
TO:
FROM:
SUBJECT:
DATE:

MSPM o·i stribution
D. R. ltJidrig
BF.20. 10
12/01/67

The revisions in this document correlate latest GIM changes.
Major changes have been m·ade to the ''define$channe1" call irig
sequence and associated interface description. Minor
changes have also been made to several GIM data bases,
notably the LCT.

MUL TICS SYSTEM-PROGRAMMES',S' fv1ANUAL S~CT!t~i< SF .20.1(} P/\GE 1

PLblished: 12/01/67
(Suoersedes: s~. 0 ~. 1 D, D7/~S/67)

Identification

GIM - Setup and ~ousekeeping
D. R. Widrig and s. D. Dunten

Purpose

This section is part 2 of the complete descr!p:!o~ of
the G Ifv1: see BF • 2 0. 02. ·

Initial Device Se.tup - define$channe1

In order to prepare the GIM to use a particular device,
the DIM writer makes the following call:

call define1;channel (device_n~me, device~index, event_id
crtn);

where the arguments are defined as follows:

device_name char (*)

event id bit (70)
deviceindex fixed bin(17)
crtn bit (36)

I* index of device in OCT (See
BF 03.10) -,':/

I* event channel ID *I
I* user device tag */
I* standard GIM error return

word ~~I

The intent of the define$channel call is to condition
the GIM to accept further calls necessary to operate the
indicated device in any mqnner the DIM writer sees fit.
Upon receiving the define$channe1 call from a DIM, the
GIM sets up the most important housekeeping mechanism
for this device, the Logical Channel Table.

The Logical Channel Table (LCT) is a per-device structured
segment containing qll information relatin;1 to a DIM's
lists, hardware channel status, Class Driv1ng Tables allowed,
GIOC to be used,~. It has the following per-device
declaration:

I* Declarations for the Logical Channel Table *I

de 1 1 let based(p),
2 edt ptr ..
2 cdtnl(3 I* n edt names

*I) char(321 - .·

I* logical channel table *I
I* ptr to Class Driving Table *I
I* list of good COT names *I

MULTICS SYSTEM-PROGru\MMERS' MANUAL SECTION 8Fo20,10 PAGE 2

2 giocno fixed b~n(17),
2 phychn fixed b5n(12),
2 conno fixed bir·(17),
2 statmap(4), bit(3),
2 s t l PW bit (72),
2 dir chan bit(1),
2 fstitat bit(18),
2 1ststat bit(18),
2 copid fixed bin(12)(
2. copidx fixed bin(12;,
2 copbtc fixed bi1(18),
2 spare fixed bin(17),
2 aux(2),

3 auxid fixed bin(12)(
3 auxidx fixed bin(12;,

3 auxend fixed bin(12),

3 auxcpd bit(1),

3 1 ate bit (1) ,
2 n1st fixed bin(12),

2 lst(10 /"~• max_l ists ~~;)
ptr, ·

2 free area((14336));

del max lists fixed b:in(17)
ext-static;

I* GIOC identification number*/
I* physical channEl number/2 */
/* connect chan~el number */
I* Physical stat c~anne1 mao *I
;~r saved LPW for status checks ;rf
I* ON If direct channel */
I* offset of first status frame *I
1~r offset of last status frame -:,;
I* Id of latest data move *I
1-,1: index of latest -:iata move -,1:1
I* number of bits m)ved */

/?'r array of auxi 1 iary 1 ist info -,r;
I* id ~nd index for which an *I
I* .. au~iliary list is

maintained */
I* first inde~ not c6vered by

oatch -,'::/ ·
I* " 1" b if a ux i 1 i a rv 1 is t is

·copied -,~:1
I* on if patch not taken *I
I* total number of operation

Hsts ,~:I

I* list status ptr ~rray *I
I* free storage area */

· ;~·~ tot a 1 a 11 owab 1 e lists per
LCT ·*I

The GIM's initial task upon r~ceiving the define$channe1
call is to establish a Logical Channel Table (LCT) for
the indicated device by appending a branch for the LCT
in the· GIM .. s directory, ''>io". The name of the branch .
is formed by concatenating the device index, "device_index"~
(converted to a character string) with a secondary name
of". let"~ The device index is found by inspection of
the entry in the bevice Configuration Table (PCT) corresponding
to "device_name''. A call to checl<$device_name wi 11 supply
the above relationship.

