism. The present section, 
then, describes the mechanism whereby Multics permits 
the controlled transmission of and response to condition 
signals. Control is of paramount importance, because 
in the abstract signals are in some sense independent 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9.04 PAGE 2 

of protection rings and ·unless constrained could lead 
to unauthorized wall-crossings. The primitives described 
herein remove conditions and their signaling from the 
realm of protection-independence and fit them into the 
fabric of the overall Multics protection mechanism. 

It should be noted that, in the interests of clarity, 
this section alters somewhat the PL/I terminology in the 
area of "conditlons"a We shall speak of establishing 
a condition handler, or perhaps of defining a condition. 
and of signaling a condition, or simply signaling. As 
condition-handlers for a given condition may supplant 
one another dynamically, we shall refer to that handler 
which control is intended to be passed to at a given point 
in time as the "active" or "most recently established" 
handler. When it is appropriate to distinguish between 
kind" of conditions. the aforementioned "system-defined'' 
and prograrmner-defined" prefacing wi 11 be employed. 

Introduction 

Three subroutines comprise the system-wide, primitive 
condition-handling machinery of Multics: condition. reversion, 
and §i¥n,l. The condition routine is invoked to establish 
a condvt on name and its handler: after a call to condition 
(until further notice) the specified handler may be thought 
of as "active". and in the absence of protection constraints 
control will pass to it if and when the named condition 
is signalled. The reversion routine serves as the "further 
notice" alluded to in the preceding sentence: it causes 
the currently-active handler for a named condition to 
be replaced by the handler which was most recently previously 
active (but, for any "condition". it will not cause a 
reversion beyond the default handler; this point will 
be expanded upon below). The signal routine is invoked 
to signal the occurance of a named condition; when it 
is invoked control passes to the currently-active condf.tion 
handler through the ring in which it'was establishedo 
Progranmers - particularly system progranrners - may invoke 
these routines directly; on the other hand. compilers 
may also compile direct calls to them as appropriate. 
The routines are, then, in some sense "system" prim! tives. 

Be§}ric}ion 

In Initial Multics. signalling will not be performed in ring o. 
Overview 

Continuing the analo~y between condition handling and 
fault handling. we f1nd that the central device in the 
condition handling scheme about to be described is a "signal 
vector" - a software analogue of the 645 hardware's ••fault 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.9.04 PAGE 3 

vector'. For each process. the signal vector is implemented 
as ·a series of segments. one segment per protection ring 
which contain threaded push-down lists of condition handlers. 
one list per condition. For a ring numbered n. the signal 
vector is contained in a segment named <signaTs n>. As 
is the case with the call-save-return stack for-each ring 
(see 80.9.01). the illusion is preserved for the user 
that there is but one signal vector. Details of the construction 
of the signal vector are discussed under Implementation. 
below. The main things to note at the overview level 
are that each condition. system-defined and programmer-defined. 
is dealt with by placing its handler on top of its corresponding 
list in the signal vector for the ring in which the condition 
is established (at the point in the process when the condition 
is established and the desired handler is specified. that 
is). and that the maintenance of the signal vector(s) 
is carried out such that when a condition is signalled 
the proper, active handler will be invoked regardless 
of intervening protection wall crossings. As will be 
seen, the method of accessing signal vectors also provides 
the capability of constraining the handling of selected 
conditions to be perfonmed by the corresponding condition 
handlers in specified protection rings. (The signal vector 
also contains a special push-down list for the Unwinder -
see 80.9.05 - under the "condition name" cleanup, which 
name is reserved.) 

The pushing and popping of the list of handlers for a 
given condition is performed by two of the three subroutines 
which comprise the condition-handling mechanism. To push 
down the list for condition condn'me and specify that 
procedure~ is the active hand er for it: 

ca 11 condition (11 condname" , proc) 1 

By the nature of push-down lists, a subsequent invocation 
of condition for congname in a process will of course 
establish whatever procedure- say proc 2 - is specified 
therein as the active h~ndler. Suppose-that such action 
has been taken and then at some later point in the process 
it is no longer desired to have condname handled by proc_2, 
but to revert to the immediately prev1ous handler: to 
pop up the list of handlers for condname 

ca 11 reversion (11 condname" ) ; 

After this call, in our little example, proT is again 
the active handler and if c9nd~~ is slg~a led proc 
will be invoked. · 



MUL TICS SYSTEM-PROGRAMMERS~ MANUAL SECTION 80.9.04 PAGE 4 

Note that the names "condi tion11 and 11 reversion" are chosen 
to suggest similarity to, but not necessarily identity 
with, the PL/ I "on-condition" and "revert" statements. 
With these routines as primitives, PL/I - and indeed 
any other Multics language which contains simbar facilities
wi 11 be able to implement its own .interpretation of conditions 
within the framework of the Multics protection mechanism. 

