
.. _

r,

TO:
FROM:
SUBJECT:
DATE:

MSPM Distribution
0. R. Widrig
BF.20.11
12/01/57

\

This document has been expanded slightly to indicate that
a "change'' structure need not actua.1 iy perform any
modifications. ·

The tally .. base selection algorithm has been modified to
work in a more efficient manner. It is left a!> an exercise
to the reader to verify the algorithm's effectiveness.

The "connect$1ist" description has been expanded to indicate
usage of the call to execute device commands through the
GIOC connect channel.

A small revision was made to the "connect$1ist" description
to reflect latest chanoes in the Multics Connect Processor's
ca 1.1 i ng sequence. -

The "cread'' description wa~ slightly expanded to indicate
GIM list compression activities in certain special cases.

r.

MULTICS SYSTEM-P:~OGRAMMERS' f.'!ANUAL SECTION s= .20.1; PAGE i

(Supersedes:
Pub 1 i shed: · 12/01/67
SF.2D .. 11, 07/19/67)

)dent if icat ion

GIM - List Editing and Activation
D. R., Widrig and s. D. Dunten

Purpose

This section is par~ 3 of the complete description of
the GIM: see BF.20.02.

'diting s List - change$1ist

In order to alter pse~qp-DCW's (anq DCW'~ .. ~f any) the
DIM must make the following c;a11: ·

call change$1ist (id, ldx, hl_lt_lo, lrtn, changelp
. [changenp]);

where the arguments are defined as follows:

id bit (24)

idx fixed bin (12)

ht_lt_lo bit. (3)

lrtn bit (36)

(change lp,

changenp) ptr

I* ID of list to be edited *I

I* starting item to be edited *I
I* status switches for edit of

active lists */

I* standard GIM error return
word -..'rl

I* points to change structures */

1,,_ '"'/ .. ~ ,,
•••

and the "change" structures are as defined in BF .. 2 .03,
Summpry of GIM Cells and Data Bases.

The GIM entry change$1ist should be viewed as a dispatch
program which calls ed!ting procedures into action as
they are needed. In fact, change$1ist does not actually
edit anything; it ~rely calls t-h~ proper editing routines.

Change$11st beg~ns by collecting an array of pointers
to the offered "change" structures. A call to a special
EPLBSA procedure, getargs, returns a vector of pointers
to the "change" structures and a count of the number of
structures ofrered by the caller.

MULTICS SYSTD,~PROGRAMMERS ~ MANUAL SECT!O\! BF .20. 11 PAGE 2

The number of structures offered is checked to make sure
that at least one was offered. If none were presented,
the error "badca.11" is set and the Gii\11 returns. Assumj.ng
that at least one ·"change••. structure was offered., the
caller ~s 1 is t ID, 11 id'', and item index, 11 idx" 3re broken
down and checked by a ca11 to check$1 ist. · Pos:;ib1e error~.
from checkg 1 is t l nc 1 ude i 11ega 1 ID, '' badid", LCT not found,
"lctnf", list not defined, "lndef" and i11ega1 item index,
"badca 11" •

If the li$t data is valid, the GIM checks to see if the
list is currently being tised by the G! DC. A Cc1 11 to
l~active wi 11 indicate the channel's activity. Possible
errors from l~active include a bad GIOC number, "badca11",
or the GI OC is no long~r avai 1ab1e~ "giocnf". If the
list is active, a d.ifferent editing technique i.s performed.
A later section, Patching Live u:s.t~, discusse~; the mechanics
of altering a list being used slmuftaneous1y by the GIOC
and the GIM.

For an inactive list, change~list calls the GIM list editing
routine, mkpdcw, to edit the pr.eudo-DCWs indicated by
the user. lnformation included in the ca11 to mkpdcw
includes which LCT is being considered, which list within
the LCT to edit, wh~re to put the edited results, how
many items to edit, and pointers to the appropriate "change"
structures.

Errors from· the list editor include the standard check~list
errors mentioned abOve, no Class Driving Table (CDT) has
been defined, "cdtnf", illeg~l or unusable COT type code,
"badtyp", illegal flel.d quantity, 11 i llfld", i lleoal x_al.ue
quantity, "i 11 va 1", list space exhausted, 11 tmls t'1 , and
illegal action code, "pxlat".

Further details on the list editor, mkpdcw, may t;>e found
in a later section entitled Editing GIM List It~.

Upon completion of the list editing, regardless of success
or.errors, change~list is finished and returns.

Editing GIM List Items - mkpdcw

As discussed in earlier sections, the major design goal
of the GIOC Interface Module is the facility for interpreting
DCM caller's symbolic requests in a way that is both meaningful
to a GIOC and convenient for further manipulation. This
section discusses the translation mechanism which converts
symbolic requests into a standard item, the pseudo-DCit/~

MULTICS SYSTEM-PROGRAMME;RS"" MANUAL SECTION EF .20 .. 11 PAGE 3

To translate onE" or more symbolic requests into:> pseudo-DCI"Js,.
the GIM makes the following internal ca11~ ·

call mkpdcw (1ctp, olstnoe o1stx, n1stno, n1stx,.
. . chs, n~ mrtn;

where .the arguments are defined as fo11ows:

lctp ptr

(olstno,

olstx,

nlstne>,

nlst~) fixed bin· (12)

chs (*) ptr

I* pointer to •Jscr's LCT .. k/

I* old list number *I

I* o1d Hst starting index

I* new list number *I
/"1:: new list starting index

I'~ pointers to'"change"
structures ·kl

'l~l

'l~l

n fixed

mrtn bit (36)

I'~ number of "changeu structures *I
I* standard GIM error return

word ,'(1

Upon being called, mkpdcw immediately va1idptes the list
data and gets pointers to the indicated List Status Tables
(LST) via calls to check~list. The standard check~list·
errors may be returned. After va1 idating the 1 ist data,
the COT pointer, Jllct.cdt" is extracted from the user's
Logical Channel Table ·(LCT~. A null pointer indicates
the CDT has not been selected via the define~cl~$S call.
The error "cdtnf", i nt;l~cat ing the COT was not found, is
set for a null COT pointer. The Class Driving Taqle has
the following declaration:

I* Declarations for the Class priving Tables *I

del 1 edt based (p),

2 tpof(6) bit(18)(
2 free area((800)J;

del 1 tp based(p)~
2 tpval bit(84),
2 nfld bit(24)
2 fldof(100) b{t(18);

I~ typ~ array for specified
. class *I

I* offsets of type info */
I* area for type & field

structures *I ·

I* type structure *I .
I* initial value for type(i) *I
I* number of fields for type(i) */
I* fields for type(i) *I

