
TO:

·#
I

FROM:
DATE&
SUBJz

MSPM Distribution
P. G. Neumann
January 10. 1968
BF.2.23. 2.25. 2.26

The attached copies of BF.2.23. 2.25 and 2.26 represent
minor modifications of the existing published documents.

,r"'

MULTICS SYSTEM-PROGRAMMER•s MANUAL SECTION BF.2.23 PAGE 1

Publisheda 01/10/68
(Supersedes: BF.2.23, 08/14/67)

Identification

The Attachment Module
R. c. DaleY and s. I. Feldman

puroose

This section describes the Attachment Module. The Attachment
Module Is called by Device Strategy Modules CDSMs) to handle
attach, dlyert, revert, detach, and lnyert calls. There are also
entries to handle the trao gylts and trao hangyo order call.s and
an entry to find out the name of the Registry File with highest
level for the device. This section also describes the 1/0
Registry Files, which are the principal data base of the
Attachment Module.

lntrodyctlon

The Attachment Module Is called to do standard processing of
certain outer calls for DSMs. This module Is basically
responsible for setting up the communication with the Device
Control Module CDCM) In the Device Manager Process CDMP), for
splicing modules In above the DSM, and for pushing down and
popping up paths In response to dlyert and revert calls,
respectively. Cln this section, It will be assumed for sake of
convenience that the outer module that the DSM wishes to call is
a OCM; the DSM could actually call any outer module. The
Attachment Module also handles the detachment of the DSM and DCM
and, In response to Jnyert ~alls, deletes paths tha~ have been
pushed down but will never be popped up.

This section describes the 1/0 Registry Files, gives a
discussion of the Inter-process Communication Block, and
describes detailed handling of the eight entry points to
Attachment Module:

attm$attach
attm$dlvert
attm$revert
attm$detach
attm$1nvert
attm$trap_qults
attm$trap_hangup
attm$get_rf

brief
then
the

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAG! 2

lhA lLQ RegistrY Files

The I/O Registry Files describe all of the devices that may be
connected to a given system. These files are linked together to
Indicate the connections between devices. Each Registry Fi1e
(RF) contains a level number. A level 1 RF corresponds to a GIOC
channel; a level 2 RF corresponds to a device connected
dlrecontroly to a GIOC channel, etc. An example of a Registry
File chain Is the set of files describing a printer attached to a
remote computer. The level 3 file describes the printer, the
level 2 file describes the remote computer, and the level 1 file
describes the GIOC channel and hardware-connected data set.

The Registry Files are organized Into directories. The
directories are all accessed via the Registry File Directory
Directory. It Is expected that the directories and the files
within them will have many names to allow different ways of
specifying a device. In the following, the directory name will
be called the "type" and the file name within the directory will
be called the "name". The "down" direction is toward the GIOC
channel Clower level numbers) and the "up" direction Is toward
higher level numbers. ·

The following Is a declaration of a Registry File:

del 1 rf based(rfp),
2 level fixed bln(35),

"
"

2 force_udmp blt(l),
" 2 ln_use_swltch blt(36),
"

2 hangupable blt(l),
2 logchans blt(l),

"

/•level•l for a GIOC channel, 2 for
a device connected directly to
a GIOC channel, etc.*/

/•If 1, force the use of· a unlversal
device manager process•/

/•set ON at attach time and OFF
at detach time•/

/•If ON, device can hang up*/
/*If ON, the down_names for this

device are to be filled in by a call

..

"
"
"

to the hardcore ring to get the present
RF name corresponding to the logical
channel names. If this bit fs ON,

"
2 allocate blt(l),

"
2 temp_ll nk blt(l),

"
"

2 nup fixed bln(35),
2 ndown fixed bln(35),
2 ndev fixed bln(35),
2 ntypes fixed bln(35),

no more RFs are to be searched.*/
/•If ON, Reserver should be called

with each ,resource_name as argument.•/
/•connectlbn with next file Is

temporary. Blank out down_name
entries upon detachment*/

/•number of entries In up array•/
/*number of entries In down array•/
/•number of entries in devices arraY*/
/•number of entries in att_types array~

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 3

2 present_type_lndex fixed
II

II

2 down_slot fixed bln(35),

bln(35), /•Index In att_types array of
type with which device was last
attached•/

II

2 alloc_type char(32),
II

II

2 lock blt(l44),
"
" 2 up(rfp->rf.nup),

3 uptype char(32),
3 upname char(32),

/•position of upname for this file
In up array of next registry file•/

/•use this type In calls to the
Reserver alloc$resource
entry•/

/•for locking RF when threading
or deleting behavior log entries or
modifying the profile.•/

/•registry files pointing to this one•/

2 devlces(rfp->rf.ndev), /•entries for devices associated
" with this registry file•/

3 resource_name char(32), /•name used In calls to the Reserver
" and the Device Assignment Module•/

3 proflle_relp blt(l8), /•relp to device profile for this
" device•/

3 proflle_length fixed bin, /•number of bits In this profile•/
3 oldest_log_relp blt(l8), /•relp to oldest entry In behavior log•/
3 newest_log_relp blt(l8), /•relp to most recent entry In

11 behavior log•/
3 nlog fixed bin, /•number of entries In behavior log•/
3 devlce_type fixed bln(35),

2 att_types(rfp•>rf.ntypes),/•speclal Information for each type
11 by which this device may be known•/

3 type_name char(32),
3 ccm_type char(32), /•type of CCM to be spliced In above

11 the DSM* I
3 trace_down blt(l), /•If ON, trace down to next registry

" file. Otherwise, stop here•/
3 alloc_down blt(l), /•If ON, must call Reserver to

" allocate a device of type
11 down_type,.and use returned
11 resource_name as down_name(l).
11 In either case, find next RF by
11 using down_type and down_name(l)*/

3 look_only blt(l), /•keep tracing down to other RFs
" under trace_down control, but
" only to compute CCM typename•/

3 down_type char(32), /•used as described above•/
3 down_name(rfp•>rf.ndown> char(32), /•used as described above•/
3 loglcal_channel (rfp•>rf.ndown) char(32), /•array of

" names to be used In call to get present
11 equl valent RF name from
" Info In OCT. Used only If the
11 logchans bit Is on•/

3 extra_mode char(32), /•character string to be
" concatenated with mode to be
" passed to DCM*/

3 dcm_type char(32), /•used as type In attach call to

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 4

..
II

3 dcm_name char(32),

OCM If trace_down Is OFF or
look only Is ON•/ ~

/•used-as loname2 of attach call to
DCM If trace_down Is
OFF or look_only Is ON•/

2 free_storage area((lSOOO));
I*

•I
del 1 rf_ro based(p), ..

