
' I~

-·
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.26

Pub 1 ished:
(Supersedess BF.2.26:

Identification

The 1/0 Assignment Module
R • C • 0 a 1 e y, S • I • Fe 1 dma n

pyrpose

PAGE 1

01/10/68
08/14/67)

This section describes the design of the 1/0 Assignment Module
<lOAM) and Its prlnlcpal data bases, the 1/0 Assignment Tables
(IOATs). The lOAM Is the module of the hardcore supervisor
through which any request to assign an 1/0 device or detachable
medium (e.g., tape drive, tape reel, GIOC channel) must ultlmate1y
be directed. Requests for assignment are accepted only from
procedures of the hardcore supervisor, principally the Resource
Assignment Module (see BT.l.Ol). The main function of the lOAM Is
to maintain a record of all current 1/0 assignments and to make
Information concerning these assignments available to certain
modules of the hardcore and administrative rings.

Iha Registry Files .and. lJl.e. .Ll.Q. Assignment Tables

Associated with every 1/0 device or detachable medium known to a
system Is a file containing Information about the device and Its
connections with other devices. These files are used by the 1/0
system and are accessed by the 1/0 Registry File Maintainer (see
BF.2.22) and the Attachment Module (see BF.2.23). These files are
organized Into type directories which are In turn Immediately
Inferior to the Registry file directory (path name >rfd). If a
user Is permitted to allocate a particular device to himself, he
has read access from the administrative ring for the corresponding
Registry File (RF). If he Is the present assigned user or control
user for the device, he also has write access to the file.

In each Registry File type directory, there Is a special file
called the 1/0 Assignment Table (IOAT). This segment Is normally
accessible only from the hardcore ring. The type directories
themselves are writable In the hardcore ring for all users who may
allocate a device of the type associated with the directory.
(Some special system users have write access to the type
directories and the IOATs from the administrative ring.) When a
user becomes the assigned or control user for a device, the lOAM
gives him the proper access attributes for the RE. When he loses
his status as assigned or control user for a device, this acces$

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.26 PAGE 2

permission Is removed.

The RFs are accessed using the type and name (entry name In the ~
type directory) of the file. For user convenience, these RFs will
probably have several names. The RF contains, among other things,
an array of resource names associated with the device. (It Is
possible for a group of "devices" to be considered as a single
device. For example, a full-duplex typewriter connection requires
two GIOC channels connected to a single data set. The pair of
channels will be considered to be a single device, although there
will be two resource names, one for each channel.)

The 1/0 Assignment Table segments are declared as follows:

del 1 ioat based(p),
"
"
"
" II

2 lock bit(l08),
2 type char(32),

II

2 normal fixed bin,
II

2 free fixed bin,
t1

2 vacant fixed bin,
II

"
2 highest fixed bin,

II

2 max fixed bin,
II

2 auto_free blt(l),
" II

2 resources(MAX),
3 resource_name char(32),
3 asslgned_user char(50),

" II

3 control_user char (50),
"
II

"
3 rf_name char(32),

II

II

3 temp bit(1),
"

3 next fixed bin;

/*1/0 Assignment Table, one per
Registry File type directory,
accessible from hardcore ring only
In most process groups. The IOAT
Is the data base of the 1/0
Assignment Module (see BF.2.26)*/

/•standard lock*/
/•name of type directory In

which file resides•/
/•Index of first element of resource

array of devices not In the free pool*/
/•Index of first element of resources

array of resource In free pool*/ ~
/•Index In resources array of

first element of vacant list.
Initially zero.*/

/•Index of last element of re$ources.
Can be extended up to max•/

/•largest possible subscript of element
In resources array•/

/•If 1, a resource that Is unassigned
Is to be automatically freed (put
on free list)•/

/•name of resource to be allocated•/
/•user to whom resource Is presently

assigned. If unassigned, set to
blanks*/

/•user who Is assigned to control
device. May be changed by assigned
user. Initially equal to
asslgned_user*/

/•entry name of Registry Ftle In
thts directory associated wtth this
resource•/

!•If 1, destroy this entry and associated
files when resource Is deallocated•/

/•Index of next element of resources ~

. r-

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.26 PAGE 3

" array. Zero for last entry•/

The "assigned" user of a device Is the user to whom the device Is
presently assigned. The "control" user of the device Is the user
which has permission to physically control the device. When a
device Is assigned, the control user Is set equal to the assigned
user. The assigned user may change the control user of the device
at any time. For example, the assigned user of a device may give
a Universal Device Manager Process permission to control a device.

