
MULTICS SYSTEM-PROGRAMMERS 1 MANUAL

Identification

Sequential Linear l/0

SECTION 'BF. 1 . 12 PAGE 1

Published: 8/31/66

J. F. Ossanna~ V. A. Vyssotsky~ G. G. Ziegler

Purpose

The Multics I/0 system provides capability for sequential
linear I/0. This section describes in detail the I/O
system calls for performing sequential linear I/0 ..

Sequential Linear Frames

An existing linear frame may be attached to a orocess
(or a new linear frame may be created and attached to
a process) as a sequential frame by an attach call to
the I/0 system (see section BF .1 .02). A· frame \tvhich
already exists when it is so attached may previously
have been attached to processes as either a sequential
or random frame, or both. The primitive operations available
for transmitting data to and from a linear frame attached
as a sequential frame are discussed in what follows.

The 'r.Jr i te Ca 1 1

A sequence of elements may be written into a sequential
linear frame by means of the w~ite call, whose general
form is:

ca 11 write (name,e 1 emno, workspace, ne 1 em C stat us])

The argument name is a character string of 1 to 31 characters.
Its content is either a streamname or a frame id. If .
n.srna is a streamname 1 it refers to the frame to which
the stream is attached. The argument elemnQ is a 35
bit signed integer whose value must be non-negative.
The value of elemno is the difference between the element
number of the first element to be written and the element
number of the current element. The argument wcrksoace
is a pointer to the data to be written. Specifically,
in PL/1 terminology, worksoace is a pointer vartable;
the I/0 system will act as if the based variable associated
with the pointer variable workspace were a bit string
of len~th nelem times the element size. The argument
nelem 1s a 35 bit siqned integer specifying the number
of elements to be written. The value of nelem must be
non-negative. The optional argument status is a bit
string returned to the caller by the I/0 system; it contains
status information about the transaction. See section
BF.l .21 for a description of ~~e content of the status
argument.

,,......

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.l .12 PAGE 2

Suppose alpha is a newly created and attached sequential
linear frame and its declared element size is 9 bits.
Then the ca 11

call write('alpha'~~data~100~state)

would cause the first 100 characters of~ to be written
as elements 11 ••• ~100 of alpha; on return the bit string
state would contain status information about the transaction.
After this call~ alpha is 100 elements long and its current
element number is 101. The current element is always
the element just following the last element written (or
read). Thus~ a setond write ·

call write('alpha'~~other~100~state)

will write the first characters of other as elements
101 1 ••• 1 200 of alpha. If a write call is followed by
a no the r write ca 11 with e 1 em no > 0 ~ the second ca 1 1 wi 1 1
cause skipping over elements and/or writing of zero elements~
followed by writing of the specified data. For example~
consider the sequence

.
call write('alpha' 1 0 1 data~100)
call write('alpha' ~10 1 other~100)

and assume as before that alpha is newly created. The
first call will write the first 100 elements of~
into alpha. The second call specifies that the first
100 elements of other are to be written into alpha in
such a way that the first element of other is written
into alpha ten elements beyond where the 100th element
of~ was written. The I/0 system achieves this result
by inserting ten elements of binary zeros. Thus the
two calls together wrote into alpha the first 100 elements
of~~ followed by ten elements of binary zeros~ followed
by the first 100 elements of other.

The rules governing insertion of zero elements on write
calls for 1 inear frames are as follows. Suppose the
actual length of a linear frame called henry is, E elements.
Consider the call ·

call write('henry 1 1 elemno 1 data~ne1em 1 state)

The argument elemno specifies that writing is to begin elemno
elements beyond the current element at the time of the
ca 11.

-

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.1 .12 PAGE 3

Let~ be the number of the first element to be written. If
e> E there is a possibly zero gap between the last element
already in the file and the first element to be written;
this gap will be filled with e-E-1 elements of binary
zeros. Then the· nelem specified data elements will be
written. This will happen even if nelem = 0. For example 1

suppose henry is 10 elements long and the current element
number is 8. Then ·

call write('henry 1
1 10 1 data 1 0)

will cause henry to be extended by 7 elements of binary zeros
(elements 11 to 17); on return the file is 17 elements.
long~ and the current element number is 18.