II

II ..
"

2 pdt_name char(32),
2 udmp_user_ld char(50); ..

/•special Registry File. There Is a
file of this format associated with
each regular RF, with name equal to
the name of the normal RF concatenated
with "_ro". This file contains
certain data that must be protected
against tampering and Is therefore
read-only to most users.•/

/•name of PDT In DMP•/
/•user_ld of universal device manager

for this device, If any•/

As Is clear from the above, a Registry File contains a large
number of switches and character strings. The discussion of the
various entry points to the Attachment Module explains the use of
the various parts of the Registry File.

The "up" array of a RF contains the list of names of
Files with down_type and down_name equal to the name of
file. The kth uptype and upname equals the name of the
down_type and down_name equal to the name of this file
down_slot equal to k.

Registry
the given
file with
and with

A Registry File may represent several separate devices which, for
various reasons, It Is convenient to consider as a single device.
An example of such a grouping Is a full-duplex typewriter
channel, which requires two GIOC channels to control one
typewriter; such a pair of channels would have a single level 1
RF. The "devices" array In the Registry File Is designed to
handle such cases.

Since directories may have several names, a given RF may be
reached with several different types. Different chaining of
files and different calls to the DCM may be desired for different
types. Information on the name of the driving table for use by
the Code Conversion Module (CCM), If any, and the method of
finding the next lower RF, If· any, Is kept In the att_types
array.

There are two different ways the next RF may be found.
alloc_down switch In the att_types array Is OFF,
corresponding down_type and down_name entries specify

If an
then the
the next

;

t
I ,,
i

l
I <

,:;:

r
~
'
' i

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 5

Registry File. This type of linking Is used when the association
between devices Is known. If an alloc_down switch Is ON, then a
device of type equal to the corresponding down_type must be
allocated. This form of allocation Is used, for examp1e, to
allocate a 7-track tape drive on which to mount a particular
tape; the user does not care which particular drive Is used.

Certain entries In ~he RFs are of Interest to outer modules.
Specifically, the resource_na~es are needed by DCMs to make
assign calls to the GIM. The devlce_types and profile pointers
are needed by outer modules which need descriptions of devices.
An 1/0 Registry File Maintainer will be supplied to fill such
needs.

IhA Inter-process Communication Blo'k

The per-loname segment (IS) of each DSM contains an Inter-process
Communication Block (ICB) which contains Information used by the
Attachment Module, Request Queuer, and Driver. It contains event
channel names, switches to Indicate functions to be performed by
the Dispatcher, lonemaes, Registry File names, two lock lists,
and various other pieces of Information. The following is a
declaration of the ICB:

del
2
2
2
2
2
2
2

2

2

2

2

2

2

2

2

1 lcb based (p),
queue_lock_ltst bft(l44),
locall_event blt(70),
dmp_proc_ld bit (36),
dmp_user_ld char(50),
prlvate_dmp bit(l),
q&.Ht_event blt(70),
restart_event btt(70),

II

II

reset blt(l),
·~ ..

invert blt(1),
" tnvert_event blt(70), ..

divert blt(1), ..
dlvert_event blt(70), ..
trap_qults bit (1),

"

/•Inter-process communication block•/
/•standard lock for request queuing*/
/•event channel name•/
/*device manager process fd*/
/•user ld of dmp If not private*/
/*1 If a private DMP was created*/
/•event name•/
/*name of event channel to be signaled

to restart path In DMP without
passing an outer call*/

/•set to 1 to cause a reset
of all calls In request queue
when next restart is done*/

/*set to 1 to cause diverted paths
In DMP to be detached*/

/•name of event channel to be
signaled when Inversion complete*/

/•set to 1 to cause present lopath
to be quI t•/

/•name of event channel to be
signaled when diversion complete*/

/*if l,slgnal If quit occurs
on device*/

overseer_trap_hangup .. bit(l), /•if 1, signal overseer If
hangup occurs on device*/

trap_hangup blt(l), /•If 1, signal If hangup occurs on

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 6

11 device•/
2 qult_ld bit (36), /•ld of process to be signaled on qui.JI
2 overseer_ld blt(36), /•process ld of overseer•/
2 hangup_ld blt(36), /•ld for process to _be signaled

· " when device hangs up•/
2 qult_report_event blt(70), /•event signaled If device quit*/
2 overseer_hangup_report_event blt(70), /•event to be

11 signaled If ha.ngup occurs•/
2 hangup_report_event blt(70), /•event to be signaled If

" device hangs up•/
2 dtverted blt(l), /*1 If this loname has been

" diverted•/
2 dlvert_type blt(l), /•when diverting, set to 1 If

11 the two loname arguments are
" equal•/

2 al~loc_down blt(l), /•how this registry file was reached.
' " If ON, device of given type was

" allocated an.d name returned.
" Otherwise, name came from description
" a r gume n t of ca 11 • *I

2 dsm_rf_type char(32), /•type of first RF (highest level)*/
2 dsm_rf_name char(32), /•name of first RF*/
2 dcm_type char(32), /•type to be used tn attach

" ca 11 s to the D CM *I
2 dcm_descrlptlon char(32), /•description to be used In attach

. " ca 11 s to the DCM* I
2 ndhar_dcm_mode fixed bln(l7), /•number of characters

11 In dcm_mode•/
2 dcm_mode_re 1 p bIt (18), l•re 1 p to character strl ng

" equal to mode of OCM•/
2 old_dsm_loname char (32), /*previous dsm loname•/
2 new ts_name char(32), /•for use when diverting.

