
MULTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BF.20.08 PAGE 1

Publlsheda 08/03/67
(Supercedes: BF.2o.oa. 05/15/67)

Identification

Implementation of the I/O Table Compiler (IOTC) and the
I/O Command Translator (IOCT)
c. o. Olmsted

Purpgs~

This Implementation provides the compilers discussed in
BF.20.06. and BF.20.07.

Introduction

The IOTC and IOCT share 7 modules. These modules do the
reading of the Input files and the scanning and conversion
of the language elements. Errors and mnemonics are also
handled by the same routines. These modules are. therefore.
described first and in close detail.

The remaining modules are more specific to the IOTC and
IOCT and are very straightforward. By making standard
calls, they create the appropriate data bases and then
fill them In with the values gotten from the scanning
and conversion routines.

getflel~ (see flow chart)

The module which scans the input file and delivers "fields"
or elements of the statements is named "getfield''. Getfleld
Is called as a function of one argument. It returns a
character string. Thusa

chars • getfleld (nofleld)J

where "chars" Is character (100) and "nofleld" ls a label.
There Is a return to nofleld If there ls no field, I.e ••
if the last call to getfield returned the last element
of the statement. The string, chars, will be the next
delimited field in the statement, left justified and filled
with blanks on the right.

The input file is seen by getfield as a structure with
the declarationa

del 1 input_file based(p),
2 line char (4095)J

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.20.08

The pointer to it is "current$input_ptr" where current
is an external data base.

PAGE 2

The actual picking out of the field is done by maintaining
several indices or character pointers. Their functions
are diagrammed and described below.

character 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29)(, 31 32
count c d t 1 11 1 1 , 2 1 ,· NL f 1 d 1 0 0 11 1 1 6 · NL ' ,

' t

In the above diagram the first character of the statement
being scanned is pointed at by begin_stat. The last call
to getfield returned the field consisting of the 0 at
character 24. The first nondelimiting character of this
field is pointed at by i and the first delimiting character
after it is pointed at by j. Just before returning, first_char
is set to j+1 and points to the character where the scan
will begin at the next call. Initially both begin_stat
and first_char are 1. The character string that is returned
is

substr(current$1nput_pt~input_flle.line,l,min(j-1,100)).

If there is not a return to the label nofield then begin_stat
is set equal to begin stat_init which is 1 initially.
Whenever a semicolon Ts discovered, beglr. stat init is
set to point to the following character a .1 a signal is
turned on which will cause the next call 'return to
nof le ld. Thus begln_stat l s not updated L 1t i 1 the next
statement is actually being scanned.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.20.08 PAGE 3

After the next call to getfield the indices will be
arranged as below.

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1r f 1 d 1 0 0 f 1 1 , 6 t if v a 1 0

The second call will result in a return to nofleld1 leaving
the indices unchanged. Finally, the third call witl set
begin_stat to 32 and begin scanning the 11 val 11 statement,
returning with begin_stat = 32, i = 35, j = 38, and first
char • 39.

Getfield has a second entry named "washout". This entry
is called as

dummy_chars • getfield$washout(dummy_nofield)J

where dummy_chars, and dummy_nofield have the same attributes
as their counterparts ln the call to getfield. They are
included, however, only because EPL requires that all
entries have the same arguments and attributes. No character
string will ever be returned nor will any transfer to
the label be made. The purpose of this entry is to scan
over the remainder of a statement. Thus a call to
getfield$washout will return if the no field signal is
on or else position first_char and begin_stat_init one
character past the next semicolon and then return.

If either entry encounters an end of file, error 18 is
raised and the program terminates.

get_value

This module is called by the modules which evaluate the
various statement types. The calling se~uence is:

call get_value(binval, decval, binde error, nofield)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.20.08 PAGE 4

where the arguments have the following attributesa

binval
decval
bindec
error
nofield

bit (84)
fixed bin (17)
bit (1)
bit (2)
labe 1.

Get_value makes a call to getfield to get the next field
in the statement. If there is none. it returns to nofield.
Otherwise it examines the first character of the field.
If this is alphabetic, it calls lookup to evaluate the
mnemonic. If the character is a double quote it calls
blnary_value. Otherwise it calls decimal_value.

