
I\1UL TICS SYSTEiV\-PROGRAHHERS' fi/IANUAL SECTION BE.15.02 PAGE 1

Published: 04/25/67

Identification

Multics System Tape Generator
V. B. Nguyen

Purpose

The Multics system tape generator is used to produce the
Multics system tape. It takes all segments needed fer
the Multics system tape from the Multics segment library
and writes the output tape in the Multics Standard Magnetic
tape format. (This format Is described in MSPM section
88.3.01.) It obeys the conventions of the logical format
of the Multics system tape (MSPM Section BL.1.01).

This section describes the Multics System Tape Generator
(MSTG) program and its first implementation on the 6.36
environment.

Discussion

Al 1 segments needed by the Multics Initi~lizer must be
placed on the Multics System Tape (MST) 1 and a list of
these segments rnust be provided for the f'iSTG. -This list
is called the Multics System Tape Segment List (MSTSL).

Contents of the MSTSL --- .

The MSTSL is a character stream file containing an entry
for each segment to be put on the MST; the order of the
entries is in respect to the order of the segments on
the i'-'1S L

This entry is called header entry and must contain 18
items which are described in MSPM section BL.2.01 1 Segment
Loading Table. As the f~iST is divided into collections~
an entry must be provided in the MSTSL to mark the end
of each collection~ this entry is called collection entry.

The format of the MSTSL is the following:

<MSTSL'>::== <:list of collections>

<1 ist of collections>::~'" <collection> 1<collection>
< 1 i s t of co 1 1 e c t i on s>

fv\UL TICS SYSTEt<-PROGRAf,i~-'iERS' t,1£\~JUAL SECTI0~ BE.15.02 PAGE 2

<collection>::= <list of header entries> <collection entry>

<list of header entries>::= <header entry>!
<header entry>
<list of header entries>

Collection entry

The collection entry contains:

collection N;

where: N= a 6 digit number.

The end of the MSTSL must be a collection entry as follows:

collection 777777;

ljeac!er entrv

The header entry contains items which are information
about the segment. The general format of any items of
the header entry is the following:

Syntax:

<i tent> : :== <key\rJoro> :<item body>; lend;

<keyvJOrct> : == names I pa thnan:e I max 1 en~fc hI cur 1 eng th I
access!statusl .

pagesize!hyperpagelinitseglperprocsegl
descsegmentl

linkprovidedllinkseg!cornblinkllinkstatusl
enf ace provide!

cnfaccess!temposeg

<i ter11 body>:= <1 ist of segment names> I <pathname>
<access> I <status> I
<1 inkac:f __ e section status> I <integer>
yeslno undefined

<list of segment nan:es> ::=<segment name> I
<1 ist of segment names>
<segn~ent nam:=>

,........, MUL TICS SYSTEM- PROGRAr~MERS"' t~.ANUAL SECTION BE.15.02

A comment of the following type may appear anywhere in
a header:

PAGE 3

<comment> : := <empty> !/;'~<character string \'\lithouti(/>"1'(/

Semantics:

This first two items must be the ~egment names followed
by the pathname, other items can be given in any order.
Each header entry consists in fact of 19 items, one for
ea~h 18 components of the SLT followed by the END item.

Spaces and new line characters are not significant.

Note:

the <item body> wil 1 be discussed in more details in the
6.36 implementation section.

The algorithm for making segment units of the SNT is the
f o 1 1 01.-11 i ng :

1 •

2.

3.

4.

5.

6.

7.

8.

0
-'•

Get next entry from the MSTSL

If entry is a collection mark, go to step 6

Search for the segment

Manufacture loaical header and call procedure
to write onto tape

Call procedure to write onto tape for output
of the segment itself, and go to step 1

Manufacture logical mark with the collection
number and write onto tape

If co-llection number is 777777, go to step 9

Go to step 1

End sequence

~~UL TICS SYSTEM- PROGRAHt~ERS' t'lANUAL SECT I 0 N 8 E • 1 5 • 02 PAGE 4

The Implements_tion of the t·1STG in the 6.36 Environment

Under the 6.36# the MSTG program must take into consideration
the memory space; any segment taken from the Multics segment
library tape and written onto output tape must be released
from core by an explicit call release (segment).

The magnetic tape writing facility must be provided i·n
absence of the magnetic ta~e device interface module.
This facility specification is attached at the end of
this section.

The mechanism for manufacturing the Multics System Tape
Segment List is the following:

1. For any segment of the MST# a header must be
provided. This header is established by the author
of the segment in order to minimize errors. The
header consists of an EDA format file; it must
contain the 18 items required by the SLT. The next
section will describe the content of each item and
the edition of it. For any segment which has a
linkage section segment# 2 consecutive headers must
be provided, one for the text segment and one for
the linkage segment.