In the normal truncation mode for writing of sequential
frames~ writing a sequence of elements causes the last
element written to become the last element of the frame.
For example~ suppose that when alpha is attached it is
an existin~ frame whose content is 1000 elements of the
declared· s1ze. If the first call after attachment is

call write('alpha' 1 100 1 data 1 100)

then the first 100 elements of the frame will be skipped over~
the next 100 will be replaced by 100 elements from~~
and the remaining 800 elements previously in the frame
are no longer there. After completion of the write 1

the length of the frame is 200 elements~ and the current
element is element number 201. (See section BF.1 .04
for a discussion of write in the replacement mode.)

A request to write beyond the declared maximum length
of a frame will be rejected~ no data will be written~
and an end-or-frame status will be returned to the user.
Note that this differs from a read which requests data
extending beyond end-of-frame. A read request for 10
elements of data ·when only 6 remain in the frame will
result in the transmission of the 6 elements and an end-of-data
status return. A write request~ however 1 to write 10
elements when there is room for only 6 will be rejected
with no data at all written. · •

Ihe Read Ca 11

Elements may be read from a linear frame by using the
~ call 1 whose general form is

ca 11 read(name 1 e 1 emno ~workspace 1 ne 1 em[~ ne lmt [~status] J)

,.. ..

MULTICS SYSTEM-PROGRAMMERS' M~NUAL SECTION BF.1 .12 PAGE 4

The arguments., of ~ are the same as the corresponding
arguments of write 6 except that the ~call has an
additional optional argument# nelmt. This argument is
a 35 bit signed integer# returned by the I/0 system.
Its value is the.number of elements transmitted from
the frame to the .caller's workspace, and lies in the
range 0 < nelmt < nelem. If no data is read 6 nelmt = 0.
If the read request is completely fulfilled# nelmt = .
nelem. If the remainder of the frame is less than nelem
elements long, or if a break element stops transmission#
the value of nelmt shows how may elements were actually
transmitted. As an example# suppose that the frame.attached
to alpha is positioned at the beginning of frame# ~ither
immediately after attachment or immediately after a first
call. Suppose further that the element size is 9 bits
and that the frame is 1000 elements (characters) long.
Then the ca 11

call read('alpha' ,O,data,100) ·

will cause the first 100 characters of the frame to be
read into~- After return from the ·call the current
element is element number l01.

If it had been desired to read the first SD elements
of the frame into data, skip the next 50, and read elements
101 to 150 into other, it could be done by the sequence

call read('alpha' ,,data,SO)
call read(1alpha 1 ,50,other 6 50)

If a~ call requests data from a place partly or wholly
beyond the end of the data in the frame, any of the requested
data which exists will be transmitted, and the status
return will show that less data was transmitted than
had been requested. For example, assume again that frame
alpha contains 1000 elements, and suppose the current
element 999. Consider the sequence

call read('alpha' ,,data,1 ,count,state)
call read('alpha' 66 0ther,1,count,state)
call read('alpha' uany, 1 ,c~unt,state),_.

The first read will transmit element number 1000 to data#
and will return a last-data status. The second read
will not transmit data, and will return end-of-frame
status. The third read will not transmit data and will
return beyond-end-of-frame status.

The Current Element·

After a successful write call, the next element to be
written is known as the current ele_r(lent.

·'

MULTICS SYSTEM-PROGRAMMERS 1 MANUAL SECTION BF.l .12 PAGE 5

Specifically~ a sequential linear frame has a current
element in the following cases. If the most recent~~
write~ ~or delete call referenced an element of the
frame (i.e~ was not rejected by the I/0 system) and if
no subsequent first or !ail call has occurred~ then the
element beyond the last element referenced by that most
recent~~ write, ~or delete call is the current
element. After a frame is initially attached~ or immediately
after a first call, the current element is the first
element of the frame. After a 19ll call the current
element is LAST+1. For a precise definition of current
element, see section BF.1 .10.

