
,~""""-

MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BF.2.21 PAGE l

Identification

The Generic Device Strategy Module (DSM)
and The Device Control Module (DCM)

s. I. Feldman

Purpose

Published: 04/10/68

In the I/O System, Device Strategy Modules (DSMs) are the outer
modules responsible for device attachment, synchroni~atioi"\
management and interfacing with the Device control Modules. This
section describes features common to all DSMs, and gives a brief
summary of the standard lOS procedures and inner modules
available to DSM writers. This section also describes certaiH
disciplines which must be followed by DCM writers.

Introduction

In the I/O System, devices are · controlled by Deyice Control
Modules (DCMs), which execute in special processes called Device
Managers (DMPs). Normally, the DCM runs in a system process
group in a universal DMP. Dev:t,.ce Strategy Modules (DSMs) can run
in all of the processes in the process group assigned to a
device. The interface between the DSM and the DCM therefore has
special properties. (See BF.2.0l.) PSMs handle data buffering
and are responsible for synchronization (read-ahead,
write-behind) and for handling the calls relating to
synchronization (readg;ync,. write.,sync, wor}<.syn_c, reset.read,
resetwrite, and iowa~t). There are several inner modules and
standard procedures for use especially by DSMs. The use of these
modules will be discussed and some of the data bases of these
modu.les will be mentioned. Tl'le re,trictions the use of these ·
modules place on the DSM writer will then be discussedt and
finally the handling of certain calls will be described.

Inner Module§

Since DSMs and DCMs are outel:' modules, theY use the Mode Handler
(see BF. 2. 27) and the Transaction Block Maintainer (see BF. 2. 20).
Also, the DSM and DCM are expected to use the standard data bases
found in the per-ioname segment (IS) and the standard conventions
for use of auxiliary data bases in the IS (see BF.2.20).

In addition to the above standard modules, the DSM uses the
Attachment Module and the Request Queuer.

..
•

MULTICS SYSTEM PROGRAMMERs• MANUAL ·sECTION BF.2.2l PAGE 2

Code conversion is usu~lly done by the.DCM. However, if the PSM
must do any code conversion and needs a driving table of · some ~
sort, it should use the second driving table pointer to access
the data base. The Switching Complex wili set· up this pointer if
a segment name is given in the Type Table for this' driving table.
The Attachment Module will set up this pointer if this is
indicated by the Registry Files it examines. As an example o~
the use of this driving table, the typewriter · PSM uses a
procedure that canonicalizes ASCII text. ·

The Attachment Module

The Attachment Module (se~ BF.2.~3) is called to handle the
following outer calls: ·

attach
detach
divert
revert
invert

The DSM calls the Attachment Module immediately to handle the
last three calls, and does ~o other processing. In response to
an attach call, the Attachment M~ule calls the Mode Handler,
traces through the Regist~y Files implied by the arguments of the
attach call, allocates devices associated with the files, creates
a private Device Manager, (if requested and permitted), and
attaches the DCM. It spli~es in the sectional Formatting Module
(SFM) if the SECTional mode is specified. In response to a
detach call, the resources ar~ deallocated, the PCM is detached,
and the DMP is destroyed i~ i1:. WilS created above. ·

The Attachment Module also handles three order calls;

tra~ quits
trap:hangup
get_rf

These calls are handled entirely by the Attachment Module. The
last call may be of interest to the· DSM itself. (see Device
Profiles, below). The names· of the entry . points of the
Attachment Module are the above eight names of calls handled.

~ Request ~eueF

.The Request Queuer (see BF.2.24) is called to pass calls to the
DCM. Basically, the Request Queuer ·stores a representation of an ·
outer call in a TBE associated with a transaction block allocated
in the DSM's auxiliary chain by the Request Qtieuer, and then
signals an event that causes the DMP to wake up. In the DMP, the
Dispatcher calls the Driver which reconstitutes the call and ..,J
passes it to the DCM. The Driver is also responsible for

MULTICS SYSTEM PROGRAMMERS# MANUAL SECTION BF.2.21 PAGE 3

,.--, updating status and signaling events.

For each queuable outer call (for a list, see BF.2.24), there is
an entry point of the Request Queuer. This call includes all of
the normal arguments other than the ioname and ~he status
arguments. There is only one DCM per DSM, so no ioname needs to
be passed to the Queuer. The DSM gets return status by making a
call to rg$qet chain. Among the other arguments required by the
Request Queuer are a transaction block index, an 18-l:>i :~ mask, and
two event channel names. · The transaction block index returned by
the Queuer is the index of the block allocated by the Request
Queuer and threaded on~o the auxiliary chain; the DSM can include
this block in a down chain from a buffer or call transaction
block chain. The status mask defines the conditions under which
one of the event channels will be signaled. It is possible at a
later time to change an event or mask.

