
-~

To:
From:
Subj:
Date:

MSPM Distribution
J. F. Ossanna
BF.2.20
1/10/68

In addition to minor corrections, the attached revision of
BF.2.20 contains the following changes.

1. New declarations are given for the per-loname-segment
the per-Joname base CPIB), and the transaction block
C TBS).

header,
segment

2. The description of the use of the Locker by the 1/0 switch and
the Transaction Block Maintainer CTBM) is expanded.

3. The Initialization of the TBM and the TBS Is described. A new
call, tbmSJnlt, Is specified.

4. A new call to unthread transaction blocks from down chains,
tbmSunthread, Is described.

5. The status bits returned by the TBM are specified.

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.20 Page 1

Published:
(Supersedes: BF.2.20,

1/10/68
8/14/67)

Jdenttflcatlon

Data Base and Transaction Block Discipline for Outer Modules.
J. F. Ossanna.

purpose

This section describes the data base discipline for 1/0 System
(lOS) outer modules. With few exceptions, all nonautomatic data
is kept In per-loname Segments (IS). Transaction Blocks (TB's)
are kept In a per-user-group Transaction Block Segment {TBS).
The use of driving tables by table-driven modules Is described.
The use of the Transaction Block Maintainer {TBM) Is described.
A data buffer discipline is described which makes use of standard
transaction block manipulation.

General

At the time an Joname is defined as a result of an attachment,
the switching complex creates a per-loname Segment {IS) and
establishes certain data bases within it. One of these data
bases, called the Per-loname Base (PIB), becomes the principal
data base of the outer module reached via the ioname.

For every outer call reaching the outer module (except diyert),
the 1/0 switch allocates a Transaction Block (TB) within the
Transaction Block Segment (TBS) by calling the Transaction Block
Maintainer (TBM). These blocks are chained together in a way
described later in this document, and indices Identifying the
chain are stored within the PIB. The contents of these blocks
are accessible by calls provided by the TBM. Upon request, the
TBM provides chaining of related blocks; f~r example, the blocks
for outgoing calls made by an outer module as a result of an
incoming call may be included in the "down chain'' of the block
for the Incoming call.

Additional per-transaction data Is kept in
Extensions (TBE's) allocated within an area in
outer module itself; a relative pointer to the
corresponding TR. Additional per-Joname
similarly-allocated PIB Extension (PIBE 1 s).

Transaction Block
the PIB by the

TB E Is kept t n the
da t a i s kept I n

Using a system involving several hold bits representing various
interests, the TBM provides automatic deallocation of unwanted
TB's together with their TBE's.

Each outer module may create additional transaction block chains
for Internal purposes. For example, the buffering of data being
processed by the lOS is implemented by such a chain. The outer
module allocates (by a call to the TBM) a transaction block to

~ which the buffer is appended in the form of a transaction block
extension.

Page 2 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.20

Relative pointer~

Once an loname Is known to a user process ~roup, a procedure In
any of the processes In the group can Issue an outer call
directed at that loname. Thus an lopath Is exercisable within
any process In the group. As a consequence, pointf·r Information
cannot conveniently be stored In the various common data bases In
the form of pointer variables. The doctrine on pointer
information Is that such Information Is stored as "relative
pointers"; these are bit strings of length 18, and are easily
converted to and from ordinary pointers by use of the procedures
described In Section BY.14. In variable names 'and declarations
throughout this section, "relp" Is commonly used to Indicate a
relative pointer.

Pointer variables which are not easily computed by an outer
module are provided by the switching complex which determines and
keeps them for every process using an loname. Examples are the
pointer to the PIS Itself and pointers to driving tables.

!hA ~-loname Segment

The per-loname Segment (IS) Is created by the switching complex
at the time an ioname Is first defined as a result of an attach
call. The IS then continues to exist until the outer module
associated with the loname Is successfully detached. That outer
module initiates the deletion by Issuing an atm$delete loname
call requesting delayed deletion; both the loname and the IS are . ~
deleted upon return by the 1/0 switch. ~

The IS contains a number of separately-allocated data bases. All
of these data bases are accessed as PL/1 "based" s true tu res. The
data bases In the IS are:

1. Header; created and Initialized by the switching complex.

2. Standard Per-loname Base (PIB); allocated by the switching
complex.

3. Standard PIB auxiliary based storage; allocated by the outer
module.

4. PIB extensions (PIBE 1 s); allocated by the outer module.

s. Transaction block extensions (TBE's); allocated by the outer
module.

6. lnterprocess communication block (ICB); allocated by the
attachment module In a Device Strategy Module (DSM) (see
Section BF.2.23).

All data bases allocated by the outer module are allocated within
a PL/1 area In the PIB. The header, PIB, the PIS's auxiliary
based storage, and the ICB have standard declarations which are

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.20 Page 3

given later In this section. Although the PIB and TBE extensions
are Intended for outer-module-dependent data, a portion of their
declarations is standardized to enforce a standar1 chaining of
these extensions.

The standardized chaining of extensions permits an outside
procedure -- e.g. a dump routine -- to determine completely where
all the data In the IS Is •

.I..Il§. ll Header

The IS header contains process-Independent per-loname data of
Interest primarily to the 1/0 switch. In particular, an outer
module need not be concerned with the header. The only exception
to the latter statement occurs In a DSM In which the attachment
module (see Section BF.2.23) and the request queuer (see Section
BF.2.24) use tnformatlon In the header.

