
MULTICS SYSTEM-PROGRAMMERS 1 MANUAL

Jdentification

Sequential Logical Record I/0

SECTION BF .1 .15 PAGE 1

Published: 8/31/66

J. F. Ossanna, V. A. Vyssotsky, G. G. Ziegler

Eurpose

The Multics 1/0 system provides capability for sequential
record I/0. This section describes in detail the I/0
system calls for performing sequential logical record I/0.

Sequential Logical Record frames

An existing logical record frame may be attached to a pr~~~s
(or a new logical record frame may be created and attached
to a process) as a sequential frame by an attach call
to the I/0 system. A frame which already exists when
it is so attached may have previously been attached to
processes as either a sequential or a random frame or
both, but not both at the same time. When attached as
a sequential frame, a logical record frame may be regarded
as a sequence of records; ~owever, some of the records
may be missing (see section BF.l .21 for a discussion
of status returned on requests for missing records).
The primitive operations available for transmitting data
to and from a serial logical record frame are described
·in the following discussion.

The Vir i te Ca 11

Suppose a new sequential logical record frame has been
created and attached to an inout stream named alpha.
Data may be placed in the frame by using a write call.
The general form of a write call is:

call write(name, recno,~t·Jorkspace,nelem [,statusl)

The argument name is a character string of 1 to 31 characters.
Its content is either a streamname or a frame id. If
name is a streamname, it refers to the frame to vvhic:h
the stream is attached. The argumen~ recno· is,a 35 bit
signed integer whose value must be non-negative·.· The
value of recno is the difference between the record number
of the record to be written and the current record number.
The argument worksoace is a pointer to the data to be
written. Specifically, in PL/1 terminology, workspace
is a pointer variable; the I/0 system wil 1 act as if
the based variable associated with the pointer variable
workspace were a bit string of length nelem times the
element size. The argument nelem is a 35 bit signed

•

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.1 .15 PAGE 2

integer specifying the number of elements to be written.
The value of nelem must be in the range 0 < nelem ~ N,
where N is the decl~red.maximum record size of the frame.
The optional argument status is a bit string returned
by the I/0 system to the caller, containing status information
about the transaction. • .

After a r~~ord has been written by a write call, another
write call ~ith recno ·=·0 or null will cause the next
record to be written. In normal truncation mode for
writing of sequent ia 1 1 og ica 1 r·ecord frames, writing
a record causes loss of all records with higher record
numbers. For example, if a frame containing ten records
of 1000 elements each is attached as a sequential logical
record frame and connected to stream alpha, then after

call write('alpha'~O,data,100)

the frame consists of one record, containing 100 elements
from workspace area data. (See section BF.1. for a discussion
of the truncation and replacement modes.)

The Read ca 1 1

Records, or parts of records, may be read by the ~
call, whose general form is

call.read(name,recno,workspace,nelem,[,nelmt[,status]])

The arguments of ~ are the same as the corresponding
arguments of write, except that the~ call has an
additional optionaJ argument, nelmt. This argument is
a 35 bit signed integer, returned by the I/0 system.
Its value is the number of elements transmitted from
the frame to the caller's workspace, and lies in the
range 0~ nelmt ~ nelem. If no data is read, nelmt = o.
If the read request is completely fulfilled, nelmt = nelem.
If the record to be read is less than nelem elements
long, the record is transmitted, and the value of nelmt
is the length of the record, in elements. As an example,
suppose that the frame attached to stream alpha is positioned
at the beginning of frame, either· immediately after attachment
or immediately after a first call. Suppose further that
the element size is 36 bits and that the first record
is 100 elements (words) long. Then the call

call read('alpha',O,data,100)

will cause the first record of the frame to become the
,~ current record, and would cause the record to be read

into the first 100 words of data area Qa1a. If a read

MULTICS SYSTEM-PROGRAMfv1ERS' MANUAL SECTION ·BF.1 .15 PAGE 3

call requests data from a valid record~ but from a place
partly or wholly beyond the actual end of the record~
any of the requested data which exists will be transmitted,
and the status return will show that less data was transmitted
than had been requested .. For example, if the record
of the previous example had been read by

call read('alpha'~O,data,200,amount,state)

then the record is read into the first 100 words of data,
words 101-200 of~ are unchanged, state indicates
less data read than vJas called for~ and the value.of
amount is 1 00.