MULTICS SYSTEM- PROGR/\MMERS,. MANUAL SECTION BF.20.11 PAGE 4

del 1
2

2

2

2

2

de 1

f 1 d based (p) ,
fldact bit(3),

fldend bit(15),,

fldrnsk bit (84),

nv bit (6),

va 1 (O: 100) bit(84);

edt max fixed bin(17)

1·1: field structure ~·r,'
I* substitution code for

. type (5.) • f i e 1 d (j) ~:I
I* rightmost bit of

type(i).fie1d(j) */
;~'r: mask to set

type(i).field(j) ~·:;
I* maximum value for

type(i).field(i) *I
I* values for typ~(i).field(j) */

init(6); · /'~maximum CDT type a11ow·ab1e ''r:l

I* breakdown of field action codes

type 0 = illegal action·
type 1 = mask-value substitution
type 2 = literal substitution
type 3 = address substitution

breakdown of type codes

type 1 = status word
type 2 = ccw
type 3 = command DCW
type 4 = transfer DCW
type 5 = 1 i te ra 1 DCW
type 6 = data transfer DCW

*I
)

The user "change" structures have the following dec~aration:

del 1 change based (p),

2 op-type fixed bin(17)

2 nchanges fixed bin(17),

2 changes (nchanges),

3 field fixed bin (17)

3 value fixed bin (24) ..

3 address ptr;

I* user change
structure ~·(I

I* type of change *I

I* number of changes */

I* individual changes *I

I* field to be altered *I

I* alteration value *I

I* data transmission
address ;'(/

Note: "nchanges" may be 0 indicating no changes to be medr:::.

..J

.MULTICS SYS TEM-P:~OGRAMMERS .. rvtANUA L SECTION B ~. 20.11 PAGE 5

For each user 11 c;1ange" structure, the following action
occurs. The op•type is extracted and va1idate<J. against
the COT. An out-of-bounds op-type or an op-ty~e for which
no matching CJT ·:ype was defined resu1t in a b<:· .. d-type
error, 11 badtyp". 1 f the type is va 1 id, a pointer to the
appropriate "type" substructure within the COT is constructed.

The type code is now matched against the type code of
the pseudo-DCW already in existence in the old list at
the old placeQ A matching type is inferpreted as meaning
the edit is to be performed on the o.J.c! pseudo-DCW and
then moved to the new location. For a matchinc type,
a temporary pseudo-DCW is initialized to equal-the old
pseudo-DCW under consideration. Non-matching op-types
indicate the Gil\"< is to use the initial value found within
the proper "type11 sub-s truct1-1re of the COT. The main
edit is now started.

After extracting the field count 1imit, "nfields11 , from
the proper 11 type11 sub-structure of the COT .. the following
editing is performed for each specific change request
within a single "change" structure. First, the field
number is extracted from the "changes" sub-structure and
matched against the bounds previously extracted from the
COT. Bound violations cause the illegal field error,
''illfld', to be set. The COT is checked to insure the
selected field. is defined; the '' i 11f1d" error wi 11 occur
if it is not. For a defin~d field, a pointer to the appropriate
COT ''field" sub-structure is generated. The action code
for this field. is extracted from the 11 field' sub-structure.
A code of 0 indicates an illegal field and a setting of
the "i 1lfld11 error.

Assuming a legal action code, mkpdcw now dispatches to
the proper routine to perform the edit. There .:tre three.
defined action codes, 1, 2, and 3. Each kind of editing
will now be discussed.

An action code of 1 indicates a mask-value edit. In this
form of edit, mkpdcw uses the 11 va 1 ue'' i tern in the ''changes"
sub-structure as 3n index into the 11 value'' array contained
within the aporopriate COT "field'' sub-structure. Thus,
a 11 va1ue'' of 5 wi 11 cause field.va1ue(5) in the appropriate
11 field'' sub-structure to be used in the edit. Prior to
extracting the item from the CDT, the "value" index from .
the "chan9es" sub-structure is matched against the bound
on value 1ndices, ''nvalues'', from the COT "field" sub-structure.
Bound violations result in the i11e~al value error, ''i11va1 11 ,

being set. Assuming a lega1 11 value' 1.ndex, the aporoprj_ate

MULTICS SYS TEM-FROGRAMMERS"' l'flANUA L SECT! ON B :- .20. 11 PAGE 6

value in the 11 ft~1d'' sub-structure is selected and 5.nsertcd
• . h ·d . DC'·' . +h h' t ,... "''i <· • ne ,, nrH C~Yf'(~ :tntO t·€ ~.emporary pSet.. 0- YV J.n ,.,€ i-;L. po.::-.,·.•.0 ... •.f~··'· cl.:.

by the "field ma:;k" in the CDT 11 fie1d11 svb-structure.
Specific example:> of mask-value substitution m.:Jy be found
in MS PM, BF. 20. O'i , DCMLGI \!L,l.!:J..1;£rface S..Qec i tlc-9..15&!2.~·
Af!er.insert!n9 :he item into the pseudo-Dew. ~he mask-value
ed1 t :ts comp 1e·ce ..

An action code of ·2 indicates a literal substitution.
In literal substitution, the "va.lue" 5.tem itse1f is used
in the edit. ThE· right-most 24 bits of 11 vafuen are treated
as a bit string a.nd are j.nserted into the pseudo-DCW using
the 11 field_maskn as a guide. The positioning of the field
is accomp1ished by ttsing the "fie1d_end11 entry of the
proper COT "field" sub-structure. Further examples of
literal substitution may also be found in MSP~, BF .20.01.

An action code· of 3 indicates a data-address substitution.
This form of substitution is used to indicate where data
handled by the GIOC and GIM is to be placed or gotten.
As pointed out in earlier sections, all data transmission
handled by the GIOC is to a wired-d~~n area known to the
GIM. At appropriate times, the data in the area is moved
to/from the user's area. Unti 1 that time, the GlM must
remember where th= data is to be found. The GV~ remembers
the user data spaces by saving the data address in the
"address space'' associated with each user 1ist. (The
for~t and manipulation of the address space was previously
described in the section entitled List Structures.) A · ·
check is made to insure that the list of newly-created
pseudo-DCWs has an address space allocated. If it does
not, one is now allocated. Errors in allocation indicate
that too many lis:s have been allocated. The "tmlst"
error is set for adoress space alloc?tion errors. Assuming
a valid address space exists, the proper entry is filled ·
in with the segment number and offset of the user's data
area. The pseudo-DCW control bit indicating a valid address
supplied is set •. The data address substitution is now
complete.