The task of investigating signal vectors to determine the 
identity and cause the invocation of the proper handler 
for a given condition falls to the third of the condition 
handling· subroutines, si~nal. Following the notation 
and continuing the examp e of the preceding paragraph, 
then, to cause the active handler for condname to be invoked: 

ca 11 signa 1 (" condname". f 1 ag, pt r) 

(The name ''cleanup" is explicitly barred from being an 
acceptable value for condn§me; see Implementation and 
80.9.05. The additional arguments are explained in 
Implementation and are not of interest in the Overview.) 

In the absence of any restrictions on the scope of condname, 
2rQ£ will be invokedi the call to proc, be it noted, is 
performed from the r ng in which proc was established, 
going through the ring in which the signal was made. 
Thus there can be as many as two ring crossings involved; 
if a handler residing in ring n is put in the signal vector 
of ring m and the signal occurs in ring p, control first 
passes from ring p to ring m by a call to the helper in 
ring m, and then to ring n by the call from the. helper 
to pllc. The first ring crossing allows any argument· 
supp ed by the signalling procedure to be validated and 
the second .ring crossing allows the Gatekeeper to check 
that the handler can be called from the ring in which 
it was established. (The implementation of §i~nal, as 
will be seen, facilitates the calling of erlT rom the 
proper ring by invoking a ring-1 adjunct ca ed signal_search 
with a formal ring-crossing; and then a helper in the 
proper ring to actually call the handler; this point is 
not of interest at the overview level, and signal wi 11 
be treated as a single conceptua 1 unit here.) · 

In order to present even an overview of the operation 
of si¥nal, a further piece of apparatus must be introduced 
at th s point: Associated with each signal vector is 
a linkage section (<signals n.link>, for rin~ n). To 
search this linkage section; all of the condition handling 
subroutines rely on the generate_ptr library routine (see 
8Y.13.02); this routine will return a pointer to what 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9.04 PAGE 5 

is actually the head word of the (threaded) push-down 
list in <signals_n> for condnei1• as if condname were 
an external symbol (which lt is • At the head of the 
list is a pointer to that member of the list which is 
currently at the top of the list (i.e., is the entry in 
the signal vector which would correspond to the active 
condition handler if there were really only one signal 
vector). What signal does,~ then, is first to search for 
condname in <signais_n. linK>, where n is the ring from 
which lt was invoked. If an entry is found, sign'l must 
determine whether this particular entry is actual y the 
active one- for it is possible that the top of the list 
for ring n was established during a prior entry into the 
ring and that the actual most recent establishing of a 
handler for condname took place in another ring entirely, 
and hence is to be found in, s~y, <signals_m>, m + n. 
The basis on which this determ1nation is made is rather 
straightforward: whenever an entry is made in a signal 
vector (by condition) the then-current value of the Gatekeeper's 
"invocation number11 (see also BD.9.01) is placed in the 
entry. The invocation number is in reality the index 
into the Gatekeeper's <rtn_stk> for the entry on that 
stack which contains the return information for a particular 
all; its current value ls always placed in a fixed location 
(<stack_n>f2) when the Gatekeeper effects entry into a 
new protection ring for a call. Then if the invocation 
number in the first entry found in <signals_n> is the 
same as the now-current value (i.e., current at the calling 
of signal) the entry is the one we are looking for. If 
not, change the now-current value of the invocation number 
to the previous value, and investigate <signals_k>, where 
~is the ring number of the procedure which originally 
called into ring n, ring n being where the procedure which 
called RSJnal is t~ is obtainable from the Gatekeeper's 
<rtn st • If the top-of-the-list entry for condname 
in <signals k> has this new invocation number, then It 
is the active handler's entry, as it must have been established 
during the execution of a procedure which executed just 
prior to the procedure(s) in the ring from which signel 
was called, else its invocation number would not e the 
one previous to the calling of signal. And so on ••• 
The extension of the searching process may or may not 
be obvious; ~t any rate, it is deferred until the discussion 
of the implementation of signsl. Figure 1 offers a schematic 
view of inter-ring condition establishing and signaling. 



----~------------------

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.9.04 PAGE 6 

Since each entry for a condition handler in a particular 
signals_n segment contains information pertaining to the 
procedure which caused the entry to be established~ the 
user should be sure to call reversion before returning 
from a procedure for any cond l t I on names he has ca 11 ed 
condition for in the same procedure. Failure to do this 
may cause chaos during future attempts to "signa1 11 

these condition names. 