- II ..
2 dcm_loname char(32),

" 2 old_dcm_loname char(32),
2 lcb_lock_llst blt(l44),
2 lnvert_proc_ld blt(36),
2 dlvert_proc_ld blt(36);

Ih& Process Dlsoatchlng Table

Name of new
per-loname segment•/

/•for possible future use In
handling NODMP mode•/

/•same as above•/
/•standard lock•/
/•response event for Invert•/
/•response event for divert•/

The Process Dispatching Table (POT) describes the devices that
may be controlled by a gl¥en Device Manager Process, and Is
therefore of Interest mainly to the Dispatcher. However, If a
private OMP Is to be created, the Attachment Module must create
the DMP. Also, the Attachment Module must know the declaration
of the PDT In order to find the DMP's process ld and the name of
the reassign event channel. Therefore, for convenience, a
declaration of the PDT Is Included here. For a more detailed
discussion of the POT, see BF.2.25 ~

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE! 7

del 1 pdt based(p),
2 lnlt_proc char(32),

"
"

2 dmp~proc_ld blt(3ti),
" 2 reasslgn_event blt(70),
"
" 2 creator_ld blt(36),
" '

2 In Ji t_don,e_event bIt (70 >,
I tl i'

"
2 current ptr,

"
' I " 2 pdt_name char(32),

" I

2 dtabp ptr,
" 2 dlsp_ptr,
It

3 reassign ptr,
3 ocall ptr,
3 reenable ptr,
3 restart ptr,
3 quit ptr,
3 hardware ptr,

2 nroutes fixed blnC17),
2 routes(n)',

"
" 3 type char(32),

3 resource_name char(32),
3 user_ld char(50),
3 loname char(lS),
3 pi bp ptr,
3 I cbp pt r,
3 tbsp pt r,

"
" 3 att_stack ptr,
" 3 locall_event blt(70),
II

II

3 restart_event blt(70), ..
3 hardwore_event blt(70),

II

/•Process Dispatching Table•/
/•name of procedure to be

called for Initialization.
Equal to "dfsp$1nlt"•/

l•ld of this Device Manager
Process•/

/•event channel to be signaled
when device Is assigned or
unassigned to this process•/

l•ld of process that created this
Device Manager•/

/•event channel to be signaled when
Initialization of this process Is
complete.•/

/•pointer to element of routes
for device for which work
Is being done at present•/

/•name used by other processes to
find PDT•/

/•pointer to Drlver"s driving
table•/

/*pointers to entry points of
the Dispatcher•/

/•number of entries In routes array•/
/•an entry for each device which

may be assigned to this process.
n • pdt.nroutes•/

/•type of resource•/
/•resource_name for this device•/
/•user to whom device Is assigned•/
/•DCM loname, a unique character string•/
/•pointer to PIB for this DSM•/
/•pointer to ICB for DSM*/
/•pointer to Transaction Block

segment In user"s group
directory•/

/•pointer to entry In attach_stack
area for pushed-down DCM•/

/•event to be signaled by DSM
for localllng, resetting,
Inverting, and diverting•/

/•signaled to restart a path
In external quit condition•/

/•event channel signaled when
Interrupt received from device•/

MUL Tl CS sv:sTEM-PROGRAMMER 1 S MANUAL S.ECTION BF.2.23 PAG! 8

•I

/•event to be signaled to stop
device and prepare for a divert•/

3: reenable_event blt(70), /•signaled when auxiliary

3 qult_event blt(70), ..
11 chain or TBS Is unlocked•/

3 devlce_absent blt(1),
3 assigned blt(1),

II

3 attached blt(l),
II

3r ex t_Qu It bIt (1),
II

/*1 If device not present•/
/*1 If device assigned to this

process•/
/•1 If attach call has been

Issued•/
/*1 If device In external quit

condition•/
/•1 If device In Internal (hardware)

quit condition•/
area((10000));/•area Into which blocks are

3 I nt_qu It bIt (1),
: II

2 attach_stack
I II allocated for diverted paths•/

del 1 att thread based(p),
' -~~

/•declaration of block to be
allocated Into att_stack
area .for pushIng down of
DCMs•/

II ..
2 loname char(lS),
2 locall_event blt(70),
2 reenable_event blt(70),
2 plbp ptr,
2 lcbp ptr,
2 status,

3 attached blt(l),
3 ext_qult blt(l),

2 next ptr;
II

/•DCM loname•/
/•event channel name•/
/•event channel name•/

/•points to next block In thread
of pushed-down DCMs•/

When necessary, the Attachment Module calls the Mode Handler (see
BF.2.27) to Interpret ~ ~nd dlsoosol arguments of calls.
Therefore, the DSM does not need to make these calls. The bmode
string In the PIB Is updated whenever a ~ argument Is
Interpreted.

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 9

,-, Attach kill Process L.n.&

The Attachment Module has an entry point to perform most of the
processing needed for a DSM to handle an attach call. The call
I s :

call attm$attach{plbptr,mode,dcmstatus,sfmstatus,cstatus);
del mode char(•), /•fourth argument of attach

ca 11 •/
dcmstatus blt{l44), /*§tatys from ~a}attach call

" sent to DCM•/
sfmstatus blt(l44), /*§tatui from atta'b call to SFM,

" If SECTIONAL mode specified•/
cstatus bltClS); /•status returned by Attachment

Module•/

In response to this call, the Attachment Module traces down the
Registry Files corresponding to the device or devices Implied by
the~. and deicrlotlon arguments of the attpch call received by
the DSM. As necessary, devices are allocated, depending on
switches In the various RFs. A private DMP Is created only If
the PRIVATE mode Is spectffed In ~ and If the use of a
Universal Device Manager Process Is not force~ by the Registry
Files. The atticb call Is passed to the DCM with ~ and
,deicrlotlon arguments found In the last RF and a Jll2SUt argument
computed using strings found In the RFs and DOiimode {the string
returned b~ the Mode.Handler In step 1 below)~

The dgscrlptfon argument is considered to be a sequence of
components delimited by slash("/") characters. These components
are used as Registry File names when a device Is to be allocated
(see below). A subroutine of the Attachment Module will be used
to break the string Into components and to delete blanks.