The header Is created and Initialized by the switching complex at
the time the IS Is created. The declaration for the header
fo 11 ows.

del 1 loseg based (p),
2 flag,

J delayed_detach bit (1),
3 restart bit (1),

2 re 1 p,
3 plb bit (18),
3 I cb bIt (18 >,

2 lock bit (144),
2 dunvny ptr;

/•per-loname segment header•/

/•If ON, IOSW deletes loname *I
/•If ON, IOSW Issues restart call•/
/•relative pointers*/
/•relp to PIB•/
/•relp to ICB•/
/•standard lock structure space•/
/•dummy element for PIB origin•/

to
The

The "delayed-detach" switch is used by the switching complex
implement delayed deletion of the loname and the IS.
"restart" switch Is used to Implement a part of the restart
strategy (see Section BF.2.23-25). The relative pointer to the
PIB Is used by the 1/0 switch to supply the outer module with a
real pointer to the PIB (see discussion below). The relative
pointer to the ICB Is used by the attachment module and the
request queuer In a DSM.

The lock structure Is used by the 1/0 switch when calling
}ockerSwalt to lock the loname (see Section BQ.7.00). When the
switch receives an outer call, It attempts to lock the attachment
graph node corresponding to the ioname by calling the Locker; an
argument In the call Is a pointer to the lock structure. The
loname remains locked until the switch Is about to return to the
original caller, at which time the lock Is released by another
call to the Locker. This loname locking strategy prevents
simultaneous use of an loname and the corresponding per-loname
segment of an lopath by procedures in more than one process (see
BF.l.03 and BF.2.11 for additional discussion).

Page 4 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.20

~ ~-loname ~ (PIB)

The Per-loname Base CPIB) Is the principal data base of an outer
module. The PIB Is allocated and Initialized by the switching
complex at the time the per-loname segment (IS) is created. The
PIB is accessed as based storage by means of a pointer supplied
by the 1/0 switch with every call. Additional per-ioname data Is
allocated by the outer module In the form of PIB extensions
(PIBE 1 s); see discussion later In this section.

The pointer to the PIB (pibp) Is supplied by the 1/0 switch to
the outer module as an additional last argument on every outer
call routed to the outer module. In addition, the 1/0 switch
Initializes two groups of PIB Items prior to routing each call.
One group consists of all pointer Items; the second consists of
certain items which are copied from the caller's PIB. This
per-call Initialization Is discussed In detail below.

The contents of the standard PIB Is
common needs of a majority of
declaration follows.

chosen to accommodate the
outer modules. The Pl/1

del 1 plb based (p),
2 sync_event bit (70),
2 error event bit (70),
2 dtabp1 ptr,
2 dtabp2 ptr,
2 dtabp3 ptr,
2 at:~xptr ptr,
2 ioname1 char (32),
2 typename char (32),
2 ioname2 char (32),
2 bmode bit (72),
2 next_ioname char (32),
2 nmore fixed bin,
2 elslze fixed bin,
2 readblt fixed bin,
2 writeblt fixed bin,
2 lastbft· fixed bin,
2 boundbit fixed bin,
2 nbrk fixed bin,
2 ndelim fixed bin,
2 relp,

3 pibe bit (18),
3 more bit (18),
3 brk bit (18),
3 delim bit (18),

2 chain_base,

/•standard PIB*/
"!•for sync management*/
I* II *I
/•driving table ptr 1, mode control*/
/•driving table ptr 2*/
/•driving table ptr 3*/
/•auxiliary outer module ptr•/
/•lonamel*/
/•type name*/
/•ioname2*/
/•mode bit string*/
/•next loname*/
/•number of additional next lonames•/
/•element size•/
/*read pointer In bits*/
/•write pointer in bits*/
/•last pointer In bits•/
/•bound pointer in bits•/
/•number of break delimiters•/
/•number of read delimiters•/
/*relative pointers•/
/•relp to PIB extension•/
/•relp to additional ionames•/
/*relp to break list•/
/•relp to delimiter list•/

3 .t1index bit (18),
3 t2index bit (18),
3 blindex bit (18),
3 b2index bit (18),
3 a1index bit (18),

/•base of call transaction block chain•/

/•base of buffer chain•/

/•base of aux transaction block chain*/

"""'

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.20 Page 5

3 a21ndex bit (18),
2 loarea area ((MAX)); /•outer module allocation area•/

The sync_event and the error_event are used for internal
synchronization manai<~ement (see Section BF.2.02); modules not
concerned with such r!'latters can Ignore these I terns except for one
requirement. These items, when present Cnot zero), must be
passed along to the next outer module. The mechanism for doing
this consists of the module adding Its "plbp" as an extra
argument on outer calls It Issues. Upon receiving an outer call
with a 11 plbp", the 1/0 switch copies these two Items Into the
callee's PIB before passing on the call. Thus outer modules must
always Include their "plbp" as an extra argument on every call
Issued to the next outer module In the lopath. If the 1/0 switch
does not receive a "pibp", It zeros these items in the callee's
PIB. Thus the 1/0 switch provides automatic forwarding of these
synchronization management Item~.

There are two exceptions to the rule that an outer module must
Include Its "plbp" In Its calls. First, the module In the lopath
that Is the ultimate recipient of these Items (the DSM) does not
forward them. Second, the "plbp" JD.Yll .nsu. be Included on calls
representing ''Incidental" Input/output, I.e. calls Issued to an
ioname which Is not a next loname along the module's lopath. An
example of Incidental Input/output Is writing an error comment on
a standard loname used universally for that purpose. The use of
such Incidental Input/output by ·outer modules contains an element
of danger (e.g. the standard loname may have been attached to the
lopath containing the module) and the circumstances under which
is may be permitted are not yet determined.