The elements of the resource array are chained together using
Indices (stored In the "next" Item In the element of
loat.resources) of elements of the array. There Is also a vacant
list of Items not presently being used. When a resource Is to be
added to the table (by a call to loamScreate resoyrce) and the
vacant list Is empty, loat.hlghest Is Increased by 1 (unless
toat.hlghest Is already greater than or equal to toat.max, In
which case the segment has overflowed and there probably Is a
system bug.)

Calls lA !h4 llQ Assignment Module

There are eight calls to the lOAM.
these calls and a declaration of
description of these calls follows.

The following Is
the arguments.

call loam$asslgn(type,resource_name,cstatus);

a
A

call loam$unasslgn(type,resource_name,force,cstatus);

call loam$allocate(type,resource_name,cstatus);

call loam$free(type,resource_name,cstatus);

list of
detailed

call loam$set_control(type,res9urce_name,user_ld,cstatus);

call loam$get_asslgnment(type,resource_name,user~Jd,cstatus);

call loam$check_asslgnment(type,resource_name,cstatus);

call loam$delete_resource(type,resource_name,cstatus);

del type char(•),
resource_name char(•),
user_ld char<•>,
force blt(l),
cstatus blt(l8);

loamSasslcn

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.26 PAGE 4

Whenever a device or medium Is assigned by the Resource Assignment
Module, the lOAM Is Informed by means of the following call,
accessible only from the hardcore ring: ~

ca 11 I oam$ass I gn (type, resou rce_name, cs ta tus);

In response to this call, the following steps are taken:

1. Set cstatys equal to zero.

2. If the present user does not have wrIte access from the
hardcore ring In the type directory with name~, set bit 6 of
cstatys and return.

3. If the present user does not have write permission from the
hardcore ring In the IOAT tn type directory~~ set bit 5 of
cstatys and return.

4. Lock the IOAT by means of a call to the ILOCK routine (see
BG.15).

5. Search the normal and free lists of the IOAT for the resource
with name resoyrce name. If none ts found, set btt 1 of cstatus
and go to (11).

6. If the present user does not have read permission
caller's ring for the file with name rf_name In
directory, set bit 7 of cstatys and go to (11).

from the
the type

7. If the present assIgned user of the resource Is the present
user, set bit '4 of 'statui and go to (11).

B. If the present assigned user Is neither blank nor the current
user, set bit 11 of Citatus and go to (11).

9. Store the present user ld In both asslgned_user and
control_user In the IOAT entry.

10. Give the present user permission to write from the
administrative ring In the RF with name rf_name In directory !l!.R.c.·
If the element of Joat.resource was found on the free list, remove
lt from that list and place It at the head of the normal list.

11. Unlock the IOAT and return.

IoamSynasslgn

The following call Is supplied to change the status of a device
from assigned to unassigned. There is an argument that tells the
lOAM whether It should unasslgn the device regardless of present
assignment or only If the present user is the assigned user of the
resource. The call may be made only from the hardcore ring except . ~
In certain privileged process groups, which may call this entry ~

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.26 PAGE 5

point from the administrative ring.

ca 11 I oam$unass I gn (type, resource, force, cs ta tt.Js);

In response to this call, the following steps are taken:

1. Set cstaty~ equal to zero.

2. If the present user does not have write access from the
hardcore ring In the type directory with name~' set bit 6 of
cstatys and return.

3. If the present user does not have write permission from the
hardcore ring In the IOAT In type directory ~, set bit 5 of
cstatys and return.

4. Lock the IOAT by means of a call to ILOCK.

5. Search the normal list of the IOAT for the resource with name
resoyrce name. If no such name Is found,set bit 1 of cstatus and
go to 12.

6. If the present asslgned_user Is blank, the resource Is already
unassigned, so set bit 2 of cstatys and go to 12.

7. If the present ass I gned_user Is neIther b 1 nak nor the present
user and the for,e switch Is OFF, set bit 11 of ,status and go to
12.

8. Removi the present assigned user's write permission to the RF
associated with the resource.

9. If the present control user Is not the same as the present
assigned user, remove the control user's write permission to the
RF associated with the resource.

10. Store blanks In the asslgned_user and control_user of the
block of the IOAT. ·

11. If loat.auto_free Is ON, remove the block from the normal
list and thread It onto the free list.

12. Unlock the IOAT and return.

I oamSa 1 1 0"1 te

Whenever a user wishes to allocate a device of a given type from
the free pool, the following call Is made by the Resource
Assignment Module:

ca 11 I oam$a 1 1 ocate (type, resou rce_name, cs ta tus);

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.26 PAGE 6

This call may be made only from the hardcore ring. In response to
this call, the following steps are taken: r

1. Set cstatus equal to zero.

2. If the present user does not have wrl te access from the
hardcore ring In the type directory with name ,U,Qe,, set bit 6 of
cstatus and return.