Each "call" in a user's program that involves a ring 
crossing will cause information to be added to the <rtn_stk> 
and thus increment the invocation number. As returns are 
made this information is removed and the invocation number 
decremented. It is thus possible that condition handlers 
will be left in various signals_n segments with invocation 
numbers greater than the current invocation number (or 
in some cases with an invocation number equal to the present 
invocation number but with references to stack frames 
that are no longer active). 

The procedure 11 signal_search11 is invoked by signpl to. 
search signals_n segments in other than the current r1ng. 
Any signal vector entries that signal_search encounters 
with an invocation number greater than the invocation 
number current for the ring in which it is searching will 
be removed by a special call to reversion rin with arguments 
condngme (char(*)) and rnum (char 2 • A message will 
a1so be put in the user~rror file to indicate the action 
taken. Note~ however~ that this correct ion of user mistakes 
(reverting condition handlers) only occurs when the mistake 
is encountered in searching. 

Another role the linkage section plays is found in the 
area of defining default condition handlers. For system-defined 
(reserved) conditions~ it is possible to indicate ''trap 
before definition" (see 80.7.01) in the condition's entry 
in the pre-initialized linkage section for a given ring 
(<signals_n.link> may~ indeedt even contain different 
information than <signals_m.llnk>). When the linkage 
section is being examined to find. the definition of a 
condition-name-as-external-symbol, the trap will be sprung 
and the subroutine to which the trap pointer points will 
be invoked. The subroutine will be privileged to write 
in <signals n> and will start a push-down list for the 
condition in question~ with the first entry (active until 
and unless condition is invoked) establishing the appropriate 
procedure as handler for the condition. The routine to 
do this is set_default (see below). 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9.04 PAGE 7 

Once a default handler has been established, reversion 
will respect it, never popping a condition's push~down 
list of handlers past it. The default handling for programmer 
defined conditions is less elaborate, if no definition 
is found for condna~ in any signal vector's linkage section 
(in those rings lnvo ved in the pending return list of 
<rtn_stk>), siRnal starts a search for the current handler 
for condition unclaimed_signal." (See BY.11.0S). 

The Multics Shelli for example, will in general respond 
to an unclaimed_s gnal condition by a call to print_err 
(as part of the standard system treatment of error-handling, 
see also section BY.11) and a return to command level. 
The "unclaimed_signal" condition is itself a system-defined 
condition, and if. no handler is found for it, ~iJnal will 
execute a "terminate-process" fault (see BB.S. 3 • 

The linkage section of the signal vector also affords 
the means of the constraining certain conditions to be 
handled only in certain rings. In the course of its search 
for the most recently established condition handler, signal 
investigates the 11 class code" in the linkage entries lt 
encounters for condname (see Figure 2). Subsequent actions 
(detailed in the Implementation description) are subject 
to the dictates of the particular code encountered. Some 
possible codes and their meanings are: 0, no constraints 
on this condition (that 1st the search may enter and/or 
leave the protection ring n which the code is found)J 
11, may not leave ring, but may enter, 12, may not enter 
or leave ring, but may pass over, 13, may not enter, leave 
or pass over, 14, may not enter, but may leave. In the 
definitions, "enter" covers the cases when signal was 
invoked from ring Jl, has not found the active handler 
in <signals_n>, and is searching <signals_m.link> - or 
"entering" ring m where m is the ring from which n was 
called (and to which it will return, of course, as-indicated 
by <rtn_stk>)J "leave" covers the cases where .§ignal was 
invoked from ring Jl, has not found the active handler 
in <signals_n>, and is prepared to search <signals_m.link> ... 
if it is permitted to do so by the code in <signals n.llnk> 
(that is, if sl~nal may not "leave" n, it wi 11 invo'Ke 
the default han ler in <signals_n> rather than search 
<signals m.link>) •. It can be seen, then, that the handling 
of a condition can be controlled on a per-ring basis by 
suitable class coding in linkage section entries. System-defined 
conditions will usually be so constrained. Programmer-defined 
conditions may be so constrained as well. 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION 80.9.04 PAGE 8 

Figure 1. Finding the "most recently established" condition 
handler 

' 

,, , 
,-.,. I,-, 

I ) It \ ~ 
\ I I\ I R32 . 
' \) ', l 
', I -• .. _, ] 

® 

BJ. 

on x 
Q) 

® 

(x)_ 

® 

The wandering arrow represents control 
numbers are invocation numbers, "on x'' 
to condition for a condition named x. 
rings.) 