It Is convenient to define a few temporary variables In the
following discussion. Let A be a switch which Indicates bow a
Registry File was reached. If ON, a call was made to the
Reserver to allocate a device of a particular type and the file
name was returned; If OFF, the name was known without performing
such a call. Let NAME be the name of the RF and TYPE Its type.
Let UPTYPE and UPNAME be the last values of TYPE and NAME, and
let N be an Integer Indicating the position In the "up" array
Into which UPTYPE and UPNAME are to be stored. Let CCMTYPE be
the name of the driving table to be used by the CCM. Let DCMMODE
be the IDQd& to be used In attaching the DCM. Let HANGUPABLE be a
switch lnd~atlng whether the device can hang up. Let LASTTYPE
be the type of the last Registry File through which the
Attachment Module traced down (see below for explanation of
terms). Let RESOURCE be the first resource_name fn that file and
FORCEUDMP be the force_udmp bit In that file.

In the following, "descrlotlon" Is a character string of length
32 equal to the corresponding argument in the attach call. This
string Is taken from plb.loname2.

•-1·,

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 10

In response to the ~ttmSattach call, the following steps are
taken: ..,J

1. Set cstatus equal to zero and call the Mode Handler (see
BF.2.27) to Interpret ~. Two arguments are returned:
Qassmode (a character string of modes to be passed on to the DCM)
and bmode, a 72-blt bit string which Is a sumnary of the modes at
this time. Both of these return arguments will be used below.
If there Is any error In the mode Interpretation, set bit 10 of
cstatys and return. Otherwise, store bmode In pib.bmode.

2. Allocate the ICB In area plb.loarea and Initialize lt. A11
Items In the ICB should. be zero except the values of "n'1 In the
two lock lists should be set to the appropriate values.

3. Initialize: Blank out UPTYPE, UPNAME, CCMTYPE, and DCMMODE.
Set TYPE and lcb.dsm_rf_type equal to ptb.typename. Set
HANGUPABLE, dcmstatys, and sfmstatys equal to zero.

4. This and the next step find the next (first) Registry File.
If the next (first) component of descrlotlon Is not null, go to
steps. Otherwise, a device of type TYPE must be allocated.
This Is done by the following call to the Reserver:

call alloc$type(TYPE,NAME,status);

The Reserver will, If a device Is available, return the name of . ..J

the device In NAME. If no device Is available, set bit 3 of ~
sstatus and go to step 27. If an allocation Is made, set A ON to
Indicate how the allocation was made. If there Is no present
Registry File (I.e., this Is the ftrst time step 4 has ·been
reached), store NAME In lcb.dsm_rf_name, Set the alloc_down
switch In the ICB ON. If there Is a present RF, store NAME In
rf.att_types.down_name(rf.present_type_lndex). Go to step 6.

s. If the component of descriQtlon checked In step 4 Is not
null, set NAME equal to that component and set A OFF to Indicate
how that name was found. If there Is not a current Registry
File, set lcb.alloc_down OFF and store NAME In lcb.dsm_rf_name.
If there Is _ a current registry file, store NAME In
rf.att_types.down_name(rf.present_type_lndex).

6. Find and lock the proper Registry File:

a. If NAM~ Is blank, set bit 2 of cstatys and go to step
27: the Registry Files have not yet been linked. This can
happen If an attachment Is attempted before a dialup has
occurred on a typewriter.

b. Search the Registry File Directory Directory for a
directory with name TYPE. If such a directory Is not found
or is not accessible to this user, set bit 1 of cstatus and ~
go to step 27.

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 11

c. Search that directory for a file name NAt~E. If no such
file exists or If It Is not accessible to this user, set bit
1 of cstatus and go to step 27.

7. If the logchan bit In the RF Is ON, go to step 8. If A Is
OFF and the allocate switch In the RF Is ON, then the Reserver
should be called to allocate the devices associated with the file
by making the following call:

call alloc$resource(alloc_type,rf.devlces.resource_name(1),status);

If the allocation falls, set bit 3 of cstatys and go to step 27.

B. Search the att_types array for a "type" entry equal to TYPE.
If none Is found, set bit 5 of cstatys and go to step 27. If an
entry with the proper type Is found, do the following:

a. Store the Index of that type In present_type~lndex.

b. Store the present process_ld In ln_use_sw.

c. If this Is the first RF found, store blanks In all the
uptype and upname entries. If this Is not the first RF
found, store UPTYPE and UPNAME ln rf.up(N).uptype and
rf.up(N).upname, respectively.

d. Set DCMMODE equal to DCMMODE II "/" I I rf.extra_mode.

e. Set CCMTYPE equal to CCMTYPE II rf.ccm_type. Remove
embedded blanks from CCMTYPE. (Assume that rf.ccm_type and
CCMTYPE are left adjusted and padded on the right with
blanks).

f. Set HANGUPABLE equal to HANGUPABLE II rf.hangupable.

g. If rf.ndown ls equal to one and rf.logchans Is OFF, go
to step 9.

h. If rf.ndown Is less than one, set bit 12 of '=atat!d=a and
go to step 27.

I • If rf.logchans is OFF, go to k.

j. Call the DCTM with each of the ndown logical channel
names and store the returned value the corresponding element
of the down_name array. If any of these call's falls, set
bit 3 of cstatus and go to step 27.

k. Find the ndown RFs pointed to by the down_type and
down_names In the present RF. If the allocate bit In one of
those files Is ON, call allo,sresource using the first
resource_name In that file as~ argument and down_type
(above) as ~. If any of these RFs do not exfst or tf any

I.

'•

\

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 1~

of the allocations fall, deallocate any devices allocated so
far In this part of the step, set bit 3 of ~statys and go to'-'
step 27.

1. Otherwise, go to step 16.

9. If the t race_down svll tch Is OFF, store dcm_t ype In
tcb.dcm_type and store dcm_name In lcb.dcm_descrlptlon. Set
LASTTYPE equal to TYPE and set RESOURCE equal to the first
resource_name In the present RF. Set FORCEUOMP equal to the
force_udmp bit In the file and go to step 16.