Any other action cod.e constitutes a general translation
error and results in the error "pxlat" being set. It
should be noted that an unrecognized action code implies
an error in the Class Driving Table since the COT is the
source of the action code. ·

Having processed all "changestt sub-structures, the temporary
pseudo-DCW has been completely edited and is inserted
into the new slot. Both the old and new list indices
are incremented and the next change structure is sc'!ected
for processing.

MULTICS SYSTEM-PROGRAMMERS .. ~NUAL SECT! orv EF .20 .11 PAGE 7

Upon exhausting a11 the offered "change" stJ'"uctures or
upon coming to the end of either 11stp mkpdcw ts finished.
It should be noted that the end of the list te:mination
-is .!J.Q.l considered as an error. Extra "change11 structures
win not be proczssedp however. .

Generation of DC\Y.§. .. mkd~

Whenever the GIM finds it necessary·to oenerate actual
DCWs so that the GIOC may begin processfng some I/O requests
for a user p the fo 11 owing internal ca 11 is made:

call mkdcw (1ctp, lstp, mrtn);

where the c13rguments ·are defin.ed as follows:

lctp ptr

lstp ptr

mrtn bit (36)·

I* pointer to proper Logical
Channel Table -1~1

I* pointer to List Status Table
to be processed */

I* standard GIM error return
word *I

It is importa.11t to note that a ca 11 to generate actual
DCWs is not under direct DIM control. The GIM reserves

~'""" the right to !ilenerate and re1ease DCW lists as conditions
warrant and, 1n general, a DCW list will exist only when
the channel is active and the GIOC is performing a service
f6r the DIM.· In these cases of channel inactivity due
to the channel having terminated, the DCW space will be
released. 1 t wi 11 be shown that a pol icy of generat~ng
DCW space only when needed results in smoother operation
of the GIM.

Before generating the actual DCWs, a pre1iminary check
is made to insure that the indicated list is· defined.
An undefined list, detected by the list pointer being
null, results in the error "lndef" being set and an immediate
return.

If the list appears properly defined, mkdcw tests the
DCW-space pointer "lst.dcw'', in the List Status Table
to determine whether or not the DCW space is a11oc~ted.
If no space is allocated, a call to allo~dcw is made to
allocate DCW space in the wired-down segment for DCWs,
dcw_seg. If the allocation was successful, the DCW-space
pointer, nlst.dcw'', is set to point to the area allocated

·for the DCWs. If the allocation was unsuccessful, the
error 11 wrkexh11 is set to indicate that workspace in dcw_seg
is temporarily exhausted. ·

MULTICS SYST.EM;,.F'ROGRAMMERS' MANUA.L SECTION ·EF .20.1, PAGE 8

Upon receiving Ute "wrkexh" error, a DCM write: could
safely presume that repeated cans wi 11 eventu.~11y succeed
as other DC\I'J 1 is ts be 1 ongi ng to other users an~ continua 11 Y
being released a;1d the resulting $pace returned to the
general pool of Free space.

After verifying i:hat DCW space exists·within the wired-down
segment, dew seg,. a tally base is selected. Th.e following
discussion relates one of the major design aspects of
the GIM, the selection of the GIOC Li'st Pointer Word tally.

A major consideration in the Multics GIOC Interface Module
is the relating of hardware events and c:Hscipline within
the GI OC to the symbo 1 ic environment of the DIM writer's
lists. One .aspect of the relation described above is
the translation of hardWare items such as List Pointer
Word (LPW) tally into a list 10 and an item within a Hst.
Such translation is necessary sine~ hardware status stores
preserve only a few relevant items, one being ti1e LPW
tally. In order to relate the LPW tally to a particular
list and item, the following scheme is used by the GIM.

Traditional use of the LPW tally in Gioc progralllTling requires
that the tally reflect the ·number of DCWs to be processed.
Upon processing a DCW, the GIOC decrements the tally and
begins processing the next DCW. When the tally reaches
zero, suitable interrupts· and status stores occur and
the channel ceases activity. That is, one uses the LPN
tally as a counter. · ·

The GIM does not use tne LPW tally in the manner described
above. Instead; the LPW tally is used as a program counter
and is the key to relating hardware events to DIM writer's
lists. Since the LPW tally is not used as a counter,
other methods, described below, are used to indicate the
extent of DCW lists to the GIOC. At issue now is the
method of using t~1e LPW tally as a tracer.

Suppose that each list item of every list for a given
GIOC channel had a unique number assigned to· it. Then,
if the GIOC were to store the proper unique number ~n
addition to the other items stored at status channel storage
time, the GIM could easily relate which list and which
item is involved in the status store in question by comparing
the unique number of every item until a match of the stored
unique number was made. It wi 11 now be demonstrated that,
by using proper advance manipulations, the LPW tally can
be made to serve as the unique number assigned to each
list item.

MULTICS SYSTEM-P{OGRAMMERS"' MANUAL SECTION 8;='.20.11

Assume that the ,~ange of a11 poss!ble LPW ta11 :es is the
closed interval I toT. When the ith DC'vil list of 1cnath
L is generated for a given channe1:the GIM de!.;5.res a-··
number N to be associated with this list such that the
following statements are true:

1. N wi 11 be u~,ed as the starting LPW tea 11 y such that
when item 1 of the DCW list is processed, the LPW
tally is N. ·

PAGE 9

2. No other DCW list for thi$ channel has an LPW tally
that falls in the range N to N-L+1, inclusive. (Recall
that LPW tallies count down in the GIOCo) -

If the above conditions are met, then any status channel
ac;ti'on for list J wi 11 cause an LPW tally to be stored
such that the ta1 ly stored,.· S~ meets the following relationships:

(ending LPW tally) N-L+1 ~ S ~ N (starting tally for list j)

Moreover,. the number S is unique. Another way of viewing
the tally selection requirements is that the GIM selects
a "window" of LPW tallies for a list such that the ''window"
does not overlap any other "window" for any other., ist
on the same GIOC channel.

The GIM selects a tally base,. N,. according to the following
a lgori thni:

1. Set N = T; Preset top of window to l~rgest possible value.

2. Set B = N-L; ~et bottom of window -1.

3. If B is less than 0,. go to error. Window ran off bottom.

4. Select list from logical Channel Table (LCT).

5. If list is the test list or not defined or no DCW""s

6.

7.

a.

allocated,. go to 12. ·

Set n =selected list"'s tally base; That is, get the top
of this list's window.

Set b = n-length of selected list; That is, get the
bottom of this list's window.

If (N <=b) or (B > =n), go to 12. Test for window
overlap.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF .20, 11 . PAGE 10

9. Set N = b; Overlap, move top of test window cowh.

10. If N < = 0, ther: go to error o Window ran off bottom.

11 • Reset to try all lists again. Go to 2.

12. If no other liSt$, set ta 11v base ""' N and exit.

1~. Go to 4.