.82. B.l 

on x 

(0 
on x 

on x 

oPx 

@ 

in a process, circled 
indicates a call 
(The Ri are protection 

When the call to si~nal for x is made (at ® in the figure), 
<signals_ 3 > wille lnvestTgated first. At the top 

J5..f the~ 1 ist is the handler specijJed in the call at 
~ , but its invocation number ( C9 ) is not the same 
as the current one ( @ ), so the search continues -
in this case to ring 2. At the top of the~ list in <signals_2> 
is the handler specified in the call at ® J this is 
the active handler, as the "current" invocation number 
is indeed 8 (9 minus 1). 

(Note that after return from ® to R2 a call to reversion 
would cause the handler specified at ~ to become active, 
and so on.) 



MULTICS SYSTEM-PROGRAMMERS' MANUAL 

Figure 2. <signals_n. link> entry 

SECTION BD. 9.04 PAGE 9 

~indicates irrelevant 
to condition-handling 

trap pointer 

"value" is offset of 
head-word for condname 
in <signals_n> 8 

d 

e 

·~ 

value 

c 

n 

or zero 

class code 

0 n 

a m 

Figure 3. Signal Vector entry 

0 

2 
4 

9 

previous-entry 
invocation If 

sp 

'l 
>-

proc 
(entry data) 

,_ 

Notes: 

1 • 

2. 

3. 

Previous-entry: 

Invocation_no: 

if zero and on some condition's push-down 
list, then is first entry; 
if 0 and on free block thread, then is 
in 11 unused" space (see also Figure 4, 
and Implementation). 

if a zero, indicates that this is a 
default handler entry. 

sp: pointer to stack frame of procedure which invoked 
condition (contents of spl16); for use of Unwlnder 
(see 80.9.05). 



T 
k 

_j_ 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.9.04 

Figure~. 6 signal yector and A handler list within !! 
<signals_2> 

0 
ptr to next_free "next:-free" 

ptr to top of x stack "head-word" 

t.- I , 
4 

II 
an entry 

~ ~ l 4 

II" 

0v_'- t-. 
. I ~ 6 

? ~ old top of x stac 
~ 

~~_CD 8 " .. 1\ nAvt-.1n~»vt- free) - ,. 
' "r 0 words 

lnaxt (next(next free)} .,.. 8 (•0) 

.. 

PAGE 10 

)' "Used space" 

' 

' r 10 wo~ds 
,. .. 

r Unused space" 
--' 

Notes 

1. · 11 k11 corresponds to "value11 in the llnkage section entry 
(cf. Figure 2). 

2. The numbers inside the various entries are invocation 
numbers corresponding to the calls to condition indicated 
in Figure 1. R2. 

3. Pointers (arrows) marked E are established at the time 
of entry to condition to add a new handler. 

4. Numbered pointers indicate order of setting by condition. 
X's indicate destruction by condition. 

5. The 11 next_f ree11 and 11 next ( )11 no tat ion is exp 1 ained 
under Implementation. passim. 



,,-. 

MUL TICS SYSTEM-PI~OGRAMMERS' MANUAL SECTION BD.9.04 PAGE 11 

Implementation 

The remainder of this sectiondeals with the implementation 
of the Mu 1 tics ccmdi tion-handling primitives. Reca 11 
that condition pushes down the list for a given condition's 
handlers in the signal vector, reversion pops up the list, 
and signfl finds and invokes the most recently established 
("active ) handler. 

Figure 3 shows the general form of an entry in a signal 
vector, Figure 4 presents a sample portion of a signal 
vector (actually, it corresponds to the situation diagrammed 
in Figure 1, and is <signals 2>.) The signal vector segment 
is tightly packed and multipTy .. threaded in the interests 
of space-saving and flexibil 1 ty. The threading allows 
the several push-down lists in the segment to increase 
in length without the restrictions which would be imposed 
by a fixed-length block structuring and at the same time 
makes for compact segments when the lists are relatively 
short. Note that a relative pointer to the next free 
block of ten words in the segment is maintained in <signals_n>IOJ 
if that block begins with a 0-word, it is in the unused 
space at the end of the segmentJ if it begins with a non-0 
word, the word is a relative pointer to the nexf free 
block within the used portion. The segments <s gnals n> 
and <signals~n.link> are preinitiallzed for system-detin~d 
conditions, and reside in the system library. . 

The details of the implementation are presented in the 
context of the accompanying block diagrams, which will 
repay close attention in certain of the more complicated 
case.s. 

CONDITION 

The ca 11 i ng sequence is 

call condition (condname, proc)J 

with declarations 

del condname char {*), proc entry, 

where condnpme and proc are as in the Overview. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.9.04 PAGE 12 

Figure 5 presents a block diagram of condition. The notation 
of the Overview is continued below. The logic of condition 
i s as fo 11 ows : 

1 • 

2. 