10. If the look_only switch Is ON, go to step 12. Otherwise,
set N equal to down_slot, UPTYPE equal to TYPE, UPNAME equal to
NAME, and TYPE equal to down_type. These assignments are
necessary to prepare to examine the next RF.

11. If the alloc_down switch In the RF Is ON, go to step 4 to
allocate the device. Otherwise, set NAME equal to down_name(l),
set A OFF, and go to step 6.

12. If the look_only switch Is ON, continue examining Registry
Files, but only t6 compute OCMMOOE, CCMTYPE, and HANGUPABLE. It
Is assumed that the lower RFs are already linked. Set
lcb.~cm_type equal to dcm_type and lcb.dcm_descrlptlon equal to
dcm_name. Set LASTTRACE equal to TYPE and set RESOURCE equal to
the first resource_name In the present RF. Set FORCEUOMP equal
to the force_udmp bit In the file.

13. If rf.ndown Is not equal to 1, set bit 2 of cstatus and go
to step 27. Otherwise, find the RF with type equal to
rf.att_types(rf.present_type_lndexl.down_type and name equal to
rf.att_types(rf.present_type_lndex).down_name(1). If either of
these chara~ter strings Is blank, set bit 2 of cstatus and go to
step 27. If no such file exists and Is accessible to this user,
set bit 1 of cstatys and go to step 27. If the RF found has a
zero ln_use_sw, then set bit 2 of cstatus and go to step 27.

14. Calculate OCMMODE, CCMTYPE, and HANGUPABLE:

a. Set OCMMODE equa 1 to DCMMODE I I "I" II
rf.att_types(rf.present_type_lndex>.extra_mode.

b. Set CCMTYPE equal to CCMTYPE II
rf.att_types(rf.present_type_lndex).ccm_type. Remove
embedded blanks.

c. Set HANGUPABLE equal to HANGUPABLE I rf.hangupable

15. If rf.att_type~(rf.present_type_lndex).trace_down Is ON, go
to step 13.

16. Store the number of characters In DCMMODE
icb.nchar_dcm_mode, and then allocate a string of that length

InI
tn

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 13

,.. , plb. loarea. Store DCMMODE In that string and store a relative
pointer to that string In lcb.dcm_mode_relp.

17. If the PRIVATE mode Is specified In bmode and If FORCEUDMP
Is OFF, go to step 18. Otherwise, a Universal Device Manager
Process Is supposed to be used. The name of the group containing
that DMP and the name of the PDT for that process (In that
group's group directory) are found In a special file. That file
Is found In the directory with name equal to LASTTYPE. The name
of the file In that directory equals RESOURCE II "'_ro" (for
"read-only", the attribute of the file). Store the user ld of
the OMP in lcb.dmp_user_ld and set lcb.prtvate OFF. Call the
Device Assignment Module to assign the Universal Device Manager
Process as the control user of the device:

call ioam$set_control(LASTTYPE;RESOURCE,udmp_user_td,error);

Get a pointer to the PDT for the OMP, which can be found using
the naming algorithm described above. Keep this pointer for use
In step 20. Go to step 19.

18. If a private OMP Is desired, the following steps are taken:

a. Create a Process Dispatching Table segment for a
as a branch of the present group directory. Set
equal to 1, set routes(1).type equal to 'LASTTYPE,
routes(l).resource_name equal to RESOURCE.
pdt.lnlt_proc equal to "dlsp$1nlt".

new DMP
nroutes

and set
Set

b. Create an event channel
pdt.lntt_done_event and store the
pdt.creator_td.

and store Its name
present process ld

In
in

c. Store the unique character string created In step a
above (the entry name of the PDT) In pdt.pdt_name.

d. Create the OMP by a call to create oroc (see BJ.2).

e. Watt for the response event to be signaled, and then
destroy that event channel.

f. Set fcb.prlvate_dmp ON.

19. Create a link In the user's group directory to the
per-loname segment (IS) with name RESOURCE. This link Is used by
the Dispatcher Jn the DMP to access the IS.

20. Signal the reassign event for the DMP.
found in the Process Dispatching Table (PDT)
signal will cause the Dispatcher to prepare
call for the device from this user.

The event name Is
in the DMP. This
for an localattach

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 14

21. Create an event channel. If tcb.prlvate Is OFF, give user
tcb.dmp_user_td access to the channel. Call the Request Queuer ~
(see BF.2.24) to pass a loca1attach call to the DCM. Use
tcb.dcm_type as the ~ argument, lcb.dcm_descrlptlon as the
descrlotlan, and•OCMMOOE II passmode as the~ argument. Use
the event channel just created as the completion event. Upon
return from the Request Queuer, walt for the completion event to
be signaled. Destroy the event channel. Use the Transaction
block Index returned by the Queuer to make a call to rgSget chain
for the localattach call. Store that status In the status
argument of the call to the Attachment Module.

22. Delete the link to the IS. If the attachment failed, set
bit 4 of cstatus and go to step 27.

23. In order for the quit and restart mechanism to work, the
Overseer must have available a list of devices and. certain
associated event channel names available. The to control
procedure (see BF.3.01) Is the Interface between the Overseer
quit and restart mechanism and the 1/0 System. The following
call Is made by the Attachment Module to Inform lo control of the
new device and to get c~rtatn Information from the ICB and to put
other Information Into the ICB:

call lo_control$attach(plb.lonamel,type,descrlptlon,lcb.overseer_td,
lcb.dmp_proc_ld,lcb.qult_event,lcb.restart_event,
HANGUPABLE,Icb.overseer_hangup_report_event,cstatus);

If HANGUPABLE Is OFF or If the hangup report event Is zero, set
lcb.overseer_trap_hangup bl~ OFF; otherwise, set It ON.