3. If the present user does not have wrIte pe rml ss I on from the
hardcore ring for the IOAT In directory~' set bit 5 of cstatus
and return.

4. Lock the IOAT by means of a call to ILOCK.

5. If loat.free Is zero (free pool empty), set bit 8 of ,statys
and go to (11).

6. If the present user does not have read permission from the
caller's ring for the RF associated with the first resource In the
free pool, set bit 7 of cstatys and go to (11).

7. Remove the first element of loat.resources threaded on the
free list and thread It at the head of the normal list.

8. Store the ld of the present user In both asslgned_user and
control_user In the IOAT entry handled above.

9. Give the present user permission to write from the
administrative ring In the RF associated with the resource
discussed above.

10. Return the name of the resource allocated In resoyrce name.

11. Unlock the IOAT and return.

loamSfree

When It Is necessary to force a resource onto the free list, the
followl ng ca 11 Is made:

ca 11 I oam$ free (type, resou rce_name, cs tatus);

This entry point Is normally accessible only from the hardcore
ring. Certain privileged users will be able to make this call
from the administrative ring. For example, the tape librarian
will be able to put a tape back In the free pool.

The following steps are taken In response to this call:

1. Set cstatys equal to zero.

~

r--

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.26 PAGE 7

2. If the present user does not have write access from the
hardcore ring for the type directory with name~, set bit 5 of
cstatus and return.

3. If the present user does not have write permission from the
hardcore ring for the IOAT In directory~, set bit 6 of cstatus
and return.

4. Lock the IOAT by a call to ILOCK.

s. Search the free list for the given resource. If found, go to
(9).

6. Search the normal list for the given resource. If not found,
set bit 1 of cstatys and go to (9).

7. If the resource Is found but the assigned user Is not blank,
set bit 9 of cstaty§ and go to (9).

s. Otherwise, remove the resource block from the normal list and
thread It on the free list.

9. Unlock the IOAT and return.

loamSs$t s;ontrol

If the assigned user of a device wishes to give a user permission
to control a resource, the following call Is made:

call loam$set_control(type,resource_name,user_ld,cstatus);

This call may be made from the hardcore and administrative rings.
In response to the call, the following steps are taken:

1. Set s;statys equal to zero.

2. If the present user does not have write access from the
hardcore ring for the type directory with name l..XQc., set bit 6 of
cstatys and return.

3. If the present user does not have write permission from the
hardcore ring for the IOAT In directory~, set bit 5 of s;statys
and return.

4. Lock the IOAT by a call to ILOCK.

5. Search for the resource with name resgyrs;e name In the norma1
list. If none Is found, set bit 1 of cstatys and go to (10).

6. If the present user Is not the assIgned user of the resource,
set bit 2 of cstatys and go to (10).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.26 PAGE s·

7. If the present control_user Is neither blank nor the assigned
user, remove that user's write permission to the associated RF.

8. If yser ld Is neither blank nor the present asslgned_user,
give that user write permission for the associated RF.

9. Store yser ld In control_user.

10. Unlock the IOAT and return.

loamSget assignment

The following call Is supplied to allow the control user to find
out the assigned user of a resource. (This call Is Intended for
use by the Dispatcher, see BF.2.25). The call may be made In the
hardcore and administrative rings.

call loam$get_asslgnment(type,resource_name,user_ld,cstatus);

If cstatys Is zero upon return, this user Is the control user of
the resource; otherwise, he Is not. In response to the ca11, the
following steps are taken:

1. Set cstatys equal to zero.

2. If the present user does not have write permission In the IOAT
In directory~, set' bit 5 of cstatys and return. ~

3. Lock the IOAT.

4. Search
resoyrce name.

the normal list of resources In the IOAT for
If not found, set bit 1 of cstatys and go to (7).

5. If the present user Is not the control user of the resource,
set bit 3 of cstatys and go to (7).

6. Otherwise, set yser ld equal to the asslgned_user for the
resource.

7. Unlock the IOAT and return.

lgamScbeck assignment

The following call Is supplied to enable a user to find out
whether he Is the assigned user of a device. The call may be made
from the hardcore and administrative rings.

call loam$check_asslgnment(type,resource_name,cstatus);

If cstatys Is zero upon return, the user Is the assigned user of
the device; otherwise, he Is not. The following steps are taken 1
In response to this call: ~

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.26 PAGE 9

1. Set cstatys equal to zero.

2. If the user doe:; not have write permission In the IOAT from
the hardcore ring, set bit 5 of cstatys and return.

3. Lock the IOAT.

4. Search the normal list In the IOAT for the given resource. If
no such entry Is found, set bit 1 of cstatys and go to (6).

s. If the present user Is not the assigned user of the resource,
set bit 2 of cstatus.

