
TO:

FROM:

SUBJECT:

DATE:

MSPM Distribution

P. G. Neumann

BF.2.22, The Registry File Maintainer

03/01/68

The attached BF.2.22 is a major revision of the former issue, 08/14/67.

Many of the calls have been redesigned, although the module is functionally

the same.

MULTICS SYSTEM PROGRAMMERS' MANUAL

Identification

SECTION BF.2.22 Page 1

Published: 3/01/68
(Supersedes: BF.2.22 08/14/67)

,. The Re~istry File Maintainer
S. I. Feldman

,...

purpose

Every 1/0 device known to a system has an associated file called
its He~istry File (RF). The Registry File Maintainer (l{ft.i) is
called by outer modules and other interested users to get
information from or to store inforillation into a Regi::;try file.
This section describes the functions of Registry Files, de::;cribes
the calls to the RFM and the implementation thereof.

Re~istry Files

Protection of all 1/0 devices is implemented by file syste111
protection of their Registry Files.· Non-volatile infur;nation
about the device is stored in this file for use by the 1/0
System. Th~ following is a brief discussion of the form,
content, and use of these files.

Tl,e RFs are organized by type of device into "type" directories.
These type directories ~re immediately inferior to the Registry
File Oirectory (pat'l name ">rfd 11). A Re~istry File is identified
1-)y two 32-character strings, called the "type" and the ''name".
The type is the entry name of the type directory in the Registry
File Directory; the name is the entry name of the RF in its type
din~ctory. In acidition to the regular RFs, these type
dirf".ctories also contain certain other files: an 1/0 Assignment
Table (IOAT), normally accessible from the hardcore ring only by
the 1/0 Assi~nment Module (lOAM); see BF.2.26). This table lists
names of the users who possess and control the fi.le and its
associ a ted devices at any time. There 1nay be seve ra 1 read-on 1 y
files in the directory for use in storing certain criti·cal
I~F.:.related information that cannot be left in the normal HFs for
security reasons. Finally, there are usually one or more non.1al
Registry Files called prototype RFs. These file~ are used tu
created new RFs ~f the given type.

The normdl RFs are made up of several distinct parts. The first
is of st~ndard fonn and content. This part of the RF is used by
the Attachment Module (see BF.2.23) and the Registry File
f•1aintainer. (RH,1; see below). This fixed part has information· on
the RF, and has "pointers" to· certain RFs. (lhese pointers
consist of the type and name of the target RF). Each RF has a
"level" number associated with it. The smaller the level number,
the more directly related the device is to the GIOC. Thus, a
typewriter channel has level equal to 1, while the typewriter has
level equal to 2. "Down" is defined to be the direction of
rlecr~asing level numbers. The up and down chaining represents
the connections between devices. A file may point to more than
on~ un ~nrl one down RF, although this is not the usual case.

Page 2 MULTICS SYSTEM PROr,RAMMERS' ~ANUAL SECTION RF.2.22

Som~ of these 1 inks between RFs are permanent, representing
physical wiring. Others are transient, and change with the
confi~ur~tion or for other reasons. See below for a discussion
of lo~ical channels. As an example of a temporary link, a
typewriter is associated with a channel only while it is dialed
in. The associ~tion is broken when it hangs up. The following
is a nlausible RF arrangment for tapes: The level 4 RF
r~presents a tape reel. There is a temporary association (down
1 ink) with the level 3 RF for the tape drive upon vJhich the reel
is presently mounted. There is also a temporary up link from the
drive to the reel file. There is a permanent 1 ink dmm from the
level 3 drive RF to the level 2 controller RF. There are IHany
per~anent up 1 inks from the controller, one for each 0f the
drives connected to it. There are also some temporary down 1 ink~
from the level 2 controller file to the level 1 files for the
High Perfonoance Channel RFs. There is a temporary up 1 ink from
each of these channel files to the appropriate controller file.
The association between controller and channel can be ch~nged by
using the peripheral switch; any modification will be reflected
In the Device Configuration Table. (See the discussion of
logical channels.)

The fixed part of the RF contains, in addition to names of RFs in
the chain, information to guide the Attachment Module in
following the 1 ist. There is also information on the type of OCM
to be userl, and part of the mode string to be passed to that DC~.
A RF has at least one device associated with it. If several
1evices are closely related, they may be considered as a single
r<:~source anrl may therefore share a single RF. For example, a
fu 11-dup 1 ex typewriter channe 1 can be- imp 1 emen ted by connect in~
two half-duplex typewriter GIOC channels to a single data set.
There would be a single RF for the pair of channels~ but the~e is
information on both devices ·separately in the RF.