The driving-table pointers and the auxiliary pointer are
Initialized by the 1/0 switch on every call, so that they are
appropriate to the process In which the call is being made. The
driving table pointers point to the first word of the segments
containing the driving tables. The pointers are determined by
the switching complex from driving table names kept In the Type
Table (see Section BF.2.14). This mechanism Is provided to
permit outer modules to be table-driven where possible. One kind
of drlvl"ng table used by all outer modules Is the mode control
structur-e (see Section BF.2.27); dtabpl In the PIB Is reserved
for this table. The code conversion tables and the code
conversion module are a good example of the table-driven module
approach.

The auxiliary pointer, "auxptr", Is used to reference an external
segment known only to the outer module. Such use of an external
segment Is permitted only In approved cases. One case Involves
the use of the 1/0 Registry Files by the DSM and the DCM.
Another example of an external segment Is the common data base
shared by DCMs which operate devices connected to shared
channels. The File System Interface Module uses auxptr to access
the File System file. Since the switching complex does not know
the Identity of the external segment, it is up to the outer

Page 6 MULTICS ~YSTEM-PROGRAMMER'S MANUAL Section BF.2.20

module to compute auxptr. Upon a return from the outer module
the 1/0 switch saves the value of this pointer in a per-process
entry of the Attach Table. On subsequent calls to the module,
the switch restores the pointer to the value previously saved for
that process. If upon return the I /0 swItch notes that a
restQred auxptr has been modified by the outer module, the values
saved for the other processes are made null. If no previous
value had ever been saved, a null pointer Is used for the Initial
value. Outer modules using auxptr should always test for a null
pointer before the first use during a call.

"ionamel", "typename", and "ioname2" correspond to the first
three arguments of the original attach call received hy the outer
module. Their values are assigned by the outer module at
attachment time. "bmode" ts the mode string array returned by
the Mode Handler (see Section BF.2.27).

After the outer module determines by some algorithm what the
Joname of the next module In the lopath is, this foname is stored
in "next_foname". When more than one next ioname is involved
(such as In the case of a broadcaster), the add t t ton a 1 ion ames
ar~ kept in auxiliary based storage to be described below. The
number of additional lonames is kept In "nmore".

The C!Jrrent element size measured In bits is kept In "elsize".
The various "pointers", the read, write, last and bound pointers,
are kept as bit counts. The determination of these pointers as
element counts is always accomplished by dividing the bit counts
by the current element size.

"nbrk 11 and "ndelim" are the current numbers of break
delimiter elements respectively. The actual strings
elements are kept ln auxiliary based storage to be
below.

and read
of these
described

The relative pointer "plbe" I'Oints to the first PIB extension;
"more", "brk", and "dellm" point to the auxiliary based storage
for the additional lonames, the break element string, and the
read delimiter string, respectively. The declarations for the
auxiliary storage follow.

del brklfst (nbrk) bft (elsfze) based (p),
II

delimltst (ndelim) bit (elsize) based (q),
II

more lonames Cnmore) char (32) based (r);
- II

/*P related
to relp.brk•/
/•q related
to relp.delim•/
l•r related
to relp.more•/

This auxiliary storage Is allocated within "ioarea" by the outer
module whenever necessary. If any of this auxiliary storage Is
not needed, the corresponding relative pointer should be zero.

The various transaction block chain base indices are discussed
later in this section.

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.20 Page 7

All based storage allocated by the outer module is allocated
r' within the PL/I.area, "toarea" •

.f.J.]. Extensions

Per-ioname data not resident In the PIB are kept in what are
known as PIB Extensions (PIBEs). There can be any number of
PIBEs. Successive PIBEs are reached by relative pointers kept in
Immediately-preceding PIBEs. Each PIBE Is required to contain an
included measure of Its size. The standard declaration for any
PI BE f o 1 1 ow s •

del 1 pibe based (pn),
2 re 1 p,

3 next bit (18),
3 last bit (18), ,

/•standard PIBE form•/
/•standard PIBE chaining*/
/•relp to next PIBE*/
/•relp to last item in this structure*/
/•outer module's private dcls*/

The "next" is a relative pointer to the next PIBE in the chain.
11 1 as t" I s a r e 1 a t I v e po I n t e r to the 1 as t i t em I n t he P I B E
structure, and is included to permit size determination by
outside procedures. The relative pointer ~o the first PIBE is
(relp.plbe) in the PIB. The last PIBE must have (relp.next)
zero. An outer module can avoid chasing a PIBE chain by keeping
a copy of all PIBE relative pointers in the first PIBE.