EXAMPLE

Suppose that the first entry in the system-wide Device
Cohfiguration Table (OCT) indicated that:

dctp

dctp

dct.desc(1).device_index ~ 3308
and

dct.desc(1).dev_nam = "my_device"

MUL TICS SYSTEM- PqQGRArJIMERS .. MANUAL SECTION s:~ .20 .. 10 PAGE 3

Then Q ca11 to def!ne$channel with device name :::; "my <.;iev5.ce"
would resu1t in ::he estab1l.shing o"- a segment named rr3-3CS. let"
in the directory "root>system_root>:i.o.

The segment so e~.tabUshed is pageable and has the READ,
WRITE, and APPEN[attributes. · E~rors ·in establishing·
the segment inc lL;d(,?. i 11 ega 1 DCT index, "badca 11 11 , and
segment has alrec:~dy been established_, "badseq11 • Error
bits are set in the standard manner as described in BF.20.05,
Errors Detected b the GIOC Inte~face Module. Assuming
no errors · n estab 1i sh ng the L. T, the G lMCont i nues by
initializing device dependent material within the LCT.

Using entries found within. the Device Co. nfiguration·Table
(OCT) for this device, the GIM c9pies the following data
into appropriate areas within the LCT: ·

a) List of allowable COT names for this device

b) GIOC number of this device

c) GIM channel number for this device. The GIM
channel number of a particular device is always
half the physical channel number of the list
cha~nel for th~t device. This is because the GIM
treats the data and list channel for a device as
a s i ng 1 e · 1 ~ chan ne 1" • · · · ·

d) The symbolic connect channel number to be U?ed
when i~suin~ connects to ·this device.

e) The status channel mapping for this device. Status
channel mapping is; explained in the later section
entitled Generation of DCW's.

After copying in the above data, the GIM indicates that
no Class Driving Table (COT) has been selected yet. The
entry '' lct.cdt" is set to null indicating no valid COT
exists. ·

Upon completion of the above tasks, the GIM has initialized
the m~jor bookkeeping segment, the LCT, for a particular
device attached to the Multics configuration.

MULTICS SYSTEM-PROGR.L.MMERS' MANUAL SECTION BF .20, 10 PAGE 4

Selecting a Class D,riving TabJe .. de-Fine$class

After a device has been established via the define$channel
6al1, the DIM must further set up the log~cal chan~~l
table (LCT). The DI~.makes the following cvl1:

call define$class (device_index, class_id, rtnc);

where the arguments are declared a? follows:

device"'..! ndex f ixe9 bi"n (17)
class_1d char (*) ·

rtnc bit (36)

I* user device tag *I
I* primary name of Class

b riving i able ~·~I
1~·, standard GIM error return

word ~··1

In the same manner outlined in the define$channel ca11,
· define$class again seHks out the pointer to the LCT associated
ith the device indicated by "device_index" 0 The ca1l ·
to the file system entry "estblseg'' should return with
an error indicating the LCT segment is already establishedo
(If this is not the case, then the DIM did not precede
the call to define$c1ass with the ca11 to s~up the LCT,
define$channel. The GIM sets the error "1ctnf11 to indicate
that the LCT was not foundo) ·

Having verified the LCT, a check is made to insure that
a Class Driving Table (COT) has not already been assigned
via a previous call to define$c1asso If the COT pointer,
"lct_cdt'', is not null, a previous call was successfully
made and error "badseq" is set indicating this call is
out of sequenceo Assuming that the COT was not previously
assigned, define$c1ass proceeds by calling the traffic
cont ro 11 er entry '' dstm$get_:.route'' (See MSPM 80.6. 07) to
get the relationship between the user device tag, "device_index",
and the logical channe·l number, 9. GIM bookkeeping numbero
Illegal device indices re!)ult in the error "baddev" being
set. Both the LCT seoment number and "device index" are
stored in the appropriate logical channel slot in the
Channel Assign~ent Table (CAT) for future reference.
The logical channel number is stored in the CAT slot for
the proper GIOC -and physical channel to facilitate the
relating of interrupts on a particular channel and GIOC
t6 a certain logical channel.