24. If CCMTYPE Is blank, then go to step 25. Otherwise, the DSM
uses a Code Conversion Module (CCM), and the second driving tab1e
pointer (plb.dtabp2) must point to the appropriate driving table.
Therefore, the following call Is made:

call atm$change_dtab(plb.loname1,2,CCMTYPE,O,"O"b,cstatus);

25. If bmode specifies the SECTIONAL mode, the Sect1ona1
Formatting Module (SFM) (see BF.8) must be spliced in tmnedtately
above the DSM. This Is done by renaming the DSM 1 s swltchpolnt
and then attaching the SFM. First, a unique name Is created (by
a call to unlque_chars(untque_blts), see BY.lS.Ol). Then the
following call Is made:

call atm$setlonamel(plb.lonamel,unlque_name,cstatus>;
del unlque_name char(l5),

cstatus blt(l8);

The SFM Is then attach with the same ~ that the DSM received:

call attach(plb.lonamel,"sfm",unlque_name,mode,status);
del status blt(l44);

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 15

~, Finally, set the lonamel entry of the DSM 1 s PIB equal to the
unlque_name.

26. Return to the DSM.

27. In case of error, call the Internal cleanup procedure to
restore the RFs to their previous condition. To do this, make
the following call:

call cleanup(fcbptr,bdlsp);
del lcbptr ptr,

bdlsp bft(72);

For bdlso, use a bit string that would represent the HOLD/UNLOAD
disposal modes. Upon return from cleanup, return to the DSM.

..

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 16

ptyert Call processing

The dlyert outer call Is used to push down an 1/CI path and
create a fresh one f·or temporary use. The Attachment Module
an entry point to to handle dlyert calls. The call Is:

call attm$~1vert(plbptr,newloname,mode,cstatus);

del newloname char(•), /•new name of diverted path•/
mode char(•), /•mode argument of dlyert call•/
cstatus blt(l8); /•status for this call•/

to
has

The third argument Is part of the string of modes to be used In
establishing the new DSM and DCM. The DSM loname Is changed If
newloname Is equal to the present loname of the DSM. The
Dispatcher Is told to push down the old DCM and to create a new
one.

The dlyert call Is passed by the 1/0
lock on the per-loname segment.
allocated by the switch for this call
problems.

Switch regardless of the
No transaction block Is
because of Interlocking

The following steps are taken In response to the attmSdlyert
call:

1. Zero cstatys and call the Locker to lock the feb (using
lcb.lcb_lock_llst>.

2. Call the Mode Handler to Interpret~.
returns bmpde and oassmpde. If there was
Interpretation of mod4, set bit 10 of cstatys,
and return.

The Mode Handler
an error In the

unlock the ICB,

3. If the diverted bit In the ICB Is ON, then this path has
already been dlyerted and cannot be dlyerted again. Set bit 7 of
,statys, unlock the ICB, and return.

4. If plb.lonamel (the OSM's loname) equals newloname, then
create a unique name and then make the following call:

call atm$rename_attach_return(plb.lonamel,unlque_name,
plb.typename,plb.loname2,status); ·

del status blt(l44);

This call causes the present loname to be changed to the unique
name and the partial attachment of a new loname node with the
previous name of/ the present node. Thus, In one step, we have
created a new path and saved the present one. The new path has
not been fully attached, however. It will be activated by a
future attach order call made by the Attachment Module. Set the
dtvert_type bit In the ICB to "l"b and go to 6.

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 17

.~ 5. If plb.loname1 Is not. equal to newloname, set the dlvert_type
bit too. Make the following calls:

ca 11 I o_cont ro 1 $lock;

call atm$attach_return(pib.loname1,newloname,
plb.typename,plb.loname2,status);

del status blt(l44);

call lo_control$rename(newloname,plb.lonamel,cstatus);

The first call keep fo_control 's data base, the OIL, locked until
the next call to lo_control. The next call creates a new loname
but does not pass an attach call to ft. By doing this, the
Attachment Module has a chance to fix up the new ICB before
Initial lzfng the new loname by an attach order call. The third
call Informs fo_control of the new name and causes the OIL to be
unlocked.

6. Get a point to the new per-loname segment by means of a call
to atmSget losegname. Store newjoname In the lonamel entry of
the new PIB, and then copy the typename and lonam~2 entries of
the present PIB Into the corresponding entries of the new PIB.

7. Allocate the ICB In the new IS and lock ft. Initialize this
ICB by copying the following from the old ICB:

All of the event channel names other than lnvert_event and
dlvert_event.
A 11 process Ids.
The following one·blt Items: trap_qult, trap_hangup,
overseer_trap_hangup, prlvate_dmp, and alloc_down.
All character strings other than old_dsm_loname, new_fsname,
dcm_name, and old_dcm_name.
Copy nchar_dcm_mode Into the new ICB and then allocate In
the new IS a character string of that length and copy the
string pointed to by the dcm_mode_relp. Store a relp to
that string Into the new dcm_mode_relp.

a. Store the foname of the old DSM In the old_dsm_loname entry
of the new ICB.

9. Store the name of the new IS In the new_ts_name entry of the
old ICB. The Dispatcher will use this name to access the new IS.

10. Store the bmode computed In step 2 In the bmode entry of the
PIB of the new DSM.

11. Create an event channel and store Its name In the old
tcb.dlvert_event. Store the present process ld In the old
lcb.dlvert_proc_td. If lcb.prlvate Is OFF, give user
lcb.dmp_user_ld access to the event channel. Set lcb.dlvert ON
and signal the tocall event. The Dispatcher will push down that
part of the path, create a new DCM loname and a new locall event,

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 18

and then signal the response event. Wait for the response event.

12. Call the Request Queuer to set up a regular localattach call
for the DCM In the Request Queue of the new IS. Use tcb.dcm_type
and lcb.dcm_descriptlon as the~ and description arguments of
that call, and use the concatenation of the dcm_mode In the IS
and passmode as the~ argument of that call. Walt for the
completion event. Destroy the event channel.

13. Set the diverted bit In the old ICB ON.

14. Make the following call:

call order(newloname,"attach",null,null,status);

This call will force the new DSM to Initialize
performing all of the steps Involved In normal attach
other than callJng the Attachment Module.