The Te 1 1 Ca 11

It is often useful to be able to determine the current
element number of a linear frame. This can be accomplished
by means of the~ call~ whose general. form is

ca 11 te 11 (name~ e 1 em no[~ status])

The arguments name .and status are the same as the corresponding
arguments of a write cgll.· The argument elemno is a
35 bit signed integer. The value of elemno at time of the
ca 11 wi 11 be ignored and overwritten by the I/0 system.
At time of return~ elemno will contain the current element
number for the indicated file~ unless the call was rejected
(bit 4 or bit 15 of status set to 1). A call to~
does not change the current element number~ nor does
it change the data content of the frame. On return from
a call to~ the value of the argument status will
be exactly what it would have been if the call had been
a call to~ with elemno = 0.

Jhe Seek Ca 11

The~ call allows an element to be designated as the current
element without causing transmission of data. Its general
form is

call seek(name,elemno(,~tatus])

and its arguments are the same as the corresponding arguments
of write. If stream alpha is attached to a frame which
has a current element, then

call seek(1 alpha·•,n)

will cause the current element to be the nth element after
the one which was current before the call.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.l ~12 PAGE 6

If the new current element number ·resulting from a ~
call is beyond the last element of the frame 1 the current
element number still exists~ although no current element
exists. In this case the status return from the ~
will show end-of-frame. If 1 however, upon initiation
of a~ call the current element number is already
one or more greater than the number of the last element
of the frame, the status return from the~ will show
beyond-end-of-frame. A li'Jrite request after such a seek
will be handled normally, provided that the~ call
did not increase the current element number beyond the
declared maximum size of the frame.

The Breaks Call and Reading with Breaks

Any particular set of elements may be defined as break
elements; a break element will stop reading of data on
a read call. When a linear frame is fir?t attached,
there are no break elements. Break elements may be declared
by a call whose general form is

call breaks(name 1 brea~ptr 1 nbrks(~status])

The arguments name and ·status are the same as the corresponding
arguments of the write call. The argument breakptr is
a pointer to a set of break elements. Specifically,
in PL/I terminology~ breakotr is a pointer variable;
the 1/0 system will act as if the based variable associated
with the pointer variable brkptr were a bit string of
length nbrks times the element size. The argument nbrks
is a 35 bit signed integer specifying the number of break
elements in the set; the value of nbrks must be non-negative.
Each of the elements in the set specified by a breaks
call will be treated as a break element until another
breaks call occurs. Note that length of the break must
be the same as the element length.

Duplicate elements are permissible in the break set.
For example, suppose the element size on stream beta
is five bits, and consider the sequence

declare sam bit(20)initial('10101010101111~Q1010'B);
declare p pointer;
p=addr(sam);
call breaks('beta' ,p,4);

After the call to breaks, the elements 10101, 01010, and 111 1 1
will be break elements for stream beta until another
breaks call is given for stream beta. A~ call on
a stream connected to a linear frame will not transmit
any elements beyond a break element ·transmitted by the

-

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF. 1 .1 2 PAGE 7

~call. More specifically~ consider any~ call
for a linear frame

call read(name,elemno,workspace,nelem,nelmt,status)

If none of the nelem elements to be read is a break element~
then nelem elements will be transmitted to the workspace.
If, however, one or more of the nelem elements to be
read is a break element, the elements up to and including
the first such break element will be transmitted, and
the remaining elements (if any) will not be transmitted.
Suppose, for example, that character string text is being
read on serial linear stream alpha, that the break-characters
are , and ; and that the text, starting with the current
character, is

Consider the sequence

call read('alpha',,datal,3)
call read('alph~' .. ,data2,3)
call read('alpha' ,,data3,3)
call read(1 alpha1 ,,data4,3)
call read('alpha' ,,data5,3)
call read('alpha',,data6,3)

Ther. the character bbc will be read into data area data1,
the characters d, into data2, the characters e; into
data3, the character , into data4, the character ; into
dataS, and the characters fgh into data6.