3. 

4. 

~Ling. The ring number of the calling procedure is 
Obtained from <process_info> (80.6.11)# call it n. 
~definition exist? Call generate ptr (BX.13.02) 
WTfh condname and 11 s lgna 1 s_n" as arguments. If condnpme 
has previously been defined~ a pointer to its linkage 
section entry is returned, no new list is created and 
we proceed from step 4. However1 if condname has not 
been defined (a null pointer is returned from generate_ 
ptr) 1 a new list must be started and we proceed as 
specified in step 3. (Note that the trap-before
definition attribute in the linkage section entry for 
a system-defined condition will be "sprung" by generate_ptrJ 
therefore 1 the only case in which condition will receive 
no pointer from generate_ptr is that of the first 
reference to a programmer-defined condition). 

Start list. An empty condition handler list is started 
as follows: 

a. 

b. 

c. 

Get the location of the next free locations from 
<signals_n>fO and update the-free space thread. 

Call link_change$make_definition (segment 1 symbol~ 
value, class)i link change$make definition 
(see 8Y.13.03) builds a linkawe segment entry with 
arguments sefiment= "signals_n ~ symbol= condneme 
and value= t e offset of condnpme within the 
segment <signals_n> (found In a. above)J see 
also figure 2. 

Zero out the entire entry. 

~dd to~. (From either step 2 or step 3.) The 
ogic-for adding an entry to an established list is 

as follows: 

a. Get the next_free location pointer and update the 
free space thread (see steps 4-6 under reversion). 

b. Set previous_entry= the current value of head_word. 

c. Update the head_word to point to this entry. 

d. Invocation_no is found at sbl2. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.9.04 PAGE 13 

e. ~ is set to the stack pointer of the procedure 
that called condition. This is included so that the 
Unwinder will have this information if the 
condition involved is "cleanup''. 

5. Return 

REVERSION 

The calling sequence is 

call reversion (condname); 

with declaration 

del condname char (*); 

where condname has the same meaning as in condition. 

Figure 6 presents~ block diagram of reversion. 

1 • 

2. 

3. 

4. 

s. 

Save ring. The ring number of the calling procedure 
lS obtained from <process info> (80.6.11), call it n. 
reversion$ring specifies n as an argument. 

Obtain pointer 1Q ~. Call generate_ptr with condname 
and 11 signals_n" as arguments. 

Return if UQ list ·£r empty list. If the call to ge~erate_ 
pointer showed that the sym~condname was not def1ned 
returns to its caller. The head word for condname'~ 
list is located at <signals_n>lvalue where value comes 
from the linkage section entry (see also Figure 2). 
If the head word=O then the list is empty and reversion 
returns to Tts caller. If the invocation no=D then 
this is a default handler and reversion returns to its 
caller without reverting this handler. (Note that 0 
can not be an actual invocation number since the 
smallest index into the <rtn_stk> is 2.) 

Prepare to rethread. The current value of next free 
must be saved (call it old next free), so that next free 
can now be made to point to the-entry about to be removed. 
(That is, old_next_free = next_free, and next_free = 
contents of head_word.) 

fQQ list. The active entry for condname is removed 
from-rhe push-down list by the single expedient of setting 
its previous entry value into head word. This makes the 
previous entry on the list become the active one. 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION 80.9.04 PAGE 14 

6. 

7. 

Rethread. The entry just removed is now a free block. 
To maintain continuity of free block threading# the first 
word (location previous_entry) must be set to the old_ 
next_free value, which was saved in step 2. 

Return 

FIND_CONDITION 

It is sometimes useful to be able to examine the contents 
of a handler list. The find condition routine is furnished 
for this purpose; it operates in the protection ring it 
is invoked from. 

The calling sequence is 

call find_condition(condname, n, proc, fl•g); 

with declarations 

del condname char(*), (n, flag) fixed. bin (17), proc label; 

where 

condname 

!l 

is as in condition 

is the number of places down in the list to 
examine (n=O indicates the top of the list) 

(returned by find_condltion), is the handler 
indicated in the nth entry in the list or the 
last entry in the list if there are less than 
n+ 1 entries 

is set to zero if proc is indeed the .o.th entry 
and is set to m, where m is the number of places 
down the list the entry is, if er(¥ is the 
last entry rather than the nth. f there is 
no list of handlers for condnsm~ in the ~urrent 
ring, £leg is set to -1.) 