The values thus obtained are returned as followsa

field is field is field Is field is
decimal arg binary arg ill-formed undefined mnemonic

binval . 11 011 b the value II 011 b II Q'l b

decval .the value 0 0 0

bindec II 011 b II 111 b II Qll b II Qll b

error II OO''b 11 0011 b II 1 Q'l b "01"b

logkup

If the field is mnemonic get_value makes the call

call lookup(field. binval, decval, bindec, error)J

where field is the string returned by getfield (presumably
a mnemonic) and the remaining arguments are the same as
the ones in get_value.

Lookup scans through the menmonics dictionary which it
references by the pointer, current$mnem_ptr. If there
is no match then the mnemonic is undefined. When there
is a match, the corresponding value is picked out. The
arguments are returned as followsa

~'-'' MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.20.08 PAGE 5

field is field is field is
decimal mnem binary mnem undefined mnem

blnval II O"b the value II 011 b

decval the value 0 0

bindec "0'' b "1"b "011 b

error II 0011 b II OO''b 11 01"b

binary_value (see flow chart)

The call to binary_value has the forma

blnval = binary_value (field. error_rtn);

where field and binval are the same as in get_value and
error rtn is a label to which control is transferred if
the bTnary argument in field is ill-formed. Binary value
scans the argument and constructs the appropriate bTt
string. Its mechanism Is best conveyed by flow chart
(Figure 3). There are five reasons why binary_value may
return to error_rtn. The terminology is defined below.

binary argument "101011011 61
~~z

binary subfield position subfield

1. a binary subfield has more than 84 bits

2. a binary subfield has a character~ 0.1.

3. a position subfield has a nondecimal character.

4. a position subfield has 3 or more digits.

5. a position subfield > 83 or <length (binary subfield) - 1

decimal_value

This module is called by

decval = declmal_value(field. error_trn) 1

where decval and field are the same as . ' get_value and
error rtn is a label to which control i~ transferred if
field-is ill-fonned. The conversion fro. character to
number is done very simple-mindedly. Ea~h character from

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.20.08 PAGE 6

left to right is compared successively with o.1 •••• 9.
When a match is found the counting index is added to
10 times the previous1y accumulated value (initially 0).
If no match is found. then the error return is taken.

error _ms

This routine is called whenever an error condition is raised.

ca 11 error _ms(ercode)

The argument is a fixed bin (17) number which codes the
type of error. Error_ms writes in the error file a mesaage
of the form

error n in: statement

where n = ercode and statement is the character string
starting at begin_stat (see getfield) and ending with
a semicolon or the 105th character. whichever is sooner.

mnemonics

This is the mnemonic dictionary maker. It is implemented
as a command and executed independently of the IOTC or
IOCT. The dictionary itself is a structure declared as

del 1 mnem_dlct based{p) 1

2 dec_max fixed bin (17).

2 dec_name{60) char(31) 1

2 dec_va1(60) fixed bin(17),

2 bin_max fixed bin(17) 1

2 bin_name{40) char{31),

2 bin_value(40) b1t(84) 1

Mnemonics calls getfield to get a name. This is checked
to see that it is properly formed (error 35) (first character
alphabetic) and that it is not included in the dictionary
already (error 34). ·If these conditions· are satisfied.
get_value Is called and its returned val ~ is stored in
the appropriate place. If the value is ·1-formed (error 31)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.20.08 PAGE 7

or missing (error 33) the name is discarded. If the number
of entries has been exceeded (error 32) processing continues
because one mode only may have been filled. Since recursion
is not permitted. get_value may not. evaluate a mnemonic
argument. Thus for the mnemonics process the segment,
lookup, is replaced with a dummy routine which always
returns an "ill-formed" error, i.e., binval = "O"b,
decva 1 = 0, bi ndec - •• O"b, and error = 11 01 11 b.

When any name starting with "*" is encountered! then
mnem dict.dec max and mnem dict.bin max are filled in
and the program terminates: -

iotc

The main program of the IOTC is named "iotc" and serves
only as an initializer.