Exam o 1 es gf .eJ..B_ s..w1 £.ill Y,u

The real pointers corresponding to the relative pointers kept for
accessing IS based storage must be computed each time a new call
Is made to the outer module. The real pointers therefore exist
onlY In automatic storage. For example, to obtain the pointer pl
for use in accessing the first PIBE, one of the pointer
manipulation procedures of BY.14 Is used:

pl • ptr$ptr(pibp,plbp->plb.relp.plbe);

The code to freshly allocate a second PIBE Is:

allocate plbe In (pibp->plb.loarea) set (p2);
p1->pibe.relp.next a ptr$rel(p2);
p2->plbe.relp.last • ptr$rel(addr(p2->plbe.last_item));
p2->plbe.relp.next • "O"b;

The code to allocate a new list of break elements following a
setdellm call is:

brkp = ptr$ptr(pibp,pfbp->pib.relp.brk);
free brkp->brkllst;
allocate brklist in (plbp-)plb.loarea) set (brkp);
pibp->plb.relp.brk • ptr$rel(brkp);

,-, ~ lnterprocess Communication Block

Page 8 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.20

The lnterprocess Communication Block CICB) is ·a common data base
for the attachment module, the DSM's request queuer, and the
device manager dispatcher. The ICB is allocated by the
attachment module. For a discussion of the purpose and use of
the ICB, see Sections BF.2.23, BF.2.24, and BF.2.25. The
declaration for the ICB may be found In both BF.2.23 and RF.2.25.

Introduction .tQ Transaction 'Block Qisclpllne

The creation of Transaction Blocks (TBs) for outer calls (and for
certain buffering functions and for nonswitched iopath-dirP.cted
calls) together with the ability to associate related blocks, is
the basic mechanism for maintaining the necessary history of
individual transactions and for preserving the relationships
between these transactions.

A transaction block Is a short fixed-length structure containing
mostly Information relating the block to other related blocks.
The data In the block of direct Interest to an outer module Is a
status bit string, some flags, and a relative pointer to a
Transaction Block Extension CTBE). One such block Is allocated
by the 1/0 switch (by a call to the Transaction Block Maintainer)
every time an outer call Is made (except for the diyert call);
this block Is automatically chained Into the chain of blocks
corresponding to calls Jssued to the same loname. The base of
this chain Is anchored In the callee's PIB; specifically,
"tlindex" and "t21ndex" are actual Indices Into a transaction
block array and point to the oldest and newest end of the chain ~
respectively. Further, this chain essentially belongs to the
callee; the only Item tn a block of Interest to the caller is the
status bit string.

Additional per-transaction data Is kept in TBEs allocated by
outer module. The standard portion of the declaration of a
is exactly the same as that described earlier for a PIBE.
number of TBEs may be chained·; the relative pointer to the
Is kept In the parent TB.

the
TBE
Any

first

Provision Is made In the PIB for basing two additional TB chains.
Modules retalnlng user data between calls must use a standard
buffer chain. The module allocates (by a call to the Transaction
Block Maintainer) a TR for every buffer needed; the actual data
is kept in a corresponding TBE. Buffering Is discussed in more
detail later In this section. A third chain, called the
auxiliary chain, Is used by modules making outgoing calls but
having no outgoing switch node. The auxiliary chain Is used by
DCMs to maintain the necessary per-transaction data for calls to
the GIOC Interface Module (GIM), and Is used by the DSM's Request
Queuer to communicate with the Device Manager's Driver.

In addition to the
mentioned above, the
upon request, create
secondary chains are

chaining of the
Transaction Block
secondary chains of

known as "down"

three "main" TB
Maintainer CTBM)

related blocks.
chains and consist

chat ns
w I 11,

The
of

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.20 Page 9

existing blocks In main chains. The base of a down chain Is
anchored In some TB. A block can be Included In the down chain
based in some other block by a call to the TBM. Typical usa~e Is
to Include blocks for outgoing calls In the down chains of blocks
for corresponding Incoming calls In such a way that status may be
easily updated. An example of such use Is given later. When
buffer chains are in use, the Incoming TBs' down chains include
the corresponding buffer blocks, and each buffer block's down
chain Includes the corresponding outgoing TBs.

All the transaction blocks for a user are kept In a Transaction
Block Segment (TBS). All use of these blocks by outer modules Is
by calls to the Transaction Block Maintainer (TBM).

The lifetime of a transaction block Is controllable. A mechanism
Involving several hold bits representing various interests is
used to delay the otherwise automatic deallocation of blocks.
The hold.ng and releasing of blocks Is discussed later below.

The Transaction Block Maintainer (TBM) services the allocation
and deallocatlon of Transaction Blocks (TBs), the chaining of
related blocks, the chasing of these chains, the storing and
retrieving of the transaction status, outer module flags, and the
TBE relative pointer. It also services the setting and resetting
of the hold bits which control deallocatlon.

,I" .I.tu:. Transact ton Block Segment

The Transaction Block Segment (TBS) contains all the transaction
blocks for a user process group and Is the principle data base of
the TBM. The declaration for the TBS follows.

del 1 tbs based (p),
2 lock bit (144),
2 Index,

3 vacant1 bit (18),
· 3 vacant2 blt (18),

3 orphan1 bit (18),
3 orphan2 bit (18),
3 last bit (18),
3 pad b I t (18) ,

2 tb (MAX),
3 status bit (144),
3 hold bit {6),
3 tbm_flags bit (6),
3 om_valtd bit (6),
3 flags bit (18),
3 chaln_cnt bit (18),
3 tberelp bit (18),
3 xn1 bit (18),
3 xn2 b I t (18 > ,
3 dnl bl t (18),
3 dn2 bit (18),

/•transaction block segment•/
/•standard lock structure space•/
/•indices•/
/•head of vacant list•/
/•tall of vacant list•/
/•head of orphan list•/
/•tall of orphan list•/
/•highest block used•/
/•padding•/
/•transaction blocks•/
/•outer call status•/
/•hold bits•/
/•flags for TBM•/
/•outer module validation level•/
/•outer module flags•/
/•chain Inclusion count•/
/•relp to TBE in per-loname segment•/
/•main chain next l~dex; from x1•/
/•main chain next index; from x2•/
/•down chain next Index; from d1•/
/•down chain next index; from d2•/