SIGNAL 

The calling sequence is 

call signal (condn~me, rtn_fl~g, ptr); 

with declarations 

del condname char (*), rtn_flag fixed bin(17), ptr ptr; 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.9.04 PAGE 15 

where condname is as usual, rtn_flag is a switch indicating 
whether or not the caller will accept a return from the 
condition handler, and J2i!: wi 11 be passed to the condition 
handler as an argument, when signal invokes the handler. 

Figure 7 presents a block diagram of signal. The implementation 
of signal is made less straightforward than that of condition 
and reversion because it must have access to the Gatekeeper's 
<rtn stk> (see 80.9.01) and because of the necessity of 
reading and writing signal vector segments (<signals_n>) 
in inner rings when a call to signal is made from, say, 
a ring-32 procedure and <signals_32> does not contain 
the active handler for the condition in question. That 
is, condition and reversion may execute in whatever ring 
they are called from (i.e ... they have ring brackets of 
1,63,63 execute only; see BG.9.00 re ring brackets) because 
they will only need to access the signal vector in that 
ring; but signa~, on the other hand, must be able to execute 
with full ring- privileges. It is not desirable, however, 
to make signal strictly a ring-1 procedure, because the 
likelihood is great that the active handler will be in 
the ring it was called from and introducing unnecessary 
protection wall crossings is inefficient. Therefore, 
the tasks assigned to the conceptual unit "signal" in 
the Overview are actually distributed among two routines: 
signal is the routine called by the user, with the same 
protection list as condition and reversion; it determines 
whether or not the active handler is in the ring it was 
invoked from, and, if not, invokes the second routine, 
signal search, which requires a ring-crossing (ring brackets: 
1,f,63). Then signal search, able to be fully privileged 
as a ring-1 routine, will find the active handler in whatever 
ring it's in and return the handler's entry data (Rrgc, 
as above) to signal. The call to proc is then made y 
invoking signal_helper_n (n is the ring of proc) which 
calls proc with the associated wall crossings. 

1. (2et ring numpe,r. The ring number of the invoking 
procedure .s available from <process-info>(BD.6.11). 
Ca 11 it n.. 
2. Git invocation number. The current invocation number 
is ava lable from sbJ2 (that is, <stack_n>l2). Call it 
curinv. (Recall that the invocation number is the index 
into the Gatekeeper's <rtn_s!k> for the entry corresponding 
to the return information wh1ch was stored when a procedure 
in the ring of the <stack_n> was called.) 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.9.04 PAGE 16 

3. ~ generate_ptr. In like.manner to condition and 
reversion., signal must call generate_ptr in order to determine 
the location of the head word of the list of handlers 
for condname. Call the pointer returned pointer and the 
class code returned class. 

4. l! pointer DYl!? If pointer is non-null., proceed 
to step 5. If pointer is nul 1., condname has not been 
established for ring nJ therefore., call signal search. 
Note that pointer cannot be null for system-detined conditions 
because they are., by definition., defined as symbols marked 
trap before definition in <signals n. link> and generate_ptr 
will have "sprung" the trap thus Tnvoking a procedure 
which establishes the defau1t handler via an appropriate 
call to set_default. (If it turns out that sisnfl has 
been invoked for a condnem~ which was not esta 1 shed 
in any ring., or which has no active handler in any ring., 
signal search will return to signal with no proc to invoke., 
and signal will initiate a search for the current handler 
for 11 unclaimed_signa1." On return from signal_search., 
proceed to step 9 ... which corresponds to 11 out" in Figure 
7. 

s. l! handler pctiye? Using pointer to find the headword 
for condname., and the headword to fina the entry on the 
top of the push-down list of handlers for condname in 
<signals_n>., get the invocation number of the entry. 
(Recall that the invocation number of the entry was set 
from the value current when the entry was made.) If this 
value equals curlnv., we .have found the active (most recently 
established) handlerJ proceed to step 6. Otherwise., proceed 
from step 7. 

6. Found. If the~ in pointer's top-of-the-list 
entry is null., proceed to step 10. Otherwise., call proc 
with the single argument Bir· In the event of a return 
from Qroc., proceed to step 10. 

7. ~found. Three of the class codes which might 
have been found in the linkage section entry for condname 
prohibit searching beyond the current ringJ therefore, 
if class equals 11., 12., or 13 it is necessary to employ 
the default handler in the current ringJ proceed to step 
a., which corresponds to "def" in Figure 7. Otherwise, 
the search may continueJ invoke signal_search and on return 
proceed to step 9 • ., which corresponds to "out" in the 
figure. 

a. Default. If pointer's entry has a 0 invocation number 
it is the default handler's entry: call the proc of the 
entry with 2!£ as argument and proceed to step 10. if 
proc returns. 



