
r TO: MSPM Oistribution

FROM: G. S. Stoller

SUBJECT: BE.8.05

DATE: 7/24/67

This section supercedes the description of pseudo-process
initialization given in BE.7.07 (issued 12/9/66) whenever
the two conflict. In particular, parts 8 and 9 of the
"Special Segments Descriptions" subsections are superceded
by this document.

Segment <.init> is no longer automatically assembled with
each run. Users may now request it to be assembled, supply
their own text+ link for it, or use the <.init> segment on
the segment library.

Merge-editor users may fetch text and link for <.init> by
inserting the line

FETCH .INIT TEXT+ LINK

in the GECOS file.

64.5 driver users must insert a copy of the code of <.init>,
as an ordinary EPLBSA assembly, in their data deck. It is not
possible to get the text and link of the driver-supplied version
of <.in it>.

-~.

t.tJL TIcs SYSTEM-PROGRMIIERS I MANJAL

ldentific,ation

Pseudo-Process Initialization

G.S.Stoller

0. Puqzose

SECTION BE.S.05 PAGE 1

Published: 7/24/67

Quite a bit of initialization of the pseudo-process is done before the

user's code is entered. ·some of this initialization is done in the 645

LOADER (which is in the 635 'Support package) and part of it is done

in pseudo-process itself.

This document attempts a brief outline of the initialization. It is mainly

for anyone who has to make modifications to these segments; a standard

user need not concern himself with this document beyond the Summary, except

for references made there to other parts of this document.

1 .. Su!JIM,ry

If the user's code returns all the way back to the initialization module,

it will return to <init_disp> which will call (escape> to provide a normal

termination to the pseudo-process. This call to <escape> wi 11 J'lSd destroy

or modify any stack frames above <init_disp>'s stack frame. A former

standard procedure of terminating with a divide-check to avoid destroying

stack frames need not be used.

The bottom stack frame will show a call from <init_disp> to <.init> and

the next stack frame will show a call, but not from (.init>. While this

is not a common occurrence, it happens here because of the unusual coding

of <.init> which performs neither a "save" nor a "return".

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BE.8.05 PAGE 2

2. 645 LOADER

The forward pointer in the bottom frame of the stack is set here (to 40

(8)). This is the stack frame used by <init> and <init_disp>.

11 MME1 -1" instructions are stored in the fault vector, <fvector>.

for the fault tag 2 fault, an "scu,tra" pair to f2catc is set up.

<ivectr>, the interrupt vector, is initialized to 11scu,rcu 11 pairs.

(These result in a "nap" from the supplement on interrupts directed to

the pseudo-process.)

3. <in it>

Control 1s passed from the 645 LOADER to segment <init> at location 0,

and the pseudo-process begins running. <init>'s attributes are MASPRC,

SLVACC. (SLVACC is needed to allow the 645 LOADER to transfer to <init~)

<init> first sets the control fields of the address base registers to the

conventional settings required in the pre-Multics system.

Address base register sb is locked (to the stack segment number). The

previous stack frame pointer is set to the null pointer, ITS (-1,1,N).

Second, the sp-pair 1s set to point to the base of the stack segment;

this is the base of the current stack frame. Also, the lp-pair is set

to point to <ini t>' s linkage segment.

Third, <init> prelinks those intersegment references of the linker module

(See BE.8.00, pages 3 and 4 of the 10/13/66 issue) that could cause

infinite recursive looping on linkage faults in the linker module.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BE.8.05 PAGE 3

Finally, <init> transfers to <init_disp>. Starting from this point,

linkage faults can occur as the linker module can handle them.

The following constraints are imposed by <init>; if not obeyed, and

(init> finds this out, it will abort the pseudo-process run.

1) <namtab> must be segment number 3.

2) <stack>, <f2catc>, <linker>,<segman>
must be found in <namtap).

3) All intersegment reference names that are to be
prel inked must be of the form "<o< >I[~·] 11 where
110(" is a symbol of at most 7 characters. Further
more, the name must begin on an even word boundary.

4) Each attempt to prelink must succeed.

In addition, there are constraints imposed on the coding of <init>:

1) <init> may be entered only once in a pseudo-process.
If entered a second time it will abort; hence <init>
may not call a procedure that returns to it.

2) No temporary storage (in the stack) has been assigned
to <init>.

3) Until the linker module is ready to accept an occurrence
of a fault tag 2, <init> may not make any intersegment
references (that would ordinarily result in a linkage
fault) unless it prelinks the reference.

Currently, <init> transfers (there is no need to call since no return

will be made) to <init_disp> right after the linker module is sufficiently

prelinked.

<init> is coded under constraints unusual to procedures in the pseudo-

process. Hence it is left as soon as possible. Initialization 1s

continued in <init_disp> which is no.t as constrained as <init>.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BE:.8.05 .PAGE 4

4. <init_disp>

This segment is logically just an extension of <init>. It appears as

a separate segment for the following reasons:

1) To demarcate the line between code 1n which a fault
tag 2 may not occur and code where it may occur.

2) To allow calls to external procedures. (<init_disp>
can be returned to.)

Since <init_disp> is an extension of <init> and can run 1n the same stack

frame (which it does), no save 1s done when <init_disp> 1s entered.

(Note that <init> does not call <init_disp> either. <init_disp> has

t.aken over <init>'s stack frame, so <init> is not visible in a stack

trace.) <init_disp> continues the initialization by dispatching to

other procedures before finally calling the user's entry point through

<. in it>.

<init_disp> first calls <init_esc> to initialize for escaping from the

pseudo-process environment to the GECOS environment. (See BE.7.10.)

Then it calls <escape> with the null escape number (See BE.7.10 again)

so that the links from <init_disp> to <escape> and the links in <escape>

are made. Also, <memory> is protected (class is directed fault, see

BE.7.00) when <escape> returns.

Now <.init> is called at entry point [l.init], and the user's code 1s

entered.

If <init_disp> is ~eturned to after the above, it aga1n calls <escape>!

[escape], but this time with the "finish" escape number. Since the link

from <init_disp> to <escape> and all the links needed by <escape> are

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BE.8.05 PAGE 5

already made, no linkage faults will occur at this time. Also, <escape>

uses no stack storage. (See BE.7.10.) So, except for the call to

<escape> resulting in the address base registers, registers (as 1n

SREG), and control-double information being stored in <init_disp>'s

stack frame, the stack is unchanged.

5. <init_esc>

This is described 1n BE.7.10. It performs the initialization required

for the escape mechanism.

6. <.in it>

This segment is reduced to one line of actual machine code. In the old

terminology, it is a "transfer vector" (of a trivial nature sine~ only

one transfer point is provided).

Here is the code of this segment:

name
entry
segref

.. init: tra
end

.init
•• in it
0(,,6'
~

where <~>l[j9] is the entry point to the user's code (as specified by

the entry line in the GEOOS file used by the merge-editor or by the entry

control card in the data deck of a 64.5 driver run; See BE.5.02 and

BE.6.01). Users may now supply their own text and link of this segment,

and not reassemble it each time a pseudo-process run is made. Furthermore,

such a segment going to <main>l[start] is on the segment library and will

be used if no (.init> is supplied.

A stack trace comes up with a "funny" at the (.init> point when <.init>

is coded as bove. The bottom stack frame shows a call from <init_disp>

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BE.8.05 PAGE 6

to <.init>, whereas the next stack frame shows a call from some other

segment (not <.init>).

<.init> does not show up here because it does not "call", it transfers.

(The same thing happened to <init>).