~:v:h rlP.V ice has a "rlev ice prof i 1 e" in the RF. Once the size is
set (either when the RF is created or when the first
rfm$set orofile call is made), it docs not change •. This profile
is meant to contain relatively constant physical .device
infor~ation~ For example, the tab settings of typewriters .will
be stored in the profile. Ho\-Jcver, data· as changeable as the
1 ine and column number are not stored in the profile. A tape
profile mi~ht include information on density and the na1nes of
other r~els t~at make up a single m~lti-reel file.

In addition to the. profile, there is a behavior log for each
device. This log us~a11y contains information on faulty
performance by the device. Whenever su~h a thing happens, the
appropriate 1/0 System module calls rfm$add log to store this
information at the end of the chain of log entries~ Each log
entry contains the identification of the process and user in
control, the til'1e, and an arbitrary bit string sup·pl ied by the
call~r. T~e log can be read and entries can be deleted by
annropri~te c~lls to the RFM. The log itself is a chained list
of structu.r~s. "" ·ing a relative pointer to .the next in ~

r

MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION JF.2.22 Page :J

the list. The fixed part of the RF contains a relative puinter
to the first and last blocks on the chain.

1\t some installations, the assocation between certain Jevcies and
certain GIOC channels 1nay depend upon the settings uf the
peripheral switch. Registry Files have the ability to handle
such a connection. When the Attachment Module finds that the
"logchans" bit is on in the RF, it calls a hardcore supervisor
p~ocedure, the Device Configuration Table Manager, which will
tr;:Jnslate a "loP.;ical channel" name stored in the RF to the rca 1

RF ni'lme. ThP. Attachment Module then stores that information in
the RF and procee~s as if that were the down name stored in the
P.F normc:dly.

Above, we mentioned the existence of certain speci3l read-or1ly
files in the type directories. These files contain information
relatin~ to Universal Device Man~ger processes. Such a process
is a system process that can handle several devices of a given.
type. The Attachment Module needs to know the process group ir!
of the relevant UOMP and also the name of a certain data base
used by the process, called its PDT. This information is placeJ

·in the special read-only file. Only certain types of REs require
the.se files. These are the last RFs examined by the Attachment
Module while it traces through a chain of files. Typically, that
file represents the channel or controller. For the RF with fia,nc
"X", then'! is a file v.rith name 11 X_ro 11 in the same type .:.tirectory.
Since several devices can use the same read-only file, a ::.Ingle
file will most 1 ikely have several names.

Tiegistry File Declaration

The following is the EPL declaration .for a Registry File. The
first twp declarations, rf and rfx, together form the fixed part
of the R~ discuss~d above; there are two parts for implementation
reasons •. The third declaration, rf_ro, is the special read-ti~ly
file which exists for reasons of system sec~rity.

del 1 rf based(rfp),
2 level fixerl hin(35),

II

II

2 force_udmp bit(1),
II

2 in_usa_switch bit(36),
II

2 han~upable bit(1),
2 lo~chans bit(1),

II

II

II

II

II

2 allocate bit(l),

/*level=l for a GJOC channel, 2 for
a device connected directly to
a GIOC channel, etc.*/

/*if 1, force thP. use of a universal
device manager process*/

/*set ON at attac~ time and OFF
at detach time*/

/*if ON, device can hang up*/
/*if ON, the down names f~r this

device are to be filled in by a call
to the hardcore.ring to ~~t the present
RF name corresponding to the logic~l
channe 1 names. If this bit is UN,
no more RFs are to be searched.*/

/*if UN, Reserver should be called

Page 4 MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BF.2.22

I*

*I

II

2 temp_link bit(l),
II

II

2 nup fix~~ hin(35),
2 ndown fixerl bin(35),
2 nd~v fixed bin(35),
2 ntypes fix~rl bin(35),
2 ~resent_type_inrlex fixed

II

II

2 down_slot fixed bin(35),
II

2 alloc_type char(32),
II

II

2 lock bit(144),
II

II

2 up(rfp->rf.nup),
3 uptype char(32),
3 upname char(32),

with each resource name as argument.*/
/*connection with next file is .

temporary. Rlank out down name
entries upon detachment*/ -

/*number of entries in up array*/
/•number of entri~s in down array*/
/*num~er of entries in devices array*/
/•number of entries in att_types array*/

bin(35), /*index in att_types array vf
type with which device was last
attached*/