The De 1 ete Ca 11

The general form of the delete call is:

call delete(name,elemno Gstatus])

and its arguments have the same form as the corresponding
arguments of the write call. The effect of a delete
call for a linear frame in the truncation mode is exactly
the same as the effect of a write call with nelem = 0.
If alpha is an existing frame of 1"080 elements•_qnd the
current element number is 300, the request

call delete('alpha' ,100,state)

will delete elements 400 to 1000. In the same way

call wr~te('alpha' 1 100,data~O,state)

- '

.-

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.1 .12 PAGE 8

will also delete elements 400 to 1000. (See section BF.1.
for a discussion of write and Qelete in-the replacement
mode.)

The First Call

After reading or writing part or all of a sequential
frame, it is frequently necessary to go back to the beginning
of the frame and start. reading or \vriting again from
the beginni~g. This is accomplished by the first call
whose general form is

ca 11 first (name [.,stat us])

For example, suppose that a number of elements have been
written in a frame attached to stream alpha, and it is
now desired to read those elements.

call first('alpha')

will position the frame so that a read call can read
data from the frame st~rting with the first element.

The Ta i 1 Ca 11

When adding elements to an existing frame it is useful to
be able to skip to the end of the current contents.
This may done with the tail call_ whose general form is

ca 11 tai 1 (name[, status]).

Following such a call the current element number is LAST+1
and a write with eJemno = 0 or null would write data
immediately following the last element already in the
frame. A read call of any kind would get a status return
showing end-of-frame.

An Example

Let us consider as an example the problem of writing a PL/I
procedure to make a copy of an arbitrary linear I/0 frame
in the file system. The procedure wi 11 be called by:

call copy(oldfile,newfile,state)

where oldfile and newfile are character strings; oldfile
is the name of a readable frame in the file system, and
newfile is the name to be given to the copy to be created.
State is a bit string of length 72. In our example we
shall simplify error handling by passin~ the buck up
to the caller if any difficulty arises 1n copying the
frame. Code to perform the copy operation is shown in
figure 1. ·

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION SF .1 .·1 2 ·PAGE 9

The code works as follows. First we attach the frame to
be copied as a sequential read-only linear frame and
give it the id tempi~ which will also be used as a streamname
for reading the frame. If the attachment does not succeed~
we return to the caller. If it does succeed 1 we attach
the frame to be copied into as a sequential write-only
linear frame and give it the id tempo~ which will also
be used as a streamname for writing the frame. If the
attachment does not succeed we detatch tempi and return
to the caller. If it does succeed~ we go on to establish
bounds for both frames. We want to make an exact c_opy 1

and we have no idea what element size was used to Write
tempi~ so we use element size 1 bit. We bound the frame
sizes by the actual size of tempi~ thereby ensuring that
tempo will hold the copy while asking for as little space
as possible. Even so~ we may not have succeeded in getting
what we needed~ so we test to find out. If not~ we scrap
tempo~ detach tempi~ and return. If the-bounds were
established successfully~ however~ we test to see whether
tempi has ever been written. To do this we call first~
which does·nothing~ since tempi is already positioned
at beginning of frame~ but which returns status that
we can examine. If no .data has ever been written into
tempi·~ then we have already made tempo an exact copy
of tempi by creating tempo and not writing anything into
it 1 so we detach both frames and return. If~ however~
data has been written in tempi~ we copy it into tempo
230• bits at a time until we have copied the last data
from tempi. We then detach both frames and return.
We chose to copy 2304 bits at a time because 2304 bits
is 64 words 1 which is a magic number to the file system.
VtJe could have copied any number of bits at a time; we
suspect that the copying is especially efficient if we
do it in 64 word chunks.

This example recurs in more elaborate forms in sections
BF.1.17 and BF.1 .18 1 where copy.procedures are shown
for copying more general (and less tractable) frame structures.