Page 10 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.20

3 dl bit (18),
3 d2 bit (18);

/•downl Index•/
/•down2 Index•/

The lock structure Is used by the TBM to lock the TBS whenever
necessary by calling lockerSwait (see Section BQ.7.00); the TBM
wafts for the TBS to become free. The transaction blocks are
members of a transaction block array; when the TBM is requested
to "allocate" a block, it merely obtains a currently unused block
from the vacant list. When a block Is deallocated It Is returned
to the vacant list. "vacant1" and "vacant2" are the indices to
the head and tall respectively of the vacant list. '"orphanl" and
"orphan2" are the Indices to the head and tall respectively of
the "orphan" list. The orphan list contains blocks which have
been removed from their original main chains but which do not yet
meet the full conditions for deallocatlon; this mechanism is
discussed later below.

Each transaction block contains a standard status bit string, a
string of hold bits, a string of flag bits private to the TBM, a
string of flag bits usable by the outer module, the outer
module's validation level, a chain inclusion count, a relative
pointer to the transaction block extension, and Indices of
related transactions. Most of these items are discussed in
detail later below. The outer module's bit string (flags) is
provided solely for the module's arbitrary use; for example, it
may be used to conveniently differentiate between useful
transaction categories. The TBM's bit string Ctbm_flags) is used
to Indicate whether a block Is in a main chain, in the orphan
list, or In the vacant list. The outer module validation level
Com_valld) is used by the TBM to control what procedures can call
to have certain items In the block set.

Transaction Block Allocatlpn

The following call to the TBM allocates a new block in a main
chain.

call tbm$allocate(chaln_base_ptr,holdn,tblndex,cstatus);

del chaln_base_ptr
holdn fixed bin,
tbindex bit (18),
cstatus bit (18);

ptr, /•base of main chain•/
/•hold bit Indicator•/
/•TB index of new block•/
/•allocate call status, see Table 1•/

The chain base otr Is a pointer to a pair of chain base Indices
In the outer module's PIB. If the Indices xl and x2 point to the
oldest and newest block respectively In the x chain, the TBM
allocates the new block In the x2 end of the chain. Here "x"
corresponds to the "t", "b", or "a" in the chain-base-Indices'
names In the PIB. The Index for the newly-allocated block Is
returned In tblnde~ and can also be found In the location for x2.
holdn permits the caller to set the nth hold bit; If holdn Is
zero, the hold bits are tnttalized to zero. See discussion on
holding later below.

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.20 Page 11

Transaction blocks for outer calls are allocated by the 1/0
~, switch. When the outer module receives control, It can find the

Index to the block corresponding to the current call In
(chain base.t2index) in the PIB. However, the status bit string
is initialized by the 1/0 switch and bits 127-144 of the status
string also contain the new TB index (bits 1-126 are initialized
zero). A convention of using the value of the TB index extracted
from the status string removes the necessity of coping with the
effect of recursive entry upon the value of "t2index". (Although
the toname Is locked upon first entry, a recursive entry by the
same process is permitted; see Section BF2.11).

Transaction blocks for buffer or auxiliary chains are allocated
by tbmSallocate calls issued by the outer module itself.

When the TBM freshly allocates a block, It Initializes om_valid
to zero. Upon receipt of the first subsequent call which
requires storing information In the block, the TBM stores the
current validation level In om_valid. Further such calls are
fulfilled only if the caller's validation level Is equal to or
less than that In om_valld.

Transaction Block Holding

The "hold 11 bit string In a transaction block contains six hold
bits called hold1, ••• ,hold6. Setting any of these bits nonzero
prevents deal location of the block. At present· only· hold1,
hold2, and hold3 are assigned. With respect to an loname, hold1
is for the caller and hold2 r~ for the callee. In those cases
where a block is known to only one module (e.g. btiffer blocks),
hold2 is used by that module. Hold bit hold3 Is used by the 1/0
switch to guarantee a caller a chance to set hold1 (see Section
BF.2.11 for a detailed explanation).

The caller may wish to hold certain blocks in order to later
examine an updated version of the status bit string. The status
originally returned to a caller contains the then current status
In bits 1-126 and contains a transaction block Index In bits
127-144. During later calls, the callee updates the status of
earlier calls when appropriate and If their blocks still exist.
Further, it is the status string In the block which Is updated,
not the original caller's status string. The following calls are
used by the caller to set and reset hold1.

call hold(status,cstatus);

call release(status,cstatus);

del status bit (144), /•returned outer call status•/
cstatus bit (18); /•hold/release call status, see Table 1•/

The TB Index in the status argument is used by TBM to Identify
the correct block. A related TBM call is the followln~.