By calls to the supervisor iotc creates the edt segment
and gets pointers to it, to the input file, and to the·
mnemonics dictionary. The length in characters of the
input file is also found.

The temporary edt structures, temp tp and temp fld, are
automatic variables in iotc and are initialized there.
They have the same declarations as type and field respectively
(BF.20.03 p 4) except that the arrays are of fixed size
(SO). These structures hold the edt data until the number
of fields and values has been found. All entries are
set to zero except for temp_tp.nfld (= number of fields)
which is set to one.

When it is done, iotc transfers control to tabmak, passing
the temporary structures as arguments. When tabmak returns,
the routine terminates.

call tabmak (temp_tp, temp_fld)J

tabmak (see flow chart)

This routine picks up the keyword with a call to getfield.
It compares this with the known keywords. If a match
is found the appropriate statement proo~ssor is invoked.
If no match. error 1 is raised. If no t ,d of statement
has been encountered, the remainder of t e statement is
discarded by a call to getfield$washout. If an end of
statement has been found, control is tra• sferred directly
back to the beginning of tabmak to proces~ the next statement.

MUL TICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.20.08 PAGE 8

When an end statement (begins with"*'') is found. all
the temporary structures are stored into the edt (by a
call to cdts$store.q.v.). the unused portion of the edt
is truncated by a supervisor call. and control Is returned
to iotc.

As explained in BF.20.06. there are restrictions on the
reoccurance of edt op types. fie'ld numbers. and values
indices. To detect repetitions. lists are maintained
for each of these three indices. They are named "cdtx_on".
"fldx on". and "valx_on". respectively. Each is an array
of 1 bit switches which are set on when an index is encountered.

~

wash = cdts(temp_tp. temp_fld)J

The value returned is a 1 bit switch which ls 0 if an
end of statement is encountered and 1 othenwise. The
arguments are from tabmak.

First cdts calls get_value to pickup the op_type. This
is checked for errors and. if it passes. it is saved.
cdtx_on(op_type) ls set on. and the entry cdts$store is
called.

Cdts$store sets all fldx_on to zero. Then. except for
the first call when it returns. cdts$store does 4 things:

1. call field$store and set the field entry switch off

2. allocate storage in cdt.free and update the edt segment
size

3. store temp_tp ln cdt.free and reset temp_tp to zero

4. put the offset of the allocated storage in cdt.tpof.

After the return from cdts$store. cdts calls get_value
for the type value. checks this for errors and stores
the value in temp_tp. If there is an error in the formation
of the type value. zero is used.

fields

Fields handles the "fld" statements. Fi1st it checks
that a "edt" statement has occurred. If •'Ot (error 17)
control is returned to tabmak. Otherwise get_value is

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.20.08 PAGE 9

called to get the field number (index) and this is checked
for errors (errors 11, 3, 12, 13). If there is an error,
control is returned to tabmak. Otherwise the index is
saved, the fldx on(index) is set on, the index is checked
for largest yet-encountered and saved if it is, and field$store
is called.

The last entry is similar to cdts$store. First it resets
all valx_on to zero. Then, unless this is the first "fld"
statement after a "edt" statement in which case it returns,
it

1. allocates in cdt.free for temp_fld and updates segment
size

2. stores temp_fld in cdt.free and resets temp_fld to
zero,

3. puts the offset of the allocated storage in temp_tp.fldof.

After the call to fields$store1 there are calls to get_value
to pick up the field action, f eld and field mask. These
are all checked for errors (2,3,8,9,10) and stored in
the temp.fld stucture (zero is stored if an error is detected).
A value for field mask or an end of statement causes a
return.