Errors indicate an inability to allocate a window of the
indicated size ·without overlapping a prev~ous ly a.ll o<:ated
window belonging to another list or an exhaust of tne
LPW tally .space available •. For the model B GIOC attached'
to the Multics configuration, the LPW tally space, T,
cov~rs the range 1 to 4095, inclusive. It is felt that
4095 DCWs active at one time represent far more than any
DIM writer wi 11 ever need. However, if the above-m~zntioned
errors occur, the "tmlst" error is set·indicating too
many lists are currently being used. The DCW space is
released~ "lst.dcw' is set to nu11 indicating no DCW space,
and return is made. Assuming no errors, mkdcw begins
actual DCW production by translating the pseudo-DCWs in
the offered 1 ist. · ·

For each item in the pseudo-DCW list, the following translations
and actions are perfo"'med. First, the skeleton DCW is
formed by copying the first 72 bits of the related pseuoo-DCW.
To put it another way, the pseudo-DCW·bears a suspicious
re semb 1 ance to a DCW. · ·

The pseudo-DCW control bits are checked to see if this
item causes a read or a ·write. If it does oot, the re~d/write
control bits from the preceding pseudo-DCW are copied
into this i tern. This insures that a pseudo-DCW invo 1 vi ng
data transmission carries the proper flags generated by ·
the earlier read or write command pseudo-Dew. If the
item g9es init~ate reading or writing, the control flags
are saved for later use. Note that the COT alone contains
the control flags. Without these fla~s, the GlM has no
way of telling whether an operation w1ll initiate reading
.or writing.

MULTieS SYSTEM-PROGRAMMERS"' MANUAL SECTION FW.20.11 PAGE 11

The pseudo-DC\f\1 i:ype is now picked up and inspEcted. A
type 0 item indicates a 11 ho1e11 or unused item rJ1thin a
list. Since the GIOC has no null-operation fa:i1lties,
the GIM performs a forward scan or preview to ~ee if any
valid items remain in the Hst past the ho1e c:Jrrent1y
encountered. Supposing that a valid Item does exist later
in the list a tr.;tnsfer DCW is constructed to point to
the valid item. The transfer is constructed vja a ca.11
to l~mktra, the GIM transfer-Dew maker. The transfer
DCW is. placed in the DCW slot corresoondina to the hole
in the pseL!do-DCvJ 1is.t. If no valid' items~relTklin in the
list, a transfer to the standard "safety" DCWs is inserted
into the DCW list. lt will be recalled that the "safety"
oews are a pair of oews which are guaranteed to stop and
terminate any GI OC data channe 1 0 The 11 safe tv'' DCWs are
inserted in the above case to prevent the Gibe from running
off the end of the list. ·

Both pseudo-DCW type 1, the status request, and type 2,
the ecw type, are illegal if encountered in a list of
DCWs. Their occurrence causes the "dx1at'' error to be
set indicating a DCW translation error. In the event
of this error, or any DCW translation error, the entire
DCW space is released and "lst.dcw'' is reset to null indicative
of no oew space currently assigned.

If the pseudo-Dew type is 4, a transfer oew is desired.
The list and item within the list which is to be transferred
to are extracted from the pseudo-Dew and validated via
a ca 11 to check~ list. The standard check~ 1 ist errors
may be returned. Assuming no errors, a call .to l~mktra
will generate the necessary transfer DCW.

If the pseudo-DCW type is 6, a data transfer DO~ must
be constructed. :,=-irst, the control bits of· the pseudo-DCW
used by the GlM are checked to make sure the pseudo-Dew
did, in fact, indicate where that data may be found (for
writes) or should be sent (for reads). If no .address
was supp1 ied, the "nadd'' error is set and translation
halted.

Assuming a valid address, the skeleton DCW is handed to
the routine patch1b1en to compute the number of .Qlli.. involved
in the data transmission. This count is rounded up to
the next larger word size and sufficient space allocated
in the wired-down segment, data_seg, by calling the general
GIM storage allocator, allo~data. The absolute address
of the space allocated is placed in the DCW"'s address
field. Errors in allocation cause the "wrkexh" error
to be set indicating work space exhaustion.

MULTICS SYSTEM-PROGRAMMERS' iv1ANUAL SECTION 8:-.20.11 PAGE 12

The offs~tof the allocated area within "data_~;eg" is
saved in the pse:Jdo~ocw for later use. 1 f the P$eudo-DCW
control bits indicate a write 6peration~ the data is moved
from the user "'s ,:trea into the wired-down area :·.n "data_seg".

For a successful translation of the above-mentioned DCVJ
types and for pscudo-DCW type 3 ~ command DCW ~ c,nd type . ·
5~ literal DCVJ, the GIM continues by translating the~
status channel pointers selected by ":he user .into o[1yg.;)ca1
pointers required by the GlOC. For example, the DIM writer
may indicate logical pointers, 1~ 7, 6~ and 3 are to be
used. After mapping the pointers, physical po1nters 1,
2, 3, and 4 are placed in the DCWs. The mapping information,
contained in the Logical Channel Table (LCT) was included
in the GIM design to allow si~ple re-configuration without
the necessity of all DIM writers receding certain portions
of their modules after every GIOC change. ·

Having re-mapped the status channel pointers, the fully
constructed DCW is placed in the proper slot in the DCW
list. Upon completion of translation of all DCWs, an
extra transfer DC'IJ is appended to insure the GIOC going
into the "safety" DCWs ·instead Oic blindly running off
the end of the list. The list translation is then complete.

Generation of Transfer DCWs - lp~mktra

During translation of pseudo-Dews into DCWs and during
editing of active lists, it is sometimes necessary to
generate a transfer DCW. Many issues of security·and
protection center around proper transfer~ocw production
with the result that it·was felt·a separate routine concerned
only with intra-list transfers was necessary. The GIM
generates a transfer DCW with the following call:

call l~mktra (1ctp, lstp, idx, tdcw, 1rtn)

where the arguments are defined as follows:

lctp ptr I"~': pointer to user's LCT .,"r I

1st ptr f"k pointer to list to be transferred
to ·kl

idx fixed bin (12) I* item in list to be transferred to

tdcw bit (72) I* generated transfer DCW ·kl

*I

1rtn bit (36) I* standard GlM error return status -:~I

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTIO\l EF .20.11 PAGE 13

Upon receiving the above call, lP'If.Jmktra initia1izes itself
ahd prepares to generate a transfer DCW. A 1cop is e~tered
and the following actions are performed.

The list pointer is checked to insure the list is defined.
An undefined 1 ist cannot be transferred to. ·r,,e error
"bdtra" is set f::>r undefined lists.