2. The MSTSL is obtained by combining in a desired
order all header files together, header files stand
novJ for entri:;s of the f·\STSL. The CTSS 11 join 11

command pe rfc::)n:1s this function, it is dcsc ribed in
nSPi,\ section SE.5.12. .

In ordar for the MSTSL file to beccm2 a 6.35 process segment,
lt has to.be converted into the text or link format.
A subroutine is needed to perform the conversion of the
MSTSL EDA file into the absolute binary text file. This
subroutine is K~KETL and documsnted in MSP~ section BE.5.13.

A. !\11 h::~adcr files must have the second narne' 1 HE.L\DE::~11 •

B. The list of items contained in th2 header is identical
to the one in 3L.2.01 1 it is repeated below for
conven L-;nce.

,.-.....,
SECTin~ BE.15.02

1. Segment names- This item is a list of all of
the names of the segments.

2. Path name- This item is the directory path
name fer the segment in the file system hierarchy.

3. f·iaxirnum length - The maximum size of the segment
is given in units of 1 021-+ v"ords.

4. Curr:::nt lenuth ..., - The current size of the segment
is given in units of 64 ~vo rds.

5. Access - The descriptor access control field
bits are stored in this item.

6. Status - This item indicates the status of the
seament after initialization. It is cne of the
f o ll ovJi n g :

\rJirecl clovm- f-, segment of this status must be
i n core at a 1 l t i me s •

loaded - A segment of this status must be active
and loaded (page table in core) at all times
although the segment itself may be read in and
out of core as needed.

active - A segment with this status must remain
act i v e U\ S T en t r y p r c v i d :~ ci Cl n 1 y) b u t nee cl n D t
remain loaded (i.e., the page table may be
removed).

normal - A segment of this status requires no
special consideration and is handled as a normal
~,1 u 1 t J. c s s .--,..., r ,_., n '-
' I . ~~ :::J I ::~ L •

7. 64 word paged switch - This switch indicates
whether the page size in words is 64 (ON) or 1024
(OFF).

B. Hyperpage size - The hyperpage size is given
l·n uni+- o£ ~~10 n,ns Sl.7e -~ t...:::> , l.l '...- t""'C,...l.~-.....~ "- 0

9. Initialization switch- This switch indicates
VJh::;ther th2 segr;'!;-::nt is part oF initialization (C+:)
or tb2 hard-core sup2rvisor (OFF).

SECTION BE.15.02 PAGE 6

10. Per-process switch - This switch is ON if the
segment is a per-process segment rather than a
per-system segment.

11. Descriptor segment switch- This swit~h in
ON only for the segment loading table entry
describing the descriptor segment.

12. Linkage segment provided switch - This switch
is ON if the segment has an associated linkage
section segment.

13. Linkage section switch - This switch is ON
if the segment is a linkage segment.

14. Combine linkage switch- If ihis switch is
ON, the linkage section associated with this
segment may be combined with linkage of other
segments of the same status.

15. Linkage section status- If the linkage
section switch is ON# this item.indicates the
status of the linkage section. There are five
types of linkage segments. They are:

normal - The lin~<age section lf.Jas produced by
a programming language translator. ~est
linkage sections are of this type.

combined- This linkage segment is constructed
by the pre-link module (t"lSPr-1 BL.7.02). It is
one of the follovving four:

combined wired down linkaoe - linkaae information
.;) ~

for loaded hard-core supervisor segments

combined loaded linkage- linkage informati6n
for loaded hard-core supervisor segments

combined active linkage- linkage information
for active hard-core supervisor segments

combined out reference linkaae - linkaoe . ~ .::;

1nformation for references from the hard-core
supervisor to segments in cuter rings of
protection.

. '

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECT I u; ~ 8 E . 1 5 • 02 PAGE 7

16. Enforces access switch - If on~ this switch
indicates that the segment has the access given in
item 17 to references in outer rings of protection.
If the switch is OFF, the normal protection mechanism
is used.

17. Enforced access - This item only has meaning if
the enforced access switch is ON. It then contains
the descriptor access control field to be used for
the segment in all outer rings of protection. The
descriptor access control field for the hardcore
ring is contained in item 5.

18. Temporary segment switch - If this switch is
ON, the core used by this segment may be released
at an appropriate time during system initialization.
This wil 1 be done before the core map is updated
(H S Pfvi B L • 1 0 • 02) •

C. The general format to declare any item of the header
entry is the following:

<i tern>::= <keyvvoro> :<i tern body>~

The first tv10 items must be "names" and "pathnarne". The
other items may follow in any order.