15. Unlock both the new and the old ICB.

16. Return to the DSM.

Itself by
processing

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 19

,-., Revert ka.ll processing

V1
/

'

In order to pop up a diverted lopath, the revert r>uter caJl Is
used. After the DSM has done necessary cleanup It makes the
following call to the Attachment Module:

call attm$revert(plbptr,dlsp,cstatus);

del dlsp char<•>,

cstatus blt(l8);

/•disposal argument of revert
call•/

The Attachment Module takes the following steps to pop up the DSM
and DCM:

1. Lock the ICB.

2. If the diverted bit In the ICB Is ON, set bit 7 of cstatus,
unlock the ICB, and return: only the most recent lopath may be
reverted.

3. If the old_dsm_lonqme entry In the ICB Is blank, then there
is no diverted path to revert; in that case, set bit 6 of cstatys
and go to step 11.

4. Call the Mode Handler to interpret~. The Mode Handler
will return oassmode, the disposal string to be used tn the call
to the DCM, and bdiso, a bit string of length 72 which contains a
summary of the disposal modes at this node. If the Mode Handler
indicates an error, set bit 10 of cstatys and go to step 11.

s. Set up an ordinary detach call with dlsgosal equal to the
concatenation of oassmode and "/DEVl" In the Request Queue and
signal the iocall event for the device. Walt for the return
event. When the Driver In the DMP returns to the Dispatcher
after handling a detach call, the Dispatcher pops up the next DCM
ioname and loname segment using Information In the PDT.

6. Get a pointer to the PIB of the per-loname segment of the old
DSM by making the following call:

call atm$get_tosegname(Jcb.old_dsm_loname,Jsname,pfbptr,cstatus);

Using this pointer, get a pointer to the popped-up ICB.

1. Make the following call:

call atm$delete_ioname(pib.ioname1,"1",status);
del status' bit(18);

Upon return to the 1/0 Switch from this outer call, the Attach
Table entry for this loname and the IS will be destroyed and all
related Transaction Blocks released.

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 20

s. If the RESET disposal mode Is specified In bdlso, set the
reset bit In the popped-up ICB. Signal the restart event. The .J
Dispatcher will call drlyerSrestart with the reset bit as
argument. If the reset bit Is ON, then all pending transactions
will be reset (aborted and not to be restarted).

9. If the dlvert_t~pe bit In the popped up ICB-Is 1, then make
the following calls:

call atm$swltch_lonames(old_dsm_loname,
plbptr->plb.loname1,cstatus);

call losw$queue_restart(pib.loname1,cstatus);

These calls exchange the lonames of the nodes and then restart
the path that was just popped up. Go to step 11.

10. If the dlvert_type bit In the popped-up ICB Is 0, then make
the following calls:

call lo_control$renameCold_dsm_loname,
plbptr•>plb.lonamel,cstatus);

call losw$~ueue_restart(old_dsm_loname,cstatus);

These calls update the OIL (Overseer loname List; see BF.3.01)
and restart the popped•up path.

11. Unlock the ICB.

12. Return to the DSM.

Qetacb ~ Processing

When a DSM receives a detach call, It must clean up all pending
1/0, Including 1/0 to be done by dlyerted lopatbs, and then
detach all of the CCMs, DSMs, and DCMs In these paths. The
Attachment Module bas an entry to perform these functions. In
response to a detach call, a DSM cleans up Its pending 1/0 and
then performs the following call:

call attmrdetach(plbptr,dlsp,cstatus);
del dlsp char(•), /•dlsoosal argument

of detach call•/
cstatus blt(l8);

This call causes the DCM to be detached, and, depending on the
disposal modes, devices to be deallocated and resP.rvatlons to be
released.

The following steps are taken In ·response to the call to
attmSdetach: ~

.(

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 21

1. Call the Mode Handler to Interpret~. ThH Mode Handler
will return oassmodn and bdlso, as described ahovt~. If there was
an error In Interpreting ~, set bit 10 of cstatus and return.

2. Call attm$1nvert to destroy any pushed-down paths.

3. Send a detach call to the DCM In the DMP with dlsoosal
argument equal to the concatenation of oassmode and "/DEV1".

4. Call the cleanyo Internal procedure to deallocate devices,
cancel reservations, clean up Registry Files, and destroy the DMP
If private.

5. Make the following call to remove this toname from the
Overseer loname,List:

call lo_control$detach(plb.lonamel,cstatus);

6. Make the following call to the ATM to delete this toname upon
return to the 1/0 Switch:

call atm$delete_loname(pib.lonamel,"l"b,status);

7. Return to the DSM.

Invert kall processing

When a OSM receives an lnyert call, It Is supposed to delete all
all lopaths that have been dlyerted for that loname. The DSM
Immediately makes the following call to the Attachment Module:

call attm$1nvert(plbptr,cstatus);
del plbptr,ptr,

cstatus blt(l8);

The following steps are taken:

1. Lock the I CB.

2. If the old_dsm_loname In the ICB Is blank, then there are no
pushed down paths, so go to step 6.

3. Create an event channel and store Its name In
lcb.lnvert_event. Store the present process ld In
fcb.lnvert_proc_ld. If lcb.prlvate Is OFF, give user
icb.dmp_user_ld access to the event channel. Set lcb.lnvert ON
and signal the locall event. Wait for the response event, and
then destroy that event channel. The Dispatcher will call
drfyerSdetach for each of the pushed-down DCM lonames.

4. For each loname In the chain of old_dsm_lonames, perform the
f o 1 1 ow I n g s t e p s :._

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 22

a. Unlock the DSM 1 s ICB.

b. Unlock the DSM 1 s auxiliary chain.

c. Make the following call for the DSM and CCM loname:

call atm$delete_lonameCtoname,"O"b,status);
del loname charC32),

status bltClS);

This call Immediately deletes the given loname from the AT
and destroys the per-loname segment.

5. store blanks In the and old_dsm_loname entry In the current
(and only) ICB.