Page 12 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.20

call getstatus(status,cstatus);

This call Is used to replace an old status string by a new,
possibly updated one. The caller provides status equal to the
status bit string of a previous transaction which I~ being held;
the TBM uses the TB Index provided In status to Identify the
block and returns status equal to that currently In that block.
The returned status contains a valid status change Indicator
(primary status bit 10). The argument declarations are the same
as the previous call. See Section BF.1.11 for a detailed
discussion of delayed status updating and retrieval, Including
status change Indication. The following calls permit the callee
(the outer module receiving the call) to set and reset the hold
bits.

call tbm$set_hold(tblndex,holdn,cstatus);

call tbm$reset_hold(tblndex,holdn,cstatus);

del tblndex bit (18), /•TB Index•/
holdn fixed bin, /*hold bit Indicator•/
cstatus bit (18); /*call status, see Table 1*/

holdn Is an Integer from 1 to 6 Indicating which hold bit Is to
be set or reset In the block whose Index is tblndex. If boldn Is
zero, neither call has any effect. It may be noted that when
holdn Is one these calls duplicate the functions of the h2lQ and
release calls; the latter are designed to be safer and more ~
convenient for the caller to use. If the holdn argument of a ~
tbmSallocate call Is zero, the TBM Initializes the entire hold
bit string to zero.

A block whose hold bits are all zero and whose chain inclusion
count Is zero Is a candidate for deallocatfon. When tbmSallocate
Is called, other blocks In the concerned chain are considered for
deallocatlon. When a block Is deallocated, It's TBE's are freed
and the blocks, If any, Included In Its down chain have their
chain Inclusion count (see later below) reduced by one.

Once an outer module Is finished with a call block and has had
hold2 set to zeroi the block will continue to exist in the call
chain until the full conditions for deallocatlon are realized.
Inasmuch as an outer module frequently chases this call chain
(see below), It would be convenient If only Interesting blocks
were present. The following call is provided to remove
uninteresting but nondeallocatable blocks.

call tbm$remove(chaln_base_ptr,tblndex,cstatus);

tblndex Is the Index of a block located In the main chain whose
base Indices are pointed to by chat~ base ptr. The TBM
undertakes the following steps: (1) hold2s set to zero; (2) the
block Is deallocated If deallocatlon conditions are met; (3) if
not, the TBEs are freed, the tberelp is set to zero, and the ~

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.20 Page 13

block Is removed from the main chain and placed In the orphan
~' chain. Blocks In the orphan chain can be expected to be

eventually deallocated. Whenever an orphan block has any hold
bits reset or Its chain inclusion count reduced, the TBM
considers deallocatlon.

When an outer module is detached It is necessary to remove all
the TBs In main chains based In the module's PIB. Upon receiving
a return from a detach call the 1/0 switch Issues the following
call on behalf of any such chain whose base indices are not zero.

call tbm$delete_chaln(chatn_base_ptr,cstatus);

The TBM performs the functions described for the tbm$remove call
for each block in the chain whose base indices are pointed to by
chain base ptr.

Jhe. ChainIng . .Qf. Re 1 a ted B 1 ocks

Each transaction block contains the Indices of the next oldest
and next newest block In the same main chain; these are the xnl
and xn2 Indices respectively In the block declaration. The
oldest block has xnl zero, and the newest block has xn2 zero.
The use of bidirectional next Indices permits the main chain to
be chased In either direction beginning at any block. We speak,
for example, of the xnl next index as pointing away from the xl
end of the chain or toward the x2 end of the chaln,-where x1 and
x2 are the chain base Indices. The top row of blocks In Figure 1
shows· the chaining of blocks In a main chain.

A second kind of chaining which Is used to associate related
block~ Is available upon request. Suppose, for example, an
incoming call to a module results In three outgoing calls. The
incoming call has a transaction block in the module's call chain,
and the outgoing calls have blocks In the next module's call
chain. It Is convenient for future status updating to save the
relationship between these blocks. A mechanism is provided which
permits threading the blocks for the outgoing calls into a 11 down 11

chain based tn the block for the Incoming call.

The following call threads an existing block into another block's
down chain.

call tbm$thread(tbindex1,tblndex2,cstatus);

del tbindex1 bit (18), /*Index of TB to be threaded*/
tbindex2 bit (18), /•index of TB basing the down chain*/
cstatus bit (18); /•thread call status, see Table 1•/

tbtndexl Is the index of the block to be threaded; the threading
will result in its dnl or dn2 being set nonzero. tbfndex2 Is the
index of the block in which'the down chain is or is to be based;
the threading will affect the values of its d2 and possibly its
dl. Prior to the existance of a down chain based In a block,

Page 14 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.20

both the dl and d2 down Indices are zero; when the down chain
exists, dl Is the index of the oldest block threaded and d2 is
the index of the newest one. If there Is only one block In the
down chain, dl • d2 in the base block, and dol • dn2 • 0 in the
~hreaded block. The blocks In the down chain are threaded to
each other using the dnl and dn2 down-chain-next indices; except
for blocks at either end of the down chain, dnl Is the index of
the next oldest block threaded and dn2 Is the index of the next
newest block threaded. Except for the blocks at either end of
the dpwn chain, a block can be In only one down chain. The block
at the dl end of the chain has dn2 zero If it Is In only that
chain; if It Is also at the d2 end of another down chain, dn2
applies to that chain. A similar situation Is true with respect
to dol for a block at the d2 end of a down chain. A block which
ts at the d2 end of one down chain and at the dl end of a second
down chain, can be In additional down chains provided it Is the
only block in those chains. No confusion exists In the
Interpretation of dol and dn2, since the down chains are chased
by comparing successive dnls with d2 (or dn2s with dl). The
chain Inclusion count (chatn_cnt in the TB) is Increased by one
every time a block is threaded Into another down chain.