The Current Record

After a successful write call~ the next record to be
written is known as the current record. In most circumstances
a frame connected as a sequential logical record frame ·
has a current record. Specifically~ a sequential logical
record frame has a current record under the following
circumstances. If the most recent read, write~ ~
or delete call referenced-a record of the frame (i.e.
was not rejected by the I/O system) and if no subsequent
first or 19il call has occurred~ then the record just
beyond the last record referenced by that most recent
~~write,~ or delete call is the current record.

·This is true even if the last record contains no data
(e.g. has just been deleted).

After a frame is initially attached or immediately after
a first call~ the current record is the first record.
After a 19ll call the current record is L~ST+1. For
a precise definition of current record, see section BF .1_.1 0.

The Te 11 Ca 11

It is often useful to be able to determine the current
record number of a logical record frame. This can be
accomp 1 i shed by means of the ~ ca 11, \•Jhose genera 1
form is:

. .
call tell(name~recnoLstatus]) · ·

The arguments name and status are the same as the correspond~ng
arguments of a write call. The argument recno is a 35
bit signed integer. The value of recno at time of call
wi 11 be ignored and overwritten by the I/0 system. At
time of return, recno will contain the current record
number for the indicated fram2, unless the call was rejected
by the I/0 system (bit 4 or bit 15 of status set to 1).

MULTICS SYSTEM-PROGR;.I.MMERS' MANUr-\L SECTION BF.1.15 PAGE 4

A call to tell does not change the current record number,
nor does it change the data content of the frame. On
return from a call to tell the value of the argument
status 1r1i 11 be exactly lrJhat it would have been if the
call had been a call to seek with recno = 0.

-· -
The Seek Ca 11

The seek call allo~;Js a record to be designated as the current
record without reading or altering the contents of the
record. Its general form is

ca 11 seek (name .. recno [.. state J)
and its arguments are the same as the corresponding arguments
of write. If stream alpha is connected to a frame which
has a current record, then

call seek('alpha' ,n)

will cause the current record to ben records after the
record which was the current record before the call.
For a precise definitioQ of· current record see section BF.1 .10.

In reading a frame, the~ call may be used to skip over
a record or records. For example, if the frame attached
to a stream alpha has just been positioned by a first
call, the sequence

call read('alpha' ,,data,SO)
call seek('alpha' ,1)
call read('alpha',O,other,SO)

wi 11 read 50 words from the first record into data, vvi 11
skip the second record, and will read 50 words from the
third record into other.

The DeletB Call

The general form of the dP.lete call is

call delete(name,recno(,status])

and its arguments have the same form as the corresponding
arguments of the vrrite call. If a delete call is given
for a loaical record frame in the normal truncation mode,
the speclfied record and all following records are deleted.
If a logical record frame is in the reolacement mode
it is sometimes desirable to be able to delete a record
completely without rewriting it. This can be done with
the delete ca 11.

. . -

..
f"iULTrcs SYSTU"-PROGR;J.MI,1ERS 1 r~r-\NU.~L SECTION BF.1 .15 PAGE 5

~fter a record has been deleted, a subsequent read call
for that record l.rJi 11 give status return shcvJing that
the record does not exist. If the content of a record
is destroyed by a carl to write the record with nelem = 0,
a subsequent read call for that record will give status
return showing that the record existed and that its length
was 0. This distinction may, of course, be ignored by ·
a calling·~rocedure if the difference is irrelevant.

The First Call

After reading or writing part or all of a sequential frame,
it is frequently necessary to go back to the beginning
of the frame and start reading or writing again from
the beginning. This is accomplished by the first call,
whose general form is -

call first(nameGstatus])

For example, suppose that a number of records have been
written in a frame connected to stream alpha, and it
is now desired to read those records.

ca 1 1 first (1 a 1 ph a 1)

will position the frame so that a read call can read
data from the first record of tbe f~ame.

The Ta i 1 Ca 1 1

When adding records to an existing logical record frame it
is useful to be able to skip to the end of the current
records. This may be done with the tail call whose general
form is

ca 1 1 ta i 1 (name [, status J)
Followin~ such a call the current record number is LAST+1
and a 1r/nte with recno = 0 or null would vJrite data immediately
following the last record already in the frame. A read
call of any kind would get a status return showing end-of-frame.