The use of the Request Queuer puts restrictions on certain t::y·pes
of outer call arguments. Specifically, delayed use arguments
(workspace pointers and nelemt arguments of read and wri~e-type
calls, see below) must reside in the DSM#s per-ioname segment.
This implies that the DSM must have its own intermed,iate buff·;.rs
for data, since the DCM cannot transmit directly into the user • f;
workspace. The location of workspaces in Request Queuer calls is
restricted to reduce the number of segments the DMP must initiate
and to simplify inter-process communication.

DSM Data Bases

The Attachment Module and · the Request Queuer make use of a
special data base in the per-ioname segment, the Inter-process
Communication Block:. This data base is accessed via a relative
pointer in the segment header. The main body of the DSM is not
interested in the ICB.

The primary data base of the DSM is the Per-Ioname Base (PIB).
PIBEs (per-ioname base extensions) are chained together using
relative pointers in the first word of each block. If ~here are
more than two PIBEs, the first one ·Should contain an array of
relative pointers to the later PIBEs to increase speed of
accessing.

The first driving table pointer in the PIB points to the mode
control structure used by the Mode Handler.

The Request Queuer uses the auxiliary transaction block chain for
communication with the Driver.

Registry Files and Device Profiles
.~

DSMs need to get at device profiles from the Registry Files for
the devices they handle. The device profiles are used to hold

MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BF.2.21 PAGE 4

relatively constant ~nformation. A Registry File may hold
permanent information, such as the association between a
particular tape drive and a particular tape controller. A
Registry File may contain temporary information such as the tab
settings on a typewriter, but a Registry.File may not be used to
contain information as transient as the present position of a
typewriter carriage. Typically, the DSM examines the profile at
attach and restart time, or when a status return from the DCM
indicates a change in the profile. Data ·is stored into the
pro~ile by the DCM and DSM as necessary.

In. order to get at the profi.le, the DSM uses the Registry File
Maintainer (see BF.2.22). A call to attm$get rf returns the
information needed to find the Registry File implied by the ~
and d~scription arguments of the attach call. Registry Files are
identified by two 32-character strings called. ~ and ~·
These st·rings are returned by tl'le above call to the Attachment
MOdule and may be used in calls to the Registry File Maintainer
(RFM). A call to rfm$get devic,es wi-ll return a list of · resource
names {for use in calling the GIM, for example), and a list of
device types. A call may then be made to rfm$get profile to get
the desired information. If the given RF is not the desired one,
the type and name of the next cne in the chain of connected
devices may be ascertained via a call to rgm$get down.

j .

As an example of the use of Registry Files, consider magnetic
tape. Th~ call to attm$get rf will return the type and name of
the tape reel. The call to ifm$get devic§s will ther~fore return1
a code indicating that the device is a reel of magnetic tape.
The call to rfrn$get.proff~-! uses the tYPe and name of the file,
and index of the· device f~und by checking the device . types if
more than one is possible), a pointer and the number of b·its
desired. These data in the profile·will be passed back for .use
by the DSM. The device profile of a magnetic tape wculd
presumably contain such information as the amount of data on the
tape, number of tracks and density .at which the tape was
recorded, and possible the Registry File names of other tape
reels if the g~ven reel is part of a multi-r~el file. If it is
necessary to store information in the profile, the DSM may call
rfm$set profile, which overwrites the entire profile. A call to
{fm~get down w~ll return the type and name of the device on which
the reel is mounted, the tape drive. A further call to
rfm$get down using the name of the tape drive would get the name
of the Registry File for the tape controller to which the drive
is connected. · ·

Attachment

In response to an attach call, the DSM first stores the ignarne,
~' and description arguments in the appropriate parts of the
PIB. · Then, the DSM calls attm$attach, as described above. If no
errors are detected by the Attachment Module, pib.bmode contains
a valid mode string, the DCM has been attached, and the SFM (if

MULTICS SYSTEM PROGRAi'iMERS • MANUAL SECTION BF. 2. 21 PAGE 5

~ any) has been spliced in. The DSM then allocates the first PIBE
and does any other processing needed to initialize itself.

Specifically, the DSM may need to allocate extra resources for
its own use. For example, the tape DSM will have to allocate all
reels other than the first of a multi-reel file.

Diversion

The divert outer call creates a new iopath for a device. To
handle the diversion, the DSM calls attm$div~rt. Because div~rt
outer calls pass through I/O segment locks, care must be ta~tZen
not to disturb the contents of the IS. · No transaction block i~
allocated by the Switch for this call.