The index of the item to be transferred to is checked.
An index which is out of the range of the target list
causes the '' bdtra" error to be set. Assuming the target
item i~ within range of a defined list, its pseudo-Dew
type is extracted and inspected. ·

A type 0 item, indiGqting a "hole", is allowed if and
only if there exists a valid item.somewhere ·further on
in the target list. If a forward scan from a "hole" in
target 1i s t detects no va l:td pseudo-Dew i tern, the "bdt ra"
error is set. Otherwise, the transfer is accepted and
the next phase of generation begins.

A type 4 item indicates the target item is also a transfer.
The list number and item index of this new transfer is
extracted and va·;idated via the chec~ 1 ist cal i. The
standard check~ 1 ist errors may be returned4 Assuming
valid list data, the loop is repeated with the new transfer
i tern. A maximum 1imi t on the transfer chain len~th, 11 tdepth",
is set d~ring sy~tem initialization. If the cha1n length ·
is exceeded, either the chain is simply too ·long or the
user has programmed a loop of transfer DCWs. In either
case, an excessive transfer chain causes the "bdtra'' error
to be set.

Any other pseudo-DCW type constitutes a valid item to
transfer to. ·

Assuming a valid item .to transfer to, 1Po'ifmktra verifies
that the target list has a valid DCW list. If it does
not, (that is, "lst.dcw'' of the target list is null),
a call to mkdcw will generate the target DCW list. Note
that this call may be a recursive call since mkdcw may
have already been calling l~mktra. This is the usual
case· upon initial activation of several user lists which
are tied to,gether by user-specified transfers.

After getting the target DCW list into proper order, the
transfer DCW is constructed. The DCW type .is inserted,
the absolute address of the target item is inserted# and
the tally field (which resets the LPV.J tally upon the G!OC
detecting the transfer) is set to the unique ta11y of
the target item. The resulting transfer DCW is then retur~ed
to the caller. ·

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION EF .20. 11 PAGE 14

Patching Live Lists - patch

One of the more complicated aspects of operati1g the GIOC
is the editing or alt~ration of DCW lists whi h~ the GlOC
is processing the list being edited. This section discusses
the strategy followed by the G!M \11/hen an activ(~ 1ist is
to be altered. ;)pecia1 attention will be paid to the
relatin~ of the GIOC status and the efficacy of the user's
edit be1ng performed. ·

Reference to the change~list call discussed earlier reveals
that the list edit was hand led different 1 y if " ca 1 1 to
lpwgactive revealed the list was currently active. An
active 1 ist edit is performed in four major steps:

1. Create a. ne'tlf "auxi Hary" 1 ist via a call to cha~ge~dfl.

2. ·Perform the edit on the old list pseudo-Dews via a
ca 11 to mkpdcw.

3. Translate the new list into DCWs and patch the auxiliary
list back ir:to the main 1 ist.

4. Compress new pseudo-Dews and DCWs back into main list.

Consideration of the above algorithm reveals that the
GIM need not be concerned with timing problems for parts
1 or 2. Part 3, however, is very sensitive as it is the
phase that· connects the new DCW list to the main list ocws. · · · · ·

·Part 3 of the above algorithm is handled by a single module
~nd several sub-routine calls. The main patching sub-program
is called "patch11 • For purposes of discussion, it wi 11
be convenient to ref~r to a diagram illustrating an actual
list edit in progress. Suppose the user has indicated
that llst 11 m", of length 5, is to be edited at items 3
and 4 •. Schematically 1 the list is as indicated below:

m

to be edited

-,.

MULT!CS SYSTEM-::>ROGRAMMERS' tv\ANUAL SECTION UF .20. 11 PAGE 15

First, an auxil:.ary list of 1ength 3 is created. This
list, ca'lled 11 a', is aiways created with a lcr:gth eoua1
to the span of the edit plus 1. The· reason fc,r the extra
item wi 1 '! becomE apparent in a moment. A ca 11 to mkpdcw
wi 11 cause list items 3 and 4 in 1:tst 11 m'' to be edited
and the resu 1 t 5, rg pseudo-DCWs p 1 aced in i terns 1 and 2
of 1 ist "a". Schematic~lly, the Hst edit now appears
as follows:

The call to patch a live list appears as follows:

call patch (lctp, idf, idx, aid, hi_1t_1o, prtn)

where the arguments are defined as follows:

lctp ptr I* pointer to proper LCT *I

(idf I* number of main list ·kl

idx I"(start of patch area in
main list '}~1

aid) fixed bin (12) /-I\ number of aux:t 1 iary list

hi -1t_1o bit(3) I* patch status ·kl

prtn bit (36) I* standard GIM error return
· word ·kl

Pa.tch is called to join the auxiliary list, "a", to the
main 1 ist~ 11 m11 • Pa. tch begins by copying the main· 1 ist
number and beginning edit item number, (11 m11 and 3 in our
example) into the proper auxiliary 1 ist data slots in
the user's Logical Channel Table (LCT). This information
wi 11 facilitate later efforts to match an auxiliary list
item with its mate in the main list.

')'(:I

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION B::- .20. 11

If the other auxiliary list is also bein~ used to patch
1 ist M item 3 then a patch on patch cond1 tion ~~xists.
This condition is an error because of the dlff~culty the
GIM would have in keeping track of the patches. The
patch-on-patch et·ror resu 1 ts in th~ 11 pat pat'' e1·ror being
set. ·

By referring back to the Generation of DCWs section, it
should be recalled that mkdcw performed the necessary
steps to cause the GI OC to avoid 11 holes'' in the user's
1 ists by generat~.ng transfers around the "holes". If
one of these "ho';es" occurred in the edit regicn in the
main list, it becomes obvious that patch must undo the
transfer DCWs which caU!~~ the holes to be skipped.. If

PAGE 16

the transfers are not taken out or altered, then the patch
will never "take" as the GIOC will always transfer over
the patch area. Therefore patch performs a backWard
scan from the item just before the first item to be patched,
(number 2 in our example) and replaces all "hole" transfers
with a new transfer that points directly at the first
item in the edit area of the main list. The ba.:kward
scan is stopped by reaching the top of the list or by
encountering a non~'hol~' item. ·

Having accounted for any "holest•, the auxi 1 iary list's
tally base is computed. Recall from the section on Gt;neration .,/
of DC~s that the tally base provides a means of uniquely· ·
ident fying a list item. The auxiliary list tally base
is set such that item 1 in the list has exactly the same
tally as the first edit item in the main list. (In our
example, the ta 11 y base of list 11 a" is set to the . tally
of i tern 3 in list "m".) This insures that the auxiliary
list DCWs will apeear as DCWs belonging to the main lfst.