/*position of upname for this file
in up array of next registry file*/

/*use this type in calls to the
Reserver allac$resourcc
entry*/

/*for locking RF when threaJing .
o r de 1 e t i n g :) e h a v i o r 1 o g en t r i e 5 v r
modifying the profile.*/

/*registry files pointing to this one*/

2 devices(rfp->rf.ndev), /•entries for devices associated
11 with this registry file•/

3 resource_name char(32), /*name used in calls to the Reserver
11 and the Device Assignment r.-todule*/

3 profile_relp bit(l8), /*relp to device profile for this
11 device*/

3 profile_length fixed bin, /*number of ~its in this profile*/
3 oldest_lo~_relp bit(18), /*relp to oldest entry in behavior log•/
3 newest_log_relp bit(18), /•relp to most recent entry in

" behavior 102:*/
3 nlo~ fixerl bin, /•number of entries in behavior lo~*/
3 device_type fixed bln(35),

2 rfxrelp bit(18), /•relative pointer to RF e·xtension•/
2 free_stor~ge area((l5000));

Jc 1 1 rfx based (rfxp),
2 att_types(rfp->rf.ntypes),/*special infor.ilation for each type

3
3

3

3

11 by which this device .nay be known*/
type_name char(32),
ccm_type char(32),

II

trace - down bit(1),
II

alloc - down bit(l),
II

II

II

/•name of code conversion driving
table to be used*/

/*if ON~ trace down to next registry
file. Otherwise, stop here*/ ·

/*if ON, must call Reserver to
allocate a device of type
down_type, and use returned
resource_name as down_narne(l).

~1ULTICS SYSTDI PROGR.'V-H·-1F.RS' ~~ll\NUAL SECTIOt~ HF.2.22 Pa~;e 5

I*

•I

11 In either case, find next n.F by
II USing ciO\Vn_type and JvWJl_llallle(l)*/

3 look_only bit(l), /*keep tracing down to other RFs
11 under· trace_::lown control, but
11 only to compute code conver::;iun
11 driving table na.ne*/

3 down_type char(32), /*used as described above*/
3 down_narne(rfp->rf.ndown) char(32), /*used as described above*/
3 logical_channel (rfp->rf.nJown) char(32), /•arrQy of

11 names to be used in call to get present
11 equivalent RF na;ne from
11 info in OCT. Used only if the
11 logchans hit is on·~o·j

3 extra_mode char(32), /*character strin~ to be
11 concatenated with mode to be
11 p a s s e d t o D C ~·1 * I

3 d c rn_ type c h a r(3 2) , I *used as t y p e i n a t tach c a 1 1 to
11 DCM if trace_down is OFF or
11 1 oo k on 1 y · i s 0 i·! ~I

3 dcm_name char(32); /•used-as ioname2 of attach call to
11 DCM if trace_down is
11 OFF or look_only is Q;'*/

del 1 rf_ro bascd(p), /*special Registry File. There is a
file of this fonn~t Qssociated with
each regular RF, \·Jith name equal t0
the name of the normal HF cuncatenateJ
with 11_ro 11 • This file contains
certain data that must De protected
against ta.11pering and is therefore
reaJ-only to most users.•/

II

II

II

II

II

II

II

2 pdt_name char(32),
2 ud1np_user_id char(SO);

II

Calls and Arguments

/•name of POT in DMP*/
/•user id of universal device 11lana,g,er

for this device, ·if any•/

call rfm$o;et_devices(type,name,device_types,resource_names,cstatus);
call rfm$set_profile(type,name,devnumber,dataptr,nhits,cstatus);
call rfm$o;et_profile(type,name,devnumber,dataptr,nbits,cstatus);
call rfm$~Pt_nlog(type,name,nlogs,cstatus);
call rfm$add_lo~(type,narne,devnumber,dataptr,nbits,cstatus);
call rfrnSdelete_lo~(type,name,rlevnumber,first,number,cstatus);
cRll rfm$rearl_log(type,name,devnumber,first,number,infoptr,cstRtus);
call rfm$g~t_ups(tyoe,narne,uotypes,.upnames,nreturned,cstatus);

call rf~$~~t_down(type,name,down_type,down_names,cstatus);
call rf~$1 ink(toptype,topnaMe,att_type_index,down_index,

~ottomtyoe,~ottomname,upindex,cstatus);

dr:-clare

Pa~e t.i MULTtCS SYSTEM PROGRAMMERS' MANUAL SECTION UF.2.22

type char(•),
name char(•),
toptype char(•),
toona·:~e char (*),
hottomtype char{•),