.. l • , 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.9.04 PAGE 17 

Otherwise, investigate the entry pointed to by the back 
pointer, determine if its back pointer is null, and so 
on until the default handler's entry is found. (Note 
that if a default handler is not found - probably the 
case for user defined conditions - sl~nal initiates a 
search for "unclaimed_slgnal" - step 1.) 

9. Out. (This step is taken on return from signal_search 
after step 4. or step 7.) 

a. 

b. 

c. 

Search f9und ~ DM!l ~andler. It is possible to 
specify a null procn a condition handler list 
entry. If one was returned by signal_search 
(i.e., if the active handler is null) go to 
step 10. 

Search sycceeded. If signal_search returned a 
non-null~~ call signal_helper_n with arguments 
~and m. signal_helper_n then calls Trlc 
with the single argument .P:tr.. If this cal s 
returned from, go to step 10. 

Searfh failed. If signal_search returned a 
spec al null label for proc, this implies that 
the search failed to locate an active handler 
for condname; in this case, the default procedure 
in ring n must be found and invoked; proceed 
to step 8. 

10. Retyrn allowed? If rtn~flag • 1, the caller of signal 
is prepared to accept returns and control is returned 
to the caller. If rtn_flag = 1, the caller is not prepared 
to accept returns. In this case signal causes a terminate 
process fault. 

11. H2 handler. condname is set equal to "unclaimed_signal" 
and control returns to step 3. An entry is made in the 
user's error file to indicate the action (see seterc, 
BY.11.01). A flag is also set so that if no handler is 
found for "unclaimed_signal" a "terminate-process" fault 
(see BB.5.03) is generated. 

SIGNA L_S EARCH 

The calling sequence is 

n = signal_search (condname, proc); 

with declarations 

del condname char (*), proc entry, n char(2); 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION 80.9.04 PAGE 18 

where condnarne is an input argument, ~ is an output 
argument, and n is an output argument specifying the signal 
vector in which ~ was found. 

Figure 8 presents a block diagram of signal_search, which 
routine is intended to be called only by si~nal. Its 
role is to carry out the search for the act ve handler 
for condnaroe, after signal has determined that the active 
handler Is not in <signals_n>, where .!1 is the ring in 
which signal was. invoked. 

The logic of signal_search is as follows: 

1. ~invocation number. Because a formal ring-crossing 
may or may not have taken place on the call to signal_search 
from signal, it is necessary to exercise caution in determining 
where to start looking in the <rtn_stk> for the ring number 
of the procedure which called into the ring from which 
the call to signal came. That is, if si~nal was not called 
from ring 1 (and the likeliest case is t at it was not), 
the top entry on the <rtn_stk> represents the return information 
for the return to the ring §ignal was operating in; in 
this case, the signal vector of the ring involved has 
already been searched and the entry containing it is in 
some sense superfluous to signal_search. Now, the invocation 
number stored at sbf2 (which is to say <stack_1>r2) represents 
the index into <rtn stk> for the most recent entry, and 
must, therefore, be1 'decrementedtt (replaced by the previous 
invocation number) before we start to search. This number 
wi 11 still lead to the wrong entry unless there was no 
ring-crossing involved in the call to signal_search. 
What signal search does, then, is determine whether it 
was called from ring 1 or not in the following fashion: 
the Gatekeeper will have set a cross-ring flag in the 
Stack frame prior to the one in which signal_search is 
operating if a ring-crossing had taken place in getting 
to signal search (the frame is the 11 freak link .. discussed 
in BD.9.0T), so signal_search inspects the contents of 
the sixteenth word of th~ Stacl< fratn~ PQinted to by the 
current contents of spr16 and if the cross-ring flag is 
set proceeds to step 2a, where the invocation number will 
be decremented. If the cross-ring flag is not set, skip 
the decrementing and proceed to step 2b. In either case, 
call the contents of sbf2 (th~ invocation number~s fixed 
location) curinv. · 

2. lQgQ. (This step is taken from several points, including 
step 1. It controls the tracking-through of the signal 
vectors indicated by the ring numbers in <rtn stk>; that 
is, the currently-unsatisfied returns~ rings.) 

y'"' ; • 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.9.04 PAGE 19 

a. Decrement curinv. On entry., decrementing curinv 
causes the routine to deal with the return 
information for the ring which called the ring 
containing signal (i.e • ., the top of the <rtn_stk> 
push-down list prior to the 11 superfluous" entry 
for the call to signal_search in ring 1). On 
loops., decrementing curinv causes the routine 
to deal with the return information for successively 
prior ring-crossings. See also Figure 1; the 
decrementing of curinv carries the search "back 
a 1 ong the arrow" • 

b. Test curiny. If curinv has been decremented to 0., 
the <rtn stk> has been completely investigated., 
as its fTrst entry has a value of 1. Therefore., 
the search for the active handler has failed; 
~ is set to a special null value which si~nal 

.will recognize and the routine returns ( 11 out1 

in the figure). Otherwise., the search continues, 
per step 3. 