The new DSM is created in two steps by the Attachment Module:
First, the switching complex is called to establish a new node.
All of the processing for handling an attach is done except that
no call is passed to the DSM. · The Attachment Module trr.>·~(
initializes parts of the new per-ioname segment (the ICB and t'ne
parts of the PIB containing the three arguments of the attach
call that would have been passed). After the DCM has been
attached, an "attach" order call is made for the new DSM. This:
special order call is supposed to cause the DSM to do all of th;.:~·
attach call processing other than the initial storing of
arguments the items in the PIB and the calling of the Attachment
.totodule.

If any manipulatio.n of media is req~ired. the PSM must call the
Media Request Module (see BT.2.02). The Attachment Module does
~ make any calls to the Media Management Module •

. Detachm!!!nt

When the DSM gets a detach call, it is supposed to force out any
remaining I/O and then detach the device. First, the DSM should
call the Mode Handler. If ·tne modes are invalid, it should
return immediately. Otherwise, the DSM should . 'complete all
pending transactions. If the UNLOAD mode is specified, the DSM
should call the Media Request Module to unload any media it has
loaded. If the RELEASE disposal mode is specified, the D~M
should deallocate any devices it explicitly allocated. After the
PSM has done all of its internal cleanup, it should call
attm~detach!" If there ar~ no·errors in the performance of that
call., ·the DCM will have been detach eel upon return. The OSM
should then call atm$deJ.ete· ion~e w:i,.th the delayed . bit . ON and
then return. Upon return~ the ATM will free ·any transaction
blocks held for the PSM and will then destroy the DSM's
per-ioname segment·and the DSM's information in the Attach Tab~e.

MULTICS SYSTEM PROGRAMMERS~·MANUAL SECTION BF.2.2l PAGE 6

Process-DeQendent Infprmation
.--....,

Since the DSM is expected to Op$rate in several different ._,!
processes for.several different ionames, it must be very. careful
about process-~~pendent d~ta. specifically, care must be taken
with pointers and with even~ channel names. c-rtain pointers are
handled autom~tica1ly by the Switch (the driving table pointers).
However, the DSM will h_ave to sto,J:'e a workspace pointer in a read
call with asynchronQus workspace. It is necessary to store the
process id for which ·the pQinter ~s-valid along with the pointer;
the pointer cannot be used unless the DSM ·is ·operating in the
proper process. Ever_1t channels are a somewhat different problem.
The DSM will need at least one event channel for use in calls to
the Request Queuer. It is suggested that the DSM keep a table
with process ids and event channel names to avoid creation and
destruction of channels. Furthermore, the DSM must call
rg$give acces,s before the first use of an event channel name in a
Queuer call. ('.t'he DMP may be a · \.miversal DMP in a different
process group, and m\,.lst be given permission to signal on the
event channel.)

Peculiarities £! the DSH-DCM In~erface

The DSM calls the Wait Coordinator (see B0.6.06) to wait· for an
event to be signaled if it must synehronize itself with the
actions of the DCM. Such · a need will arise if the
synchronization modes require the DSM to return only after a ,.J
transaction is· complete in some sense. If the DSM knows in
advance that it will have to wait for a particular condition to
hold, it will set the status_mask and create an event channel
before calling the Request Queuer.

Normally, the PSM creates event channel$ and passes their names
to the Request Queuer. However, it is possible for the user to
take over synchronization manag~ent. He informs the DSM of his
intention by adding an extra pointer argument when he makes an
outer call. (see BF. 2, 02) The I/O s.witch will assume that the
extra argument points to a structure containing two event channel
names. These channel names will be QOpied into the DsM-s PIB
{pib.sync_event and pib.error_event). It is the DSM-s
responsibility to use the$e event channel names, if non-zero,
instead of tile event channels it would normally have used. Thus,
the error event should be used in ·all calls to the Request Queuer
relating to the outer call, and the completion (sync) event
should be used .for tne final Queuer call.

I'l;: is sometimes necessary for th4e DSM to synchronize itself with
a transaction in progress. .This is the ·case ·if· the DSM has
requested advancd input from the DCM, and then receives a read
call with synchronous workspace. In this case, the DSM must wait
until a certain number of characters have been read in (or until
a read delimiter . is reached). .

MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BF.2.21 PAGE 7

,_., The following technique should be used in such a case: Whenever
the DCM is called and observes an interesting status change, it
inverts the ''special happening" bit in the call-oriented status
field of the outer call(s) affected by the interrupt. Normally,
the interesting event will be a change in the number of elements
transmitted, but the DSM may inform the PCM of a different
criterion to use by means of order calls. When the TBM is called
to getstatus for that call, it will set bit 10 to one in order ta
indicate that there has been a status qhange since the last
getstatus. Therefore, if a status mask with only bit 10 equal to
1 is used, the Driver will signal an event when the DCM returns.
If the DSM is still not satisfied by the status of the call, it
can make a call to !,gjrlew eve~ and then wait for another signal.

Whenever the DSM returns before logically cornpletina (see
BF.l.04) a read or whenever the DSM returns before completing a
write where the contents of the workspace were not copied into a
buffer in the DSM's IS, it must save a pointer to the user's
workspace. Because pointers are not valid except in their
process of origin, the DSM must associate a process id with each
such pointer. Later calls will be able to move data to or from
the user's workspace only if made in the same process as the
original call.

Status Updating and Error Handling

::tn order to get status for calls made to the DCM, the DSM calls
rg$get chain. If the ERRFI~ mode is specified, the DSM is
supposed to try to correct errors if they occur. For example, on
output, the DSM usually restarts the transaction at a reasonable
point (such as the beginning of the last page on a line printer
or the beginning of the last line on a typewriter or the
beginning of the last physical record on tape or cards}. This
error correction is done when a device error is detected or when
a transaction is marked "aborted due to quit". If the ERRRET
mode is specified, the PSM just marks its status for the call
indicating the error and return. This mode would be used by a
RUNOFF type program that could not tolerate extra lines on a
typewriter, or by a system tape generator that could not tolerate
error records on tape.

If a transaction is marked "aborted and reset", the DSM marks all
of its outstanding transactions with the same status, aborts any
other work it has planned, and returns. (Transactions will be
reset when a revert call with the RESET mode specified is made
after a diversion).

Reading sng Writina

As discussed above, the DSM is responsible for handling
read-ahead and write-behind.

!I-1ULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BF.2.2l PAGE 8

If the DSH handles a read call with asynchronous workspace, it
must keep track. of th~! read and break delimiters at the time of
the call since subsequent setdelim calls may change these
delimiters. However, the DSM is required to make it appear as if
the calls were handled, in their entirety, in the proper time
sequence.

As mentioned above, worl<spaces for DCM calls must reside in the
DSM's per-ioname segment. This is also true of nelemt arguments.
(nelemt is t~e number of elements actually transmitted by a read
or write call; arrays of such arguments are passed in readrec and
writerec calls.) Because all DCMs operate in workspace
asynchronous mode, . nelemt would always be zero upon ret. urn if the
normal cefinition were used. Therefore, DCMs interpret nelemt
differently than do other outer modules. nelemt and is updated
whenever the DCM updates its own status. It equals the number of
elements physically transmitted at any given time; nelemt attains
its final value when bit 5 of status (no more status· change)
becomes 1. Therefore, it is recommended that nelemt be kept in a
TBE associated with the call, since disaster will ensue if the
storage is freed too soon.

Device Control Modules

The following is a brief discussion of some points relevant t.o
Device Control Modules (DCMs).

First, there is only·a single PCM attached at a given time for "'
dev~ce. When the DSM is diverted and a new iopath is created,
all pending transac.tions with the DCM are aborted. The
newly-attached DSM then makes calls ·to the old DCM. When the
path is reverted, it is necessary for the DSM to remind the DCM
of the modes active at the time of the divert. This can be
accomplished by use of an order call that passes a bit string
equal to the DSM's "~rnQde". The use of this call implies that
the mode control structures of the DSM and DCM are essentially
equivalent.

When the DCM is first at;kached, it ~;~hould ~et up
with the GIM. In order to d,o this, it makes the
call (see BF.20): · ·

communication
following GIM

c~ll hcs_$assign(resource_name,de~,eve~t,type,rcode);

The reso~ce_name to be pass~ to the GIM is ~tored in the
related Registry· File,· · and' can be extracted by a call to
rfm$qet devices (see BF.2.22). ·J\lternately, the resource name
might be passed to the DCM as the description arguments of its
localattach call. The event argument is the name of the event to
be signaled whenever there is a hardware interrupt. The name of
this event can be gotten via the use of the following statement:

del di sp8hard¥;are_event entry returns (hit (70));
eve~t :: c1.i::;pSha.r~3\-ta::-e_event;

Pi\GE 0

DCI<! wr:Lters should rec.'.d the beginning of I-iP, 2. 22, \''1tich gives a
basic dencription of the use of Registry Files. DCM writers
will, in particular. be interested in the device profile (see
a':Jove) •