II

hottomn~me char{•),
j~vnumb~r fixed hin,

II

.J~ta!Jtr ntr,
II

II

II

nbits fixed bin,
II

first fixed bin,
II

II

number fixed bin,
II

device_types{•) fixed bin,
II

resource_names(•) char(32),
II

infoptr ptr,

/•type of device•/
/•name of d~vice•/
/•type of device with larr;er level numhe"""
/•name of that device*/
/•type of device with s~aller level

num'ler•/
/•name of that device•/
/•index in devices array for

this device*/
/•pointer to bit string of

len~th nhits into which profile
is to be stored or from which profile
or log entry is to be copieJ•/

/•number of bits in bit string. See
above•/

/•index of first behavior log entry
"(starting from the oldest) which
is to be read or deleted*/

/•how many log entries are to be
read or deleted•/ ·

/•array into which device type~ are
to be stored•/

I *array in to which the resource na111es
are to be stored

/•pointer to the following structure•/
1 info(number)

II
based(lnfoptr),/•array of structures which will

contain information on the behavior
II

II

2 time fixed bin(71),
2 proc id bit(36),

II -

2 user_id char(SO),
2 nhits fixed bin,
2 dataptr ptr,

u~types(•) char(32),
uonames(•) char(32),
nlo~s(•) fixed hin,

II

down_type char(•),
down "arne(•) char(32),
down=)ndex fixed bin,

II

up_index fixe~ bin,
II

nretu~ned fixed bin;

Implementation of Calls

get devices

log entries. The length of this array~
tells the RFM how many to read out•/

/•tlme when RFM stored log entry*/
/•process id of caller when RFM stored

lo.~ entry•/
/•user id of above user•/
/•number of bits in log entry•/
/•pointer to the log entry•/
/•list of uptypes for the RF•/
/*1 ist of upnames for RF•/
/•list of number of behavior log

entries for each device*/
/*down type for RF•/
/•1 ist of dO\>Jrl names•/
/•index in down_name array where

down name is to be stored•/
/•indei in upnames array where up_type

and up_name are to be stored*/ '
/•number of upnames ~eturned•/

This cal 1 is made to get a 1 ist of device types
na111es from a given RF. In response to the ca 11,
steps are taken~

anJ resource
the following

l·'!lJLTICS SYSTEt·1 PROGRAN~1ERS' MANUAL SECTION BF.2.22 Page 7 ·

1. If the R.F with type ..t.YQ.e. and name name is non-existent, set
bit 1 of cstatus and return. If the file 1s not reaJ~ble by this
user, set bit 3 of cstatus and return.

2. Store as many device_types as possible in the device types
a r ray • I f the r e a r e more i n the R F , set b i t 18 of c s t a t us • I f
the array is lar::o;er than the array in the RF, fi 11 in the
remainin~ elements with zeroes.

3. Store as many resource names from the l{F
resource names array as possible~. If there are 1110re in
set bit 18 of cstatus. If the 8rray Is larger than the
the RF, fill in the remaining elements with blanks.

4. Return.

set profile

intu
the

arra)''

the
l{F,

in

T'lis call is used to store a device profile. In response t,., the
call, the followin~ steps are taken:

1. Finrl t~~ RF with the ~iven type and name. If the file
not exist, set bit 1 of cstatus and return. If the file is
rl'!adahle by tJ,is user, set bit 8 of cstatus and return. If
file is accessible but not writable !:>y this user from
C:lllP.r's validation Jevel, set bit 4 of cstatus and return.

2. Lock the RF usin~ rf.lock as a lock structure.

does
not
tlw
the

3. If devnum~er if less than one or ~reater than rf.ndev, set
~it 2 of cstatus~ unlock the RF, and ~eturn.

4. If the above arguments ar~ all right, then if
rf.devices(devnumber).profile_relp is not zero, go to step ~.
Otherwise, store nbits in the
rf.devices(devnumber).profile_length, allocate a bit string uf
the appropriate size in the area, and. store the relp to that oit
strin~ in rf.devices(devnurnber).profile_relp. If the area is riot
large enough, set bit 7 of cstatus, unlock the RF and return.

5. Store the bit string (lengt~ nbits) pointed to by dataptr in
the aRpropriate device profile a~d return. The rules of bit
assi~nment relating to padding and truncating apply.

get profile

T.,is call is made to read out a profile. The following steps are
taken in ~esponse to the call:

1. If the file is non-existent ,set.bit 1 of cstatus and return.
If this user does·not have read permission for the file~ set hit
8 of cst~tu~ :lnd return.