The second row of blocks in Figure 1 shows a main chain whose
blocks are included to down chains based In blocks In the top
row. Blocks Rl and 82 are Included in the down chain based In
block Al; similarly 82, 83, and 84 are Included In the down chain
based In block A3. Block 82 ts In three down chains, those based
In Al, A2, and A3.

If desired, a block may be removed from a down chain by making
the following call.

call tbm$unthread(tbfndexl,tblndex2,cstatus);

The block whose Index Is tblndex2 Is removed from the down chain
based In the block whose Index Is tblodex2, and Its chain
Inclusion count Is neduced by one.

An -outer module does not need to be concerned with the effort of
chasing maip or dow~ c~alns. The following call Is provided for
chasing bath main and down chains:

call tbm$get_chalnCtblndex,type,orlg,cnt,llstptr,cstatus);

del tbindex bit (18), /•see below•/
type fixed bin, /•l•downl, 2•down2, 3•malnl, 4•maln2•/
orlg fixed bin, /•offset, see below•/
cot fixed bin, /•size of return list•/
listptr ptr, /•ptr to list•/
1 list (cot), /•return list•/

2 tblndex1 bit (18), /•TB Index•/
2 flags bit (18), /•outer module flags•/
2 status bit (144), /•transaction status•/

MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.20 Page 15

2 tberelp bit (18), /•TBE relp•/
cstatus bit (18); /•get_chaln call status, see Table 1*/

For~ = 1 or 2, tblndex is the TB Index to the base block
containing the down chain to be chased. The down chain is chased
from either the d1 end or the d2 end, according to whether ~
is 1 or 2. For ~ • 3 or 4, tbJndex is an index of a block tn
a main chain which is to be chased from that point. The main
chain Is chased from either the x1 end or the x2 end, according
to whether ~ ts 3 or 4. 2Ll& is the offset from the base
block In numbers of blocks. &nt Is the number of blocks whose
tbindex Ctblndex1), flags, status bit string (status), and TBE
relp Ctberelp) are wanted. A bit in cstatus indicates whether or
not there are additional blocks In the chain. If .Q.!J..g_ = 1, the
first block whose data Is returned Is the first down or next main
block; If .!2.t.l.& • N (greater than 1), the first data reported is
from the Nth down or Cnext+N-l)th main block; if ~ = O, the
first data reported Is from the base block Itself.

The get chain call is the only call provided for fetching items
in a transaction block. If data for only one main-chain block Is
wanted, an orig = 0 and a ~ = 1 are used.

outer Module Chaining Resoonsibllltles

For every outer call received by an outer module for which the
returned status indicates Incomplete status reporting (status bit
5 equal to zero), the module must arrange for adequate holding
and down-chain-inclusion of all other related blocks required for
future status updating.

Calls~~ Transaction Block Items

The following calls permit an outer module to set the flags, the
TBE relative pointer, and the transaction status respectively in
Its transaction blocks.

call tbm$set_flags(tblndex,flags,cstatus);

call tbm$set_tbe(tblndex,tbeptr,cstatusl;

call tbm$set_status(tbindex,status,cstatus);

del tbindex bit (18), /•TB Index•/
flags bit (18), · /•outer module flags*/
tbeptr ptr, /•TBE pointer•/
status bit (144), /•transaction status•/
cstatus bit (18); /•call status, see Table 1•/

flags Is a bit string to be kept In the block for any use an
outer module may desire. tbeptr Is a pointer to the transaction
block extension in the per-ioname segment; the TBM stores the
corresponding relative pointer. status ts the transaction status
bit string. When an outer module returns to the 1/0 switch, the

Page 16 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.20

switch always calls the TBM to store the status parameter
corresponding block. Thus, the outer module Itself need
so; It uses the set status call only for updating old
strings.

Transaction Block Segment ~witching

in the
not do
status

The following call Is used by the Device Manager Process Driver
and Dispatcher to switch the TBS (see Section BF.2.23 and
BF.2.24).

call tbm$tbs(tbsp,event,cstatus);

del tbsp ptr,
event bit (70),
cstatus bit (18);

/•pointer to special TBS•/
/•event name for locker*/
/•call status, see Table 1*/

The TBM normally uses the TBS created for the process group in
which lt Is called. The tbmStbs call causes the TBM to use the
segment pointed to by~ as a special TBS. If ~ Is null,
the TBM will revert to using the regular TBS. When operating
using the special TBS, the TBM calls lockerStry and provides
eyent as the event to be signaled when the TBS Is free; the TBM
does not walt for the signal but returns to Its caller and
Indicates In cstatus that the TBS was not available.

Buffer Qlsclollne

Outer modules which need to hold user data between Incoming calls
must conform to a buffering discipline. It should be recalled
that only DSMs overtly buffer data to Implement read-ahead and
write-behind and that other modules are entitled to keep only
unavoidably read-ahead data (see Section BF.l.04). However
certain modules may need to keep copies of processed output data
as a precaution against an error occurring prior to physical
completion of the output. For example, a code conversion module
should keep processed output data until physical completion is
Indicated.

A data buffer takes the form of a transaction block extension of
a block allocated Into the buffer chain based in the PIB. The
outer module allocates a new block by calling tbm$allocate with
holdn • 2 to hold the block. When the buffer is no longer
needed, the block is released by calling tbmSreset hold with
holdn • 2. The block along with the buffer CTBEs) will
eventually be deallocated automatically. The declaration of the
buffer TBE has the form of a standard TBE (and PIBE).