6. Unlock the IOAT and return.

loamScreate resoyrce

The following call Is made to create a Registry File and to add a
resource to the appropriate IOAT:

call loam$create_resource(type,resource_name,name,
r temp,cstatus);

del temp blt(1),
name char(*);

The call may only be made by certain prlveleged users, such as the
tape librarian and the typewriter universal device manager process
group. In response to this call, the lOAM takes the following
steps:

1. Set cstatys equal to zero.

2. If the user does not have write permission for the type
directory with name 1XQ&, set bit 6 of cstatys and return.

3. If the user ~oe$ npt have write permission from the hardcore
ring In the IOAT In the type directory, set bit 5 of cstatys and
return.

4. Lock the IOAT by a call to ILOCK.

5. Search the IOAT for a resourcw with name resoyrce name. If
one Is found, set bit 12 of cstatys and go to (11).

6. Search the type directory for a file with name~·
Is found, set bit 12 of cstatys and go to (11).

If one

7. If there Is no file with name "prototype•• In the type
directory, set bit 13 of cstatus and ·return.

~- 8. Otherwise, add an entry to the normal list of the IOAT for the
new resource, and store resoyrce name In that entry. Set the temp

•;

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.26

bit In that entry equal to lAmQ. Store nama as rf_name,
both the assigned and control user of the resource
blanks.

-.
PAGE 10 ·

and
equal

set
to

9. Create a file In the type directory with name namA, and
initialize it by copying the prototype file Into the new RF.
Store resource name as rf.devlces(1).resource_name.

10. If there Is a f 11 e wl th name "prototype_ro" In the d 1 rectory,
add the name resoyrce name II "_ro" to the list of names for that
f 11 e.

11. Unlock the IOAT and return.

loamSdelete resoyrce

The following call Is proved to delete a resource from the system.
This deletion Involves removing the entry for the resource In the
IOAT, deleting a Registry File, and removing a name from a file In
the type directory. This call Is made by the Attachment Module
whenever the UNLOAD disposal Is specified on a detach call. The
resource will be deleted only if the user has write access to the
directory and to the IOAT from the caller's ring, or If the temp
switch Is ON for the resource In the IOAT entry. An examp1e of a
device with a temporary Registry File Is an IBM 1050, which does
not have sufficient hardware Identification to associate It
definitely with a particular machine. Therefore, a dummy file Is ~
created when the machine dials In by the 1/0 Registry File
Maintainer. The call Is:

call loam$delete_resource(type,resource_name,cstatus);

The following steps are taken In response to the call:

1. Set cstatys equal to zero.

2. If the user does not have write access to the IOAT from the
hardcore ring, set bit 5 of cstatys and return.

3. Lock the IOAT.

4. Search the normal and free lists for resoyrce name.
such entry ts found, set bit 1 of cstatus and go to (10).

If no

5. If the resource Is currently assigned to a user other than the
present user, set bit 10 of cstatys and go to (10).

6. If the current user has write access In the ~ directory
from the caller's ring or If the current user Is the assigned user
and the temp bit Is ON In the IOAT entry, go to (7). Otherwise,
set bit 6 of cstatys and go to (10).

,
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.2.26 PAGE 11

7. Delete the file In the~ directory with name equal to the
rf_name In the element of loat.resources.

8. If there Is a file with name equal to resoyrs;e name II "_ro"
In directory~~ delete that name from the file. If that Is the
the only name of the file, delete the file.

9. Remove the current entry In the IOAT from the thread In which
It resides and add the block to the vacant list.

10. Unlock the IOAT and return.

Symmarv gf'Cstatys .IU..U

1 resource_name not found In IOAT
2 resource not assigned to this user
3 user not control user of device ·
4 resource already assigned to this user
5 user does not have write access to IOAT

or IOAT does not exist
6 user does not have write access In type directory

or type directory does not exist
7 user not permitted to assign device
8 no available resource In free pool
9 attempt to free an assigned device
10 attempt to delete resource assigned

to a user other than the present user
11 resource assigned to other user
12 resource already exists
13 no prototype file
18 system bua