Pae~e 8 MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BF.2.22

2. If devnumber is less than one or greater than rf.ndev, set
bit 2 of cstatus and return.

3. Lock the RF using rf.lock as a lock structure.

4. If the arguments are valid, then if
rf.rl~vices(devnumber).proffle_relp is zero, s~t the ~it strin~
pointed to hy dataptr (length nbits) equal to the null string,
unlock the RF, and return.

4. Set the hit strin.!!; described above equal to the devnurnberth
device prof.ile usine; bit string assi~nment rules. Unlock the RF
an~ return.

get nlog

This call is made to find out how many behavior log entries for
the devices associated with the RF. In response to the call, the
following steps are taken:

1. If the RF with the given type and name is non-existent, ~et

bit 1 of cstatus and return. If this user Joes not have reaJ
permission for the file, set bit 8 of cstatus and returrn.

2. Store as many of the nlog entries in rf.devices intu the
nlo<!s array as possible. If the argument array has more eleinent::>
than there are dev1ces, fill in the rest of the array with
zeroes. If there are elements in the RF that have not been
returned, set blt 18 of &.,status.

3. Return.

add 1 og

TI-Je following call is made to add a behavior log entry for a
device associated with the file. In response to the call, the
followi~~ steps are taken:

1. If the RF with the e;iven ~and name is non-existent, set
~.it 1 of cstatus and return. If this user does not have read
p~rMission for ~e file, s~t bit 8 of cstatus and return. If the
fil~ is not writable from the call~r's ring, set bit 4 of cstatus
~nd return.

2. Lock the RF.

3. If devoumber is less than one or greater than rf.nJev, set
bit 2 of cstatus, unlock the RF and return.

4. Otherwise, allocate a structure like the following in the
area in the RF:

del 1 log_entry based(p),

,.

MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION RF.2.22

2 next_rPl~ bit(18),
2 ti~n~ fixPd bin(71),
2 nroc_id hit(36),
2 user_id chnr(50),
2 n~its fixed bin,
2 d0ta ~lt(nbits);

Pa.;e 9

See the •ieclaration of nll arguments of RFf·l calls for the •leanin.;
of the ele1nents of the structure. If the area is not Ltr.,l..!
~nough, set bit 7 of cstatus, unlock the RF, ar1J ret~rn.

5. If the allocation succeeds, copy the bit strin.; of len<,tl1
nbits pointed to by dataptr into the appropriate pa1·t uf the
structure. Store the present process id, user id, am! t L·1er
value in the structure~ as well as nbits. Set the nexL_relfJ
equal to zero. If rf.devices(devnumber).oldest_log_relp is zero,
set it and the corresponding newest_log_relp equal to tilL! offset
of the newly al.located structure. If the oldest relp is nonLero,
then set the relp in the structure pointed to. hy
rf.devices(devnumber).newest_log_relp eq~al to the offset of the
new structure, and then store that· same offset in
nmJes t_l Ot:;_re 1 p.

6. lncrro.ment rf.devices(devnumberl.nlo.r.; by one, unlock tl1e RF,
;=mrl rr-turn.

delt=>te lo!';

This C;:}ll is used to delete a set of behavior lo~ entries for C:l
oarti~ular devi~~ associated with a Re~istry Flle. In response
tb such a call, the following steps are taken:

1. If the RF vlith given~ and name is non-existent, set bit 1
of cstatus and return. If the. file is not readable by this user,
set bit 8 of· cstatus and return. If the file is not writable
from the c~ller!s ring, set bit 4 of c~tatus and ret~rn.

2. Call the Locker and lock the RF using rf.lock structur~.

3. If devnumQer, first, or number is less than one ur if
devnumber i's greater than rf,ndev or if the sum of first anJ
number is grea.ter than rLdevices(devnumber).nlog, then unlvck
the RF, set bit 2 of ~ta~us and return.

4. Otherwise, follow the chain of relps for the behavior log of
the device. Starting at the first element (counting the oldest
1 ink on the chain as number 1), free number of them. Make the
next_relp of the last entry not freed point to the one after the
~ap, or set it to zero if it is now the last entry on the chain.
~1orlify oldest_log_relp and newest_log_relp in the devices array
of the RF as necessary.