After the tally base is set, a pseudo-Dew is constructed
for the last i tern in the auxi Uary list. The pseudo-DCW
is a transfer-pseudo-Dew pointing at the next item past
the edit area in the main lfst. If the next item happens
to be beyond the end of the 1i s t, patch p 1 aces a "ho 1 e"
in the last item instead of a transfer. The lists now
appear as follows:

m a

MULTieS SYSTEM-PROGRAMMERS"' MANUAL SECT! ON BF .20. 11 'PAGE 17

Note that the first edit item (number 3 in our example)
was 02! altered. Thus, if the GIOC now happens to come
through this area, the Gtoe action is the same as it was
before the alteration was performeQ.

A transfer-Dew i:; now constructed. The transf(~r-DCW is
to be placed in the first item to be edited in the main
list and will po~nt to th~ first item in the auxiliar~
1 ist. In other \\lOrds, the transfer-Dew is the "patch'
that hooks the l~sts together. Inspection of ~he section
entitled Generation of Transfer DCWs reveals that if the
target 1 ist has not been trans'1atedinto DCWs, a ca 11
to mkdcw is made to perform the translation. Since the
auxiliary list does not have any trans 1ated Dews, the
call to mkdcw is made by l~mktra before the transfer-Dew
is generated. The standard mkdcw errors may be returned.

After getting the transfer-Dew, a pointer to the proper
GIOe mailbox area is generated by a call to check~gioc.
Possible errors inc 1 ude a bi;ld GI OC number, "badca 1 l",
or the GIOC not available, "giocnf". The transfer-DeW
is now patched into the main list DCWs via a call to patget.

Patget is a special-purpose EPLBSA routine that samples
the List Pointer Word (LPW) mailbox before the patch to
the DCW list is made, patches the oew list, and re-samples
the LPtN mal lbox. It is required that the samplings be
separated by as short a ti~ as possible. Patget will
be non-interruptible during this time to insure a rapid
sampling. Reference wi 11 be made later to the LPW sampling
before the patch, LPW1, and the sampling after the patch,
LPW2. ·

The lists are now joined and appear as follows:

m a

1
2
3
4

l. 5

The patching of the user~s ed~t requests has been accomplished.
Unfortunately, a formidable task remains, the determinat~on
of whether the patch "took" • That is, did the GI OC arrive
before, after, or during the patching operation. The
next task undertaken by patch is the answering of the
above question

MULTICS SYSTEM-PROGRAMMERS' MANUAL S~CTION 8F.20.11 PAGE 18

The list data for LPW1 is found by a call to 1P'4fnd.
If the LPW cannct be matched against any list, lpw!Jfnd
will return a list number of zero. Patch will assume
that a list number. of zero. indicates the GI OC has gone
into the u·safety" DCWs discussed in GIOC Chann .. ~l Activity.
A zero list number will cause patch to set ·the patch status
word, hi lt_lo, to."010''b indicating the patch came too
late. similar act1on occurs for LPW2, the LPW sampled
after the patch. Note that the assumptions for LPW2 require
that the time of the $ampling interval in patget is quite
small with respect to the speed of the GIOC •. In fact,
the GIM assumes ~hat patget performs its operations in
a time that allows no more than 2 or 3 GIOC actions on
a given channel. .

If one assumes an appropriately brief interval between
LPW samples in patget, it follows that a simple test of
the i tern pointed at by LPW1 wi 11 revea 1 whether the GI OC
was above or below the patch area during the patch. If
the GIOC was below the patch. area, the hi_lt_lo bits are
set to 11 001 11 b. If the GIOC was above the patch area,
the hi lt_lo bits are set to l'100''b. Of course, the terms

11 aboverr and 11 belo'l/' refer to higher or lower item indices
in the main Ust. I.f the GIOC wa·s w9rking on the. first
item in· the patch area Jus.t as the list was being patched.,
the patch occurred too late and hi_l t_lo is s~t tp "01 O" b.
to indicate this~ · . · .

Ifnone of the above tests reveal~d anything, patch prepares
to "walk11 down the list starting at LPW1. By cal lin~
a special routine named cread~step, patch takes one ' step"
at a time down the list in the same manner as the GIOC
did. This stepping procedure continues until either the
end of the GIOC DCW list is reached or the initial patch
point in the main list is reached or the point indicated
by LPW2 is encountered.

lf the LPW2 point is reached, the GIOC was not in the
patch area. In this case, the patch was effective. Patch
tidies up and returns. Similarly, encountering ·the end
of the 1 i$ t is interpreted as an effective patch.·

If the patch point is reached, the GIM must determine
~ich way the GIOC went. That is, there is no a priori
way of telling whether the GIOC travelled down the patched
fork in the DCW list or down the old., un-edited, fork.
Assuming that only a small amount of GIOC action occurred
between the LPW samplings in patget, the following methqd
can be used to determine which fork ~as used by the GIOC.

-·

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 81=' .20.11 PAGE 19

Patch assumes that the patch "took" and the G-1 <)C went
down the patched DCW 1 ist. Repeated calls to cread~step
will uwalk" paten down the trail. The trace~~-. stopped
after ~orne small number of steps (currently, 10) or when
the po1nt indica·:ed by LPW2 is reached or when the end
of the list is rt~ched. Patch th~n backs ~P to the patch
point and travel5 down the other fork, the old and un-edited
one, until it has traveled as far (used the same number
of steps) as the previous walk or unti1 it encounters
the LPW2 point. If the LPW2 point is encountered, the
patch did not take so the hi lt lo switch is se·t to "01011 b
to indicate the patch occurred too late.

If the trail goes as far as the other fork without encountering
the LPW2 point, the Gl M· presumes the patch "took11 and
the GI OC. processed some or a 11 of the new patch.

The astute reader of the above section will undoubtedly
be able to convince himself of flaws in the above algorithms.
On the other hand, the prototype GIOC does not readily
lend itself to tr.ail following of the type described above.
It is expected that the model B GIOC wi11 provide the .
GIM with at least one very powerful tool to facilitate
trai 1-following,i this tool is the abi 1ity to flag transfer-OCWs
so as to cause an interrupt and a selectable 11 tag'' stored
in the hardware status word.

At the time of th~ in$ta11ation of the model B GIOC, it
is anticipated that Multics J)ersonnel will review the
trail-following machanisms contained in the·patch module
and implement a more sophisticated and foolproof scheme.