Having entered the necessary bookwork !nto the CAT~ define$c1ass
proceeds by ma.tching the offered COT name, ''class_id",
against the list of allowable names contained within the

,_.,
I

MULTICS SYSTEM.,. PROGRAMMERS' MANUAL SECTION t:F.20.10 PAGE 5

LCT. If "class id" ·does not match any name, 1he error
"cdtvol" is ;;et"""indicating a COT violationo t.ssum1ng
a m~tch, a sma11 amount of LCT housekeeping is performed.
Spe.::ifica.'lly, "ict.fststat", ''1ct,.1ststa.t", and 11 lct.st1pw"
are zeroed. All the pointers to the H.st area are set
to nullo Finally,· the list ar~a is initialized for subsequent
a 11 oca t ions •

A search in the GIM's directory for the indicated COT
is now madeo The COT is established by concatenating ·
''class id" with.~ secondary name·of ".edt" and establishing
this segment in the GIM hierarchy branch via a call to
the file system entry estblsego A successful establishment
of the COT segment. stores the pointer to· the segment in
"1ct_cdt1'. Failure to establish the segment results in
the error "cdtnf" being set indicating the COT was not
found. Note that several define$class calls may be done
until a proper COT is established.

Upon successful completion of the define$c1ass call, the
DIM has completed the mandatory sequence of calls necessary
to use a particular device. From this point on, the user
may make the rem~tining GIM calls in essentially any order
or number. ·

·.;.l''· ..

MULTICS SYSTEM-PROGRAMM~RS'.MANUAL SECTION s.: .20.10 PAGE 6

Defining a Li.~.} - define$1ist

Having previously set up a device for use via ·::he define$channel
and defi ne$c 1 ass ca 11 ,. the. DIM is now free to create,
edit, and delete any reasonable number c:>f I/O requests
to the GIM. To ,;tssist the DIM writer in his operations,
it will be found convenient to group.his req~ests into
certain user-defined areaso Fo~ instance, the DIM writer
might see fit to think of the 1/0 necessary to turn on
a 1050 proceed Hght as a single logical opera+,ion composed
of several GIOC ~nstructions. To assist the o:M write~
in organizing his concepts, the GIM requires that the
writer define lists. These lists may be of any reasonable
number and length.· Most of the I/0 requests to the GIM
center around the notion of creation and editing of items
within a list. Thus a DIM writer may see fit to def~ne
a l~st wh~is to contain the necess~ry items for turning
a 1050 proceed light on. Whenever he wishes to turn the
1 ight on, he ther1 instru~ts the GIM to perform the ope rat ions
within that list. We s.hall discuss the editing and activation
of lists in the following sections; at issue here is the
list definition.

The DIM creates a 1 ist via the following call:

call define$1ist (id, device_index, lgth, lrtn);

where the argu~ents are defined as follows:

device index fixed bin (17)
id bi t-(24) . .
lgth fixed bin (12)

lrtn bit (3f?)

I* ~ser device tag */
I* list ID returned to user *I
I* maximum number of items

in list *I ·
I* standard ~rror return word *I

Oefine$1ist proceeds by verifying the user device tag,
"device_index", by calling check$device_index. If "device_in9ex"
is valid, check$device_~ndex returns with the logical
channel number af]d a po1nter to·the proper ~CT. An il]e~al
"device index" w111 return with error ''baddev11 set. S1m1larly,
if the LCT has not been completely established via a call
to define$class, the error "lctnf'' wi 11 be set. Assuming
nb problems, define$1ist tries to establish a new user ·
list via a call to change$dfl, the main list alloc~tor.
Possible errors include only the case of no more l1st
space available for definitions. This causes the setting
of error "tmlst". Assuming success in the list definition,
.the list ID is fabricated. The list ID may be viewed

.,. /l.. .,.

I~

MUL TICS SYSTEM-PROGRAMMERS"' MANUAL SECTION E.F.20.10

as a kind of "1aundry tickettt which the DIM must keep
and present when~ver reference to that particular list

PAGE 7

is made. It is the .Q.DJ..'i. key to a given 1 :tst and, if lost
or destroyed, wi11 hav~ the effect of removing a list
from the DHV!'s manipulation. The "ticket" may be restored
via a ca11 to 11 request$1ists", BF.20.12.

Note that the 1 i:,;t may sti 11 be 1-'.~.ed by t,he GH~ .. it simply
cannot be altered by the.DIM if the DIM destroys the ticket,
II i d11

0

The list identifi.cation ticket, "id", is formec by concatenating
the 12-bit logical channel number with the 12-bit 1ist
number. The 1 ist number is nothing more than the index
of the slot for the indicated list ~ithin the LCT.