The calling sequence is

wash = fiel~s(temp_tp, temp_fld);

values

This routine handles the "val" statement. It first checks
for proper sequence (ttfld'' statement must have occurred)
and if there is a violation (error 17) returns. Error
17 is also returned if the field action of the preceding
"FLO" statement (temp_fld.fldact) is not 1 (mask value
substitution). Otherwise, it calls get_value to pick
up the index and checks it for errors (4,5,6,7). If the
index is invalid, values returns. Otherwise it sets
valx_on(index) on and calls get_value for a value, checks
it for errors (2,315,6) and stores it in temp_fld.val(index).
The index is then ncremented by 1 and t~e above procedure
repeated until there are no more values i' the statement
or until the maximum index value (SO) is <Ceeded (error
5). If a value is ill-formed or undefine zero is used
in its place.

wash = values(temp_fld)J

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.20.08 PAGE 10

ioct

This is the main program for the IOCT. It serves as an
initializer. By means of calls to the supervisor it creates
a segment to hold the changes structures. Pointers to
this and to the mnemonic dictionary and input file are
also gotten. Another supervisor call gets the length
of the input file in characters.

The temporary changes structure is initialized to zero
except for the pointer which is set to null. After this
there is a call to decode from which there will be no
return.

decode

ca 11 decode J

A call to getfield picks up the first element of the statement
and examines the first character. If it is 11 / 11 the statement
is ignored. If it is "*" the program terminates. Otherwise
the field is checked to see if it is a proper label.
This means

1.

2.

3.

4.

first character alphabetic]

remaining alphanumeric or "-"

not already used

< 31 characters

error 41

error 39

error 40

If any of the first 3 are violated the statement is ignored.
If the fourth# the first 31 characters are used.

Once a proper label is gotten there is a call to get_value
to pick up the op type. This is also checked for errors
(42#43!44,45,56) and, if any occur# the statement is ignored.
Otherw se the op type is saved and the remainder of the
statement is processed by a call to changes.

changes

ca 11 changesJ

This routine processes the field! value! ~~irs. They
are pulled in sequentially by calls to get .. value and checked
for errors. E,rrors in a fie ldi (error 46,47 ,48#49#55)
cause that field! and its value! to be ignored. Errors

MULTICS SYSTEM-PROGRAMMERS' MANUAIL SECTION BF.20.08

in a valuei (Errors 51.52,59) cause it to be set to zero
except error 50 which causes it to be set to the first

PAGE 11

24 bits. These pairs are stored :ln the temporary structure
until the end of the statement is encountered~ Then a
call to store is made. If, however. there are no (error
free) fieldi valuei pairs, then this call is omitted and
control is returned directly to decode.

store

ca 11 store;

Store adds the appropriate number of words to the changes
structure segment and gets a pointer to the beginning
of this new block of storage. Thls pointer is set up
in the linkage section as an external with name= label.
Using this pointer, the temporary structure is stored
into the segment and the temporary structure and used
ffeldi list are reset to zero.

MULTICS SYSTEM-PROGRAMMERS' MANUAL

begin_stat_init
and first char
are initially=l

egin_stat=begin_statg
init

i = first-char

SECTION BF.20.08 PAGE 12

Call
enor_ms(l8

length of input
segment in characters

irst c.•ar=

'begin stat init=
-j+l-

er.d stat = 1

begin stat init i
= first c'Fiar r

Yes !first c}ar=i+l

Figure 1. getfield

MULTICS SYSTEM-PROGRAMMERS~ MANUAL

ON

begin_stat=begin stat
inTt;

i • first char

char•itp character

first char • 1+1
begin:stat in1t •

No •

Figure 2. getfieldSwashout

SECTION BF.20.08 PAGE 13

1 • i+l

MULTICS SYSTEM•PROGRAMMERS' MANUAL SECTION BF.20.08 PAGE 14

j,• numerical
value of char

...

No

char•(i+l)t character
call decode;position•j

t position-posiuor
*10 + j

call decode

onesw • 0

Figure 3. blnary_value

Yes

Insert binary ~lue in output stri ~ at
position.

MULTICS SYSTEM-PROGRAMMERS' MANUAL

iotc

wash •
cdts

Build edt segment.
get pointers to it,
'mnem diet!' and
"inp'ii't file". find
length-of+ and

initialize

Call getfield;
his sfiould be
the

wash •
fields

Call
getfield.wa~hout .

Figure 4 •. iotc and tabmak

SECTION BF~20.08

Call
enot_ms(l)

wash •
values

PAGE 15