List or Channel Activation - connect~list

In order to activate a list or restart a channel, one
requires that all symbolic editing and creation of the
pseudo•DCWs be 'translated into actua 1 GI OC DCWs. Also,
one requires that the appropriate mailboxes and connect
instructions be issued so as to cause the GIOC to commence
processing the DCWs assoc~ated with the device under
consideration. In order to set the electrons in motion,·
the DIM makes the following call to the GIM:

call connect~list (id, idx, lrtn [, tid, tidx]);

where the arguments are declared as follows:

(id,

tieD bit (24)

I* id of list containing CON *I

I* id of list to start GIOC at */

MULTICS SYSTEM-PROGRAMMERS' .MANUAL SECTION BF.20.11 PAGE 20
. '

(idx, .· I* lis:t it~m number of CCW to use

tidx) fixed bin (12) I* list item to start GIOC at *I
lrtn bit (:36) I* standard error return word ~<:!

Prior to beginning actual list pro~essing, connect$list
calls out to getargs to collect po1nters·to the optional
argument pair, "tid" and "tidx" •. lf the number of optional
arguments is neither 0 or 2, the error "badcall" i~; returned.

Havin~ collected the optional arguments· (if any), the
list 1d and item index are verified throu~h a call to
check$ list. Possible errors include "bad1d" .. LCT not
found, "l.ctnf", 1 ist not defined, "lndef", and illegal
item index, "badcall''. A check is then made that the
item in the indicated list is, in fact, a Channel Command
Word (CCW). If the pseudo-DCW type is not 2, indicating
a CCW, the error 11 notccw" is set. Assuming that a CCW
is being used, the user's skeleton CCW is fleshed out
by inserting twice the GIM channel number for this .:fevice.
(Recall that "lct.phychn" contains half the actual physical
channe 1 number.) ·

If no optional arguments were present, the·GIM assumes that the
CCW is to beexecuted as a GlOC connect channel command.
Such commands do not require any data mailbox preparation.
Examples of connect channel commands include a 11 request
status" command, ~ ••rewind" command, etc.

Assuming no optional largurTJents, the GIM attempts to insert
and activate the ccw in th~ manner described later in
this section. · ·

If the optional argum~nts were pres~nt, the GIM assume~
that the caller wishe~ to start the channel at the indicated
location. If the channel is already active, then the
GIM further assumes the user has made an error. A call
to lpW$active will· resolve the channel's status.

Lpw$active may report an error; either the error "giocnf"
is set, indicating the GIOC is no longer usable or "badcall 11

was set indicating an illegal GIOC number. Otherwise,
if the channe·l is ac;tive~ the error 11 lpWact" is set indicating
the list is actTVe and cannot be switched.

*I

MUL TICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF .20. 11 PAGE 21

Assuming that all is well, connect$1ist cal'!s check$1ist
again, this time verifying the list and item indicated
in the optional argumentso The same errors are possible
as in the earlier call to check$list. .

If the new list proves to be valid, a call to lpw$set
is made to set t''ie LPW mailbox for this channe I to point
to the indicated starting point. It is at this point
that DCWs are formed, lists are tied together, and general
hardware-oriented tasks are performedo Possible error .
returns ·from the call to 1pw$set include: the standard
check$1ist returns, bad transfers within a list, 11 bdtra",
wired-down workspaces temporarily exhausted "wrkexh",
too many list items "tmlst", "status" or 11 conneC:t11 or
un recognizable "op- typ~" in 1 is t, "dx 1 at", · no address
given for data transmission "nadd'1 , or list not defined,
" 1 ndeft'.

Having survived thecall to 1pw$set, connect$1ist housekeeps
the Logical Channel Table for possible patching and editing
of the lists while they are active.

The user's CCW is now added to the CCW queue for the indicated
GIOC connect channel. The CCW queue can be considered
to be a circular queue composed of 3 regions. One region,
the hardware queue; contains the CCWs currently being
processed! by the GIOC. The hardware queue may be empty
if a particular connect channel has no work to do. The
second region, the software queue, contains CCWs added
since the connect channel was started on processing of
the hardware queue. These CCWs are currently unknown
to the GIOC. An empty software queue indicates either
an inactive connect channel and no work to do or no work
to do after the current connect channel activity terminates.
The final queue represents ttie unused or availaple queue
area. At a given moment in time, the queue for a given
connect channel wtll appear as follows:'

QUEUE

last -

middle

first _.,

w ord 1

~ Hardware Queue

~ Software Queue

i

'

(Empty 0 ueue

ord N

MULTICS SYSTEM-PROGRAMMERS" MANUAL SECTION DF .20,.11 PAGE 22

The three point~::rs, "first11 , "middle", and "lc.st", de'limit.
the various sub~queues. The pointers and the queue for .
a given connect channel are placed in a structure allocated
in ·the wired-down segment, dcw_seg. The structure is,
in effect, a Logical Channel Table (LCT) for a GIOC connect
channel and is known as a Connect Logical Chan1el Table
(CLCT). It has the following per-channel declaration:

I* Declaration~ for connect channel buffering and control *I
del 1 cl~t based~p),

2 lock bit(36),
2 actsw bit(1),
2 fst fixed bin(17),
2 mid fixed bin(17),
2 1st fixed bin(17),
2 ccwbuf(10 /* cbufsiz *I) bit(36);

I* connect channel's
LCT */

I''' interlock */
I* ON if active *I
I* index of first CCW */
I* mid-point index *I
I* index of last CCW *I
I* buffer for CCWs *I

. ..

del cbufsiz fixed bin(17) ext static; f-Ir length of CCW buffer *I
A pointer to the selected CLCT is obtained by connect~ list
via a call to check~connect. Errors returned may include
illegal GIOC or connect channel number, "badcall'', GIOC
not usable, "giocnf", or connect channel not usable, ''connf".1
Check~·connect generates the pointer to the proper connect ··
channel by inspectin9 information (relating the status
of each CLCT) found 1n the Channel Assignment Table (CAT).

Having gotten the proper CLCT, the caller's CON is added
to the end of the software queue. The "first" pointer
is then incremented to reflect the addition. If the "first"
pointer has ru·n off the end of the queue, it is reset
to the beginning of the queue. The resetting of the pointer
effectively causes the queue to be treated as a cir<;ular
queue.

After updatin~ the 11 first" pointer, it is tested against
the "last" po1nter. If they are equal, the empty queue
has been completely exhausted and no more requests can
be accepted on this connect channel. Connect9list will
rest in a busy loop until the queues are reduced by GIOC
activity. · · · ·

Assumin~ the queues are in proper order, a test of the
"active' switch for this connect channel is made. If
the channel is active, no more action need be taken as
the GIOC will eventually get to the CCW Just added to
the channel's queue. If the channel· is 1nactive, it must
be started.

.. .