3. ~ ~ ring number. Extract the ring number from 
the <rtn_stk> entry corresponding to £Yrinv. Call it n. 
4. Call generate ptr. As the other condition-handling 
routines do., signal_search also makes use of generate_ptr. 
Again., call the pointer returned pointer and the class 
code class. 

5. Test pointer. If gginter is null, there is not even 
a default handler for condname in the si~nal vector for 
the current ring; therefore, proceed to ' loop'' (step 2.) 
to try the next ring. If pointer is non-null proceed 
to step 6. 

6. Check entry codes. 

a. 

b. 

Code 12. If the class code for con~name in the 
linkage section of the current rings signal 
vector is 12, go to "loop" (step 2. ). Entry 
to the current ring for a signal of condname 
is prohibited by code 12, but the search 1s 
permitted to continue. 

Codes 13 and 14. If class equals either 13 
or 14, proceed to "out" (step 2b.) Entry to 
the current ring for a signal of condname is 
prohibited by these codes, and the search is 
not permitted to continue. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.9.04 PAGE 20 . 

7. ~ haRdler acti¥e? If caass passes the checks at 
step ~- t e next step is to etermine whether the active 
handler has been found. This will be the case if the 
invocation number in the ~ vector entry found through 
f1inter is equal to luriny-rsee also signal, step 5.) 
~ so, set ~ equa to the entry data found in the entry 
and return to caller1 if· the invocation number is greater 
than cur~nv call reversion~ring (condname) to get rid 
of this 1 left over" condition handler - go to step 4J 
if curinv is greater than the invocation number, go to 
step 8. 

8. Check~~. If class equals 11, the search 
may not leave the current r ng; we must determine the 
default handler in the current ring, in like manner to 
step 7. of signal, and pass it back to signal. If cJ1ss 
is not equal to 11 at this point, the search may cont nue 
to " 1 oop" (step 2. ) • 

If no default handler is found, set a flag and return 
so that signal may search for handlers for nunclaimed_signa1. 11 

SET_DEFAULT 

Calling sequence is 

call set_default (condname, proc) 

with arguments as in condition. set_default is identical 
to condition except that: 

a. The. invocation_no in the entry is set to D. 
b. The 12 in the entry is set to nYl!. 



' I 

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION 80.9.04 PAGE 21 

Figure 5. 

Save 

Ring 

Call 
enerate

:ptr 

Yes 

Find 
Current 
Top 

Add 
New 

Update 
free spac 
thread 

Create 
No 

>---"'"""-----..! emp t y 
list 



MULTICS SYSTEM-PROGRAMMERS' MANUAL 

Figure 6 

Save Ring 

Call 
generate-ptr 

Find 
head_word 

Save 
next free 

next_free 

= c(head_word 

SECTION 80.9.04 PAGE 22 

No 

Yes 



II• t 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.9.04 PAGE 23 

Get ring II 
(n) 

Get 
invocation 
II (curinv) 

all generate 
tr (signals_ 
-1 co{ldLlame, 
tass]; get 

o~nter 

Figure 7. 

Call 
signal_search 

~~~----------------~~ (condname, 
pro c) 

Call signal 
search (cond
name, proc) 

Call signal 

'""'·~·helper_n -
pointer-.proc 

No 

~ Get previous 

1 
entry 

Note: each point at which a return is 
indicated should be interpreted 
as "return unless rtn_flag requires 
a terminate-process fault to be 

generated". 



MULTICS SYSTEM-PROGRAMMERS' MAMJAL 

Figure B. 
·---+--... 
Get invocatio 
nurpber frotll 
sb!2, set 

' into curinv 

Curinv • 
curinv -1 

Get ring II ...., 
of <rtn stk..., 
curinv -

Call fenerate_ptr 
(signa s_n,conaname, cla a) 

Yea 

Yea 

Reversion ,}extraneous condition 

Proc • 
null1 

proc • 
pointer 

.... proc • 
ignal_search 

SECTION 80.9.04 

No ~ 
proc • 

pointer ._ 
proc 

signal_searc 

at this point. 

·PAGE 24 

Get 
previous 
entry 

. . i .. 