After generating the list ticket, "iq", define$list is
finished. The DIM is now free to edit and use the list
defined by '' id'' subject to the limits of the 1i st length
and restrictions contained within the Class Driving Table
pointed at by the LCTentry, "lct.cdt".

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION !1F .20.10 PAGE 8

Bel~asing a Lis~~- define$release

Occasionally, aDIM writer ~Y discover that after certain
setup stages have been passed, certain lists are no longer
needed. When a list is no longe~ needed, it fs to the
DIM writer's advantage to be able to tell t!1e GIM to release
the list a~d free up space for other list manipulations.
A 1 s·o, . one wou 1 d 1 ike to have a genera 1 c 1 eanup mechanism
so that the relea~ing of a device (~when a console·
user logs out) is accompanied by a general cleanup of
the GIM file hierarchy, etc. To release a ·list or to
de-assign a .device, the DiM makes the following call to
the GIM:

call define$release (id, terminate, rrtn);

where the argumen~s ar~ declared as follows:

id bit (24) /* list identification ticket .,'r/
terminate bit (1) f-."r ON if··.de-assigning device.,.(/
rrtn bit (36) /.,'r standard error return word */

The GIM entry de·rine$release Validates the list laundry
ticket, "id11 , by ca 11 i ng check$11 st. The checking routine
verifies the list id and separates out the list number
and logical channel number. The logical channel number
is used as the index into the Channel Assignment Table
(CAT) to get the pointer to the Logica 1 Channe 1 Table
(LCT). Possible errors in. the check$1ist call include
an illegal ID, ''badid", or LCT not found, "lctnf". Upon
successful return·from check$1ist, defi~e$release continues.

If the termination switch, "terminate11 , is ON, the GIM
·requires all channel activity for this channel to be stopped.
A call to 1pw$safe Will shut down the channel and condition
ft so that it cannot be accidentally restarted·.. The technique
employed in stopping a channel was discussed in an earlier
section, GIOC Cbannel Activity. Possible errors from
1pw$safe will be ignored here althqugh the error bits
may be set. These error return bits include illegal GIOC
number, "badcall", and GIOC not available, "giocnf".
The motivation for ignoring the errors (if any) stems
from the supposition that one term~nates a device only
on close-out or de-assignment and sh~tdown errors are
of no consequence. If the DIM indicated terminatio.n, any
list.id from any previous define$1ist call is adequate.

If the DIM indicated termination, the pounds of a "release
loop"· are set to encompass all possible lists contained
within the DIM's LCT. If only one list is indicated 1

the bounds are so adjusted. ·

MUL TICS SYSTEM- PROGRAMMERS' MANU.L\L S ~ C T I O:Y f3 c • 2 0. 1 0 PAGE 9

The "release 1ooo11 is then entered A iist entry is se1ected.
If· the 1 ist is n~t defined, (that s, the poin:er ·to the
1 ist is null) .. the ., release 1oop" s ski.pped and a new
list selected. :-or a defined 1ist, th'2.following action
occurs.

For a defined 1i;t, the po!.nter to.the DC\.rJ space, "lst.dc,,J":J
is checked. A nu11 pointer·,· indicating no DCVJ!; allocated,
causes a skip ov1~r the DCW re1easirtg mechanism~ For non-nul1
pointers, DCW spitCe has been allocated and there exists
a possibility th.:'t the DCWs are actually being used.
A call to 1pw$active will confirm or deny the list activity.
If the list is active, chaos cpuld result if the DCW area
were to be relea$ed so the GIM returns an error bit, "lstact",
indicating the iist is active. If the list is not active,
~call is made to mkdcw$free to release DCW areas and
any associated data areas associated with transmis-sion
to/from the wired-down data area, "data_seg'• 0

The address space existence is verified by checking the
address space pointer, 11 lst.adr1st". If there exists·
an address space (~"1st.adr1st" is non-null) the space
is freed up.

Finally, the List Status Table itself is freed. One pass
of the "release loop" is now completed and·subsequent
passes (if any) wi11 select and release other lists.
The released list may later be re-established by ·a define$1ist
call, but interim editing or manipulation calls wi 11 be
rejected with the error for a list not defined, 11 lndef".

After completing the u release loop" the ,. terminate" switch
is again tested. If the switch is· ON, the GIM now eliminates
the entire Logica] Channel Table by a call to the file
system entries makeunknown and delentry. Aft~r the two
file system calls, the DIM user may no longer reference
the device until a subsequent call to defirie$channe1 is
made. ·