. r

.. ..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF .20. 11 PAGE 23

To.activate th~ proper connect channel, ~ proper Command
Po1nter Word (CFW) must be placed in the connect channel's
mailbox. _Also, it is presumed that the 'entire hardware
queue, if any~ has been processe·d and can be scrapped.
This presumpt1on hinges on a.GIOC connect channel terminating
for only one reason, complet1on of processing of all CCWs
given to it on a connect c~ll. ·

The CPW is initialized by settin~ a status channel pointer
for the "exhaust" condition. "fhls insures the GIM being .
informed when the channel finishes processing ~ts list
of CCWs.

The hardware queue is scrapped (and the empty queue expanded)
by moving the 11 1ast11 pointer up to the "middle'' pointer.
The "middle" poin~er is moved up to the "first'' pointer,
unless "f.i rst" is lower than "middle"~ indicating a circular
queue, the extent of the queue is determined by the upper
end. If the "first" pointer has wrapped around to the
bottom of·the queue, 11 middle" is set to point at the upper
end of the queue. Consideration of the above algorithm
reveals that a circular ~oftware queue is effect!vely
broken into two queues, a hardware queue and another (smaller)
software queue •

The number of CCWs to be processed by the GIOC is simply
the difference between the new ''m.iddl~·· pointer and the
new ••last•• pointer, the· del !miters of the hardware queue.
This difference is placed in the CPtJ tally field and the
absolute address of the CCW pointed at by 11 1ast" is placed
in the CPW c:~ddress field,

A Connect Operand Word (COW) is formed using the symboli~
connect number for this ·connect channel. The·cow is formed
in accordance with requirements set forth in MSPM, BK.S.01,
the Multics Connect Processor.

The "active" switch in the CLCT is set ON. The CPW is
inserted in the proper mailbox and a ca1} to the Multics
Connect Processor is made. ·

Copying Ds~s Into i ~er's Ares-, - cread

One of the most delicate issues encountered when dealing
with an asynchronous I/0 device such as the GIOC is the
determination of when the data associated with a particular
DCW list hasbeen processed. In general, the GIM is confronted
with three major problems:

' . -.

MULTICS SYSTEM··PROGRAMMERS .. f'IANUAL SECTION BF .20. 11 PAGE 24

1. When to release areas dedicated for output

2. When to consider input as completed

3. When to compre$S DCW patches into the patched
or ma:ln list

The GIM resolves the above-mentioned problems by a single
call of the fo11owing form:

call cread (lctp, crtn)

where the arguments are declared as follows:

lctp ptr I* pointer to_a Logical Channel Table *I

crtn bit (36) l .. k stafldard error return word '~/

The cread module is charged with determining GIOC activities
and how they relate to DIM caller's data areas. In effect,
one could view cre~d as a module that follows the GIOC
around and tidies up data transmissions, updates list
entries, lli_.

Initial $etup includes getting _the GIOC number and GlM
channe 1 number for the indicated LCT. The GI oc number
is used to get a pointer to the Gl OC base via a ca 11 to
check~gioc. · Errors returned include i lle~al GIOC number,
"bdcall", and GIOC not available, ''giocnf'. Assuming
all is in order, the current LPW and DCW mailboxes for
the channel indicated by the LCT are extracted and examined.
A call to l~fnd will relate the LPW mailbox to a particular
list and item within the list. Possible errors include
only a s·ystem or machine error, '' syserr". Reference to
the entries "lct.copid" and 11 lct.copidx11 will reveal the
last known starting place of all unexamined list activity.
It will be the task of the cread module to start at this
location ·and "walk" along the DON lists unti 1 it reaches
the current list and item index. The following discussion
describes various bookkeeping functions performed on the
journey.

A particular list and item within the list is selected
for consideration. The pseudo-DCW is examined to see
if it is a data transfer DCW and if the transmission was
directed from an external device to core memory. That
is, a test of a data transfer DCW is made to see if reading
was involved. For reading, the following actions occur
for each item selected.

. ·•

-·"'
MULTICS SYSTEM-PROGRAMMERS' MANU~L SECTION BF.20.11 PAGE 25

A call to patch$blen will return the total number of bits
to be transmitted by the DCW in question. If ,my of these
bits have alr·eadl been copied by earlier calls to cread,
the entry 11 lct.Ct)pbtc" wi 11 contain the count of those
bits already cop[ed. A test is now made to de;:ermine
whether the item under inspection and· the current GlOC
DCW are one and the same. If they are the same one, then
only that data already input by th~ GIOC can be safely
copied. A call to patch$blen will return the tota7 amount
of bits left to be transmitted by· the GIOC DCW; the determination
of how many have been transmitted is then quitE' straightforward.
For coincident DCWs, a flag is set to indicate that cread
can go no further. If the items are not coincident, all
of the bits not copied by an earlier call can be copied.·
In addition, the flag is reset to indicate cread may continue
process·! ng.

Having deduced how many bits of the data area are to be
copied, the GIM references the "address space" vector
to determine where to place the data. A simple move then
places the data in the user's area.

After moving the data, a call to cread$step advances the
trail following mechanism by one GIOC ''step". If the
new advancement reaches the logical end, not physical
end, of the lists, the scan down the lists terminates;
a call to 1pw$safe guarantees that the channel has stopped
and will remain stopped. (See .G.IOC Cbann;l Activ,ity for
a discussion of active channels.} Possib e error~ from
1pw$safe include bad GIOC numper, ''badcall", and GIOC
not av~ilable, "giocnf". After making sure the channel
is stopped, all DCW lists and data areas for the proper
channel are released via a call to mkdcwtfree.

After processing all relevant items, cread updates the
information relevant to the last item processed, ''lct.copictt',
"lct.copidx", and "lct.copbtcn. Attention is then turned
to the compacting of patches back into lists being patched.
(S~e Patching Liv~ Lists for a discussion of patching.) ·

This is done in 2 steps.· The old DCW"'s in the main 1 ist
are replaced by the new DCW"'s in the auxiliary list.
The auxiliary list is then released. The first step may
be performed anyti~ after any read buffers associated
with an old DCW have been copied to the user's area and
the GIOC is not working on an old ocw. The data areas
associated with the old DCW"'s are freed and the ·old DCW"'s
·replaced by the new. This i$ done from the bottom of ·
the list to the top so that.the transfer to the auxiliary
list is replaced last.

MULTICS SYSTEM-PROGRAI.1MERS' MANUAL SECTION BFo20.11 PAGE 26

Once the transfer ls jone the GIOC enter~ the auxil tary
1 1st. If the auxi 1 iary is not being used now by th(~ GIOC
or the read-copying program it never will be and can be
released. The data a"'eas are not released as thev etre
now being used by th~ main list. ~verything is now back
to normal and the Patch is forgotten.

If the auxiliary list is being used by the G!OC~ the list
compression is skipped~ · ·

Note that another compression attempt may take pl,ace at
a later time.