6. Unlock the ICB.

1. Return to the DSM.

Quit Reporting

In order to allow processes to be signaled when a quit Is
signaled on a device, there Is a special 11 trap_qults" order call.
In response to such an order call, a DSM makes the following call
to the Attachment Module: /-

call attm$trap_qults(ptbptr,proc_ld,qult_event,cstatus);

del proc_ld blt(36), /•ld of process to
receive event signal•/

qult_event bltC70), /•name of channel to be
signaled•/

ptbptr ptr,
cstatus bltClS);

The Attachment Module takes the following steps In response to
this call:

1. Check the validity of the call. If the current validation
level of the caller Is higher than the validation level of the
caller of the original attach call for the DSM, set bit 8 of
~status and return.

2. If either proc_ld or qult_event ts zero, set lcb.trap_quits
OFF and return.

3. Store proc_ld In lcb.qutt_ld.

4. Store qult_event In lcb.qult_report_event.

,. MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 23

,-,, s. Set lcb.trap_qults ON.

6. Return.

Hangyo Reoortlng

In order to allow processes to be signaled when a hangup occurs
on a device, there Is a special "trap_hangup" order call. In
response to such an order call, a DSM makes the following call to
the Attachment Module:

call attm$trap_hangup(pibptr,proc_ld,hangup_event,cstatus);

del proc_ld blt(36),
hangup_event blt(70),
plbptr ptr,
cstatus blt(l8);

In response to such a call, the Attachment Module takes the
following steps:

1. Check the validity of
the ~aller Is higher than
the original attach call,
,statys and return.

the ca 11 • If the va 11 datI on
the validation level of the
reject the call by setting

level
ca 11 er
bit 8

of
of
of

2. If either proc_ld or hangup_event Is zero, set
lcb.trap_hangup OFF and return.

3. Store proc_ld In lcb.hangup_ld.

4. Store hangup_event In lcb.hangup_report_event.

s. Set lcb.trap_hangup ON.

6. Return.

Call to Get Reclstrv File Name

The following call Is used by the DSM to find the name of the
Registry File with the highest level number for this toname:

call attm$get_rf(plbptr,type,name,cstatus);

del type char(32),
name char(32),
cstatus blt(18);

/•type of the RF•/
/•name of the RF•/

The following steps are taken ln response to this call:

.. ,

MULTICS SYSTEM-PROGRAM~ER'S MANUAL SECTION BF.2.23 PAGE 24 · ,

1. If plb.typename Is equal to lcb.dsm_rf_type, then set ~
lcb.dsm_rf_type and namA • lcb.dsm_rf_name and return.

•

2. Otherwise, look through the up array of the RF with type
lcb.dsm_rf_type and name lcb.dsm_rf_name for an uptype equal to
plb.typename. If one Is found, store the uptype In~ and In
lcb.dsm_rf_type, store the upname In ~ and In lcb.dsm_rf_name,
and return. If no such uptype Is found, set bit 9 of cstatys and
return.

Cleanyo Internal Procedyre

The cleanyp procedure Is called to restore the RFs to their state
before attachment was started, to release reservations of
devices, unload devices, and destroy private DMPs. The following
call Is made to this routine:

call cleanup(lcbptr,bdlsp);
del lcbptr ptr,

bdlsp blt(72);

It Is convenient to define a few temporary variable:
TRACEDOWN, TEMPLINK, DOWNTYPE, DOWNNAME (array),
DOWNSLOT, which are copied out of a Registry File
attempt Is made to delete lt.

LOOKONLY,
NDOWN, and
before an

The following steps are taken In response to the cleanyo ca11: ~

1. Find the Registry File with type equal to lcb.dsm_rf_type and
name equal to lcb.dsm_rf_name. Otherwise, go to step 3 •

2. If the UNLOAD disposal mode Is specified In bdlso and If
TEMPLINK Is ON, then store blanks In the up(OOWNSLOT).uptype and
up(DOWNSLOT).upname entries of the new RF.

3. Store zero In the ln_use_sw In the RF.

4. Set TRACEDOWN equal to
rf. at t_t ypes (rf. pre sen t_t ype_l ndex·). t race_down. Set LOOKON LV
equal to rf.att_types(rf.present_type_lndex).look_only. Set
DOWNTVPE equal to rf.att_types(rf.present_type_lndex).down_type
and set DOWNNAME equal to
rf.att_types(rf.present_type_lndex).down_name. Set TEMPLINK
equal to rf.temp_llnk and set DOWNSLOT equal to rf.down_slot.

5. If the RELEASE disposal mode Is specified In bdlsp and If the
allocate bit In the RF Is ON, then make the following call to
deallocate the device:

call de_alloc$resource(rf.devlces(1).resource_name,cstatus);

If cstatys Indicates that the device Is no longer allocated to ~
this user, go to step 11.

!

"'""

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BF.2.23 PAGE 25

6. If the UNLOAD mode Is specified In bdlso, attempt to delete
this resource from the system by the following call:

call loam$delete_resource(rf.alloc_type,
rf.devlces(1).resource_name,cstatus);

Ignore the value of cstatus.

7. If NDOWN Is equal to 1, go to step 8. Otherwise, If
less than 1, go to step 11. If It Is greater than 1 and
RELEASE disposal mode Is specified In bdlsp, then
following for each of the NDOWN elements of DOWNNAME.

a. Find the RF with the given type and name.

NDOWN ts
If the
do the

b. If the allocate bit In the RF Is ON, call
de allocSresoyrce (see step 5 above).

Go to step 11.

8. If TRACEDOWN Is OFF or If LOOKONLY Is ON, go to step

9. Find the RF wl th type DOWNTYPE and name DOWNNAME(1).

10. Go to step 2.

11. If a private DMP was created Cl.e., lcb.prlvate_dmp
call the central supervisor to destroy the DMP.

12. Return.

summary gf Cstatys iliA

1 Inaccessible or non-existent Registry File
2 Unlinked or Improperly linked Registry File
3 Unavailable device
4 Attachment of DCM failed
5 No such~ In att~types array of Registry File
6 No diverted path to rever\
7 Attempt to revert or divert a presently diverted path

11.

Is

8 Validation level too high for trao cults or trap hangyp
calls

9 No Registry File with proper type found for get rf call
10 Bad ~ or ~
11 System bug
12 Bad argument

ON),