The standard buffer discipline includes the following standard
down chaining. All buffer blocks whose TBEs hold data for a
given incoming call are included In the down chain of the
transaction block for that call. The data transmission involved
in an outgoing call (to the next module) can be concerned with -1
only a part or all of one buffer. All the blocks for outgoing

r,

MUL Tl CS SYSTEM-PROGRAMMER 1 S MANUAL Section BF.2.20 Page 17

calls corresponding to a buffer are Included In the down chain of
that buffer block. This Is shown In Figure 1, If the top,
middle, and bottom rows are considered to be Incoming call
blocks, buffer blocks, and outgoing call blocks respectively.
For example, the TBE attached to block 82 contains data provided
by incoming calls corresponding to blocks A1, A2, and A3; ~his
data was passed on with.outgoing calls corresponding to blocks
C3 and C4.

This chaining enables straightforward status updating by starting
with the module's call chain and chasing down to the buffer chain
and then down to the outgoing call blocks. DSMs engaging In
read-ahead create buffer blocks prior to the corresponding read
calls; under these circumstances the down chaining from the call
chain Is not used.

EXample~ g! ~ ~

The examples Included herein are lntentlonally concise to focus
on the steps being demonstrated. In particular, trrelevant but
usually necessary Intervening code Is simply omitted.

The following is an example of outer module code Involved In
receiving an outer call, relaying It, holding, chaining the two
call blocks, and returning; minimum status handling Is shown.

tbln • substr(ln_status,127,18);
call wrlte(pibp->pfb.next_loname, ••• ,statusl,plbp);
call hold(statusl,cstatus);
tbout • substr(statusl,l27,18);
call tbm$thread(tbout,tbln,cstatus);
substr(ln_status,l,l26) • substr(statusl,l,l26);
return·;

The following example shows the allocation of a buffer block, the
threading of the buffer block Into the call block's down chain,
and the allocation of the TBE (buffer). Writing out the buffer
and threading the outgoing call block Into the buffer block's
down chain would be similar to the previous example.

tbln • substr(ln_status,l27,18);
bcbp • addr(pibp->pib.chaln_base.bllndex);
call tbm$allocate(bcbp,2,tbx,cstatus);
call tbm$thread(tbx,tbln,cstatus);
/*compute any variable lengths for buftbe*/
allocate buftbe In (plbp->plb.loarea) set (tbep);
call tbm$set_tbe(tbx,tbep,cstatus);
/*COPY user's data Into buffer*/

The next example shows a general method of updating status. The
following Is a declaration for two structure arrays to be used
when calling tbm$get chain.

Page 18 MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.20 ·

del 1 ml ist (N),
2 (tbx,flags) bit (18),
2 status bit (144),
2 tberelp bit (18),

1 list (M),
2 (tbx,flags) bit (18),
2 status bit (144),
2 tberelp bit (18);

The first N blocks In the call chain are chased from the tl end
by Issuing the following call.

call tbm$get_chafn(plbp->plb.chaln_base.t1index,3,0,N,
addr(mllst),cstatusl);

If there are less than N blocks
mlist(i) are set to zero; cstatus
than N blocks. To chase the down
the dl end, the following call Is

In the chain, the redundant
Indicates If there are more
chain In the f-th block from
Issued.

call tbm$get_chaln(mllst(f).tbx,l,l,M,addr(lfst),cstatus2);

The llst(j).status are examined to update mlist(f).status. Such
updating for arbitrary numbers of blocks In these chains Is
accomplished by using program loops to repeat the calls when more
than N and/or M blocks are present respectively.

status Returned ~ ~ ~

Table 1 specifies the status bits returned by the TBM for all
calls.

~ lnltJallzation

When a process group or a device manager process Is created, the
following call Is made to the TBM to cause Initialization of the
TBM and TBS.

call tbm$inlt(dlr_sw,cstatus);

del dlr_sw bft(l); /•switch Indicating in which
directory TBS is to be created.
O,l•group,process directory•/

During process group
dlr sw=O, and during
calls tbmSin\t with
respectively •

creation to control$init calls tbm$init with
device manager process creation dfsp$fnft
dir. sw•1 (see Sections BF.3.01 and 2.25

..

·!-"" MULTICS SYSTEM-PROGRAMMER'S MANUAL Section BF.2.20 Page 19

Table 1.

Status returned by the Transaction Block Maintainer.

ill Mea n I ng l1b..e.n .u.1 ,1g, .sme
1 invalid TB index.

(e. g. refers to vacant list)

2 caller validation level too large.

3 invalid argument.
(e. g. ~ In tbm$get chain not 1,2,3, or 4)

4 Invalid request.
(e. g. attempt to "remove" an orphan block)

5 TBS overflow.

6 invalid TBS (special TBS mode).

7·16 unassigned.

17 TBS locked (special TBS mode).

18 additional chaseable blocks In main/down chain.

.)(?11

0'.....,_---t
Xl12

At
Xl'12.

A2

x' • 2..

x:
~J..

Bl 82 d"YJ/

Cl C2..

A3

133

C3

;tlo t.e /
·-f-0
repYt t:~~riJ.
'b 3er,:) J'YJe1e;:

\
~
Xi11 r - X''t71

~

X'h2

:i??/ 13 t..j
dn1 ..

d>JL

hejvR:- _f. G""xoh-pl-c oi' fro)tJ!dcn~'-1 j/t:Jcl:. c1Jc!J)1Jij

{S"ee {t":d), ,J