1. names : <list of segment names>;
e.g. names: namel, nam22, name3 1 ,,.,namen;
/*segment names*/

2. pathname: <pathname>;
e.g. pathname: ABC; /*pathname*/

3. maxlength: <integer>;
<integer>::= maximum size in unit of 1024 words

L} • c u r 1 eng t h : < i n t e g e r> ; I u n de f i ned ;
<integer>:: = current size in units of
64 lf.Jords ''undefined'' \ivhen the size is
not known by the user

5. access:<access);
<a c c e s s> : : = t\ n y co rnb i nat i on of 1 e t t e r s .l'l. , D , S ,
fv1, E, ~·J

r---..

MUL TICS SYSTE1•1-PRO"'P.DJ'\HC:RS" t!tMJUAL SEC T I ON BE • 1 5 • 02

A Slave Access

D Data

s Slave Procedure

fvi Master Procedure

E Execute Only

\r-1 VJrite Penni t

i.e. DW stands for Data Write Permit

SAW stands for Slave Procedure Slave Access
Write Permit

6 • status : <status::> ;

7.

8.

9.

10.

11.

12.

13.

11+ •

<statu~'>:: = one~ of the L+ letters ~'1, L,A, N

VJ = \'!i t~ed dovm
L = Load:2cl
A = Active
N = r\;orma 1

• / • .I pa g 2 s 1 z c : ·, 1 n c e g e r> ;
<int·zgc1·; := 64/102L~

hyperpc:gc: <integer>;
<integer>::= Hyp::..'rpagc in units

initseg: Yes;!No;
Yes= initialization segment

perprocseg: Yes; !No;
Yes = per-process scoment

descsegment: Yes; I No;
Yes = Descriptor segment

linkprovided: Yes;!No;

,..
or pag2 size

Yes = seg8ent has a linkage section segment

· 1 inkscg: Yes; lf\lO;
Yes= segment is a linkage section

cornOl irik: 'r'~s; J:>J();
Yes=~ this linka~J2 has to be cor.ibined

PAGE' 8

t~UL TICS SYSTEf'il- PROGRAf·-~i·/1ERS"' HAr~UAL SECT I mJ BE • 1 5 • 02 PAGE 9

15. linkstatus: <status>;lundefined;
<status>::= one of these 5 letters N~W~L~A~O

~~ - Noi~ma 1
w = ltJi red dO\!IIn
L = Loaded
A == Active
0 Out reference

16. enfaccprovide: Yes;!No;
Yes == enforces access is provided for this segment

17. enfacc: <access>; !undefined;
<access> Sec item 5
11 Undefine 1' 1:1hen the enforced access is not provided

18. temposeg: Yes; !No;
Yes = segment can be deleted after Part 1 of
Multics Initializcr
The last item should be as follows:

19. End;

5 • 3 6 r·i u 1 t i c s stan cl£3. r d j: a p~. format v,Jr i t i n g_ f ~K i li ty.

;;.,, 645 library subroutine is provic!:::;d 'dhich accepts calls
to v'Jrite on a rnagr1ctic tape. This subroutine escapes
to the 535 GECOS environment and performs calls to GEFRC
and GEIOS to write a magnetic tape in the Multics standard

t • t ~ ' -[• ,- ' • ' • I I • ' ' • l magn(.: 1c ·ape ,-orrn2n. lillS Torma-c 1s cescr1o2ct Hl o.2·cc:n
in f·1SPH section Bf .6.01. hlo rnore than one such tape rnay
be written on any one 6.36 job.

Th2 library subroutin,:: accepts the follcv1ing four calls:

call attach_tapc(err);

This call p2rforms any system functions not already acccmplished
by GECOS control cards (c.Q, 3 allocating a drive 3 mounting
a tapc 3 etc.) It also writ~$ on the beginning of the
tape the standard label sequence.

call write_tape(buff, n, err);

t"1ULTICS SYSTH1-PR.OGS'AH~1ERS' ~'\ANUAL SECTION BE.15.02 PAGE 10

Then words located in buff(1) through buff(n) will be
copied from buff and added to the stream of words destined
for this tape. Subroutine write tape will break up this
stream into blocks of the appropriate size, add header
and trailer information, and write the blocks onto the
tape. \·Jrite tape VJi 11 insert EOF records ltJhere appropriate
for the standard format.

call detach tape(err);

The final physical record is written onto the tape and
a standard end-of-tape sequence is written; the tape is
rewound and the drive deallocated.

call get-err-count(count);

The tape writing subroutine will keep track of the number
of error records which it has written; this call, which
may be made at any Urne between the "attach_tape'' and
the 11 dctach tape" calls, lrJill return the current value
of this numSer.

In each of the first three calls, err is a return argument
which, if zero, means that the call was handled successfully,
and if non-zero means that the call failed for some reason.
A non-zero return is accompanied by a diagnostic message
in the error file.