5. Vnlock the RF and r0turn.

PCJge 10 MULTICS SYSTEM PROGRAMMERS' MANUAL SEtTION BF.2.2L

read log

This call is used to read
(non-destructively). In response
steps are taken:

out a
to the

set of log entries
call, the following

1. If the file is non-existent, set bit 1 of cstatus and return.
If the file is not readable by this user, set bit 8 of cstatus
nnd return.

2. If devnumb~r, first, or number is less than one, or if
devnumber is greater than rf.ndev or if the sum of first an~
nu~ber is grAnter thnn rf.~evices(devnumber).nlog then set bit- 2
of cstatus n~d return.

3. Ch<'lse the chain of relps until the entry with index equal to
first is found. Cooy out the contents of the lo~ entry into the
correspondin~ elements of the info array. (Th~ next_log relp is
not cooiAd and a pointer to the data string is stored in
dataptr). If there arP more entry l-ogs on the chain~ set bit lo
of cstatus. Return.

r";e t Ui)S

This ca 11 is used to get the up types and upnawcs (i dent if i cat i vn::.
of the I~Fs that point down to this one). In response to the
call, the following steps are taken:

1. If the file is non-existent, set bit 1 of cstatus and return.
If the ·file is not readable by this user, set bit ·s of c~tatus
and return.

2. Copy as many elements of the uptype and upname arrays
(elements of rf.up) into the_uptypes and upnames character array
arg;u'llflnts. Set nreturned equal to the number of complete pairs
of RF names. If there are more than this, set bit 18 of cstatus.

3. Return.

n:et down

This call is used to find the next RF in a chain,
h~v~ been previously lin~ed. In response to
followin~ steps are taken:

1. If the RF with type~ and na111e ~ is
inaccessible, set bit 1 of cstatus and return.

nssuming
the call,

non-existent

they
the

or

2. If rf.present_type_index is not greater than .lero and less
than or equal to rf.ntypes, set bit 5 of c~tatus and return.

3. Otherwise,
rfx.3tt_ty~es(rF

set down tyQg, equa 1
•pe_index).down_type and &tore as

tv
.uany

'r1ULTirS SYSTEN PROGR/\~1MF.RS' MANUI\l SF.CTION f3F.2.22 Pa ~:";e 11

of the corr0sponrlin~ down_nam~s into the down names array. If
there are ~ore element of the ar~ument array than down na1~es,
fill in the extr."l elements \"'ith blanks. If there are more .io\/n
names, snt hit 13 of cstatus. Return.

This call is used to link up two Re.~;istry Files,
a lower one. This call is meant for use by
Control ~odules. In response to the call, the
are taken:

an upper on.:~ .:11o-l
certain L,,,·ic-.

follo>·Jins; ::>te,.:>:;;

1. Find the Re~~istry File with type toptypc anJ na.,Je tvj.?na·'le.
If t\ie file does not exist, set bit 1 of cstatus and returr1. !f
the file is not readable by this user, set bit 8 uf c::>tdtu:.. .Jii . .J

return. If the file is not writable by this user fru:il the
caller's rin~, set bit 4 of cstatus and return.

2. Do the same checking for the file with type butto.,lt.Y..Q.g_ .lnJ
naf'le bot tompame.

3. If any of the following conditions holds, set bit 2 uf
cstatl!i and return:

uoindex is less than one or ~reater than rf.nup in the lower
f i 1 P. •
~own index is less than one or ~reater than rf.ndown in the upper
f i 1 e.
att tyoe index is negative or greater than rf.ntypes in the upper
file.· If that ar~ument is zero, then if rf.present_type_index is
less than one or ~reater than rf.ntypes.

4. If att tvoe index is non-zero, store it in
rf.present_type_inrlex for the upper file. Call the value of the
present_type_index ~.

5. Store botto1;1 name in .rfx.att_typesUJ).down_name(down_inJex)
in th? upper file.

6. Store bottomtype and bottomname in the corresponding cleillel\t!;;
of rf.up(upindex) in the lower file.

7. Return.

~u;nma ry o·-:: Cs ta tu s Bits

1 File non-existent
2 NUinber out of range
3 Typename not found
4 File not writable (set profile, add lo~, delete log,

and 1 ink calls only)
5 Unl inke:J Rer;istry File (get dovm call only)
G :.!on- nF:~ Unr>xoected e .. ror

P,1,:>;e 12 i'lULTICS SYSTEM PROGfV\M~·iE~S' MJ.\tJUAL SECTiuN f3F.2.22

7 /',rr:!a too srn3ll (adu log and set profile· calb ,mly)
.8 Fi'le not readable by this user·
18 Murc u~ta available (array not large enough)

