
•• . -!!' 

TO: 
FROM: 
SUBJECT: 
DATE: 

MSPM Distribution 
o. R. vlidrig 
BF.20.12 
12/ (11 ;r:·-. u. ,1/ 

Minor editorial chanaes have been made in the interest 
of greater clarity. ~Also, the 11 Compressed status word'' 
description has been expanded to more fu11y describe 
individual status bitso 



.... . 

MUL TICS SYSTEM-F·'ROGRAMMERS' MANUAL . . . . . SECTION BF .20~ 12 PAGE 1 

Published; 12/01/67 
(Supersedes: SF .20.12 07/19/67) 

... I"d.e .... n,;:;.t.i f .... 1 .... • c.a_t::;,;ion 

GIM - Interrupt ~andling and Status Requests 
D. R. Wiqrig and s.· D. Ounten 

Purpose 

This section is part 4 of the complete description of 
the GIM: see BF.20.02. 

Interrue,t.,.~Haf'ld,l_ing - gioc_stat$int 

Upon receivin~ an interrupt from a GIOC, the Multics Interrupt 
Interceptor w1ll ·mask all lower priority interrupts and 
call the GIOC Interface Module's interrupt handler with 
the following ca11: 

call gioc_s1at$int (giocno, statno, timep) 

where the arguments are declared as follows: 

(giocno 
statno) fixed 
timep ptr ·· 

/*. GIOC number causing interrupt */ 
bin(17) /* status thannel causin9 interrupt */ 

I* pointer to calendar-t1me of 
interrupt -,'(/ 

The GIM performs very few actions on interrupts ~n accordance 
with a· pol icy of swift re~ponse to interrupts as outlined 
in BK.O, MSPM. Pointers to the GIOC base and the appropriate 
status channel's LCT are.obtained via a·call to check$statusp. 
Errors returned from this routine indicates probab.le machine· 
malfunctions. Malfunctions are not dealt with in the 
GIM at the current time so a return is made upon detection 
of errors. · A short discussion of the GIM's hardware status 
queue discipline is now in order. Thorough knowledge 
of the GIOC handling of Status Control Words (SCWs) is 
assumed. 

The hardware queue for a given status queue handled by 
the GIM is, in reality, two status sub-queues. Each sub
queue is used by a single SCW. Thus, a particular hardware 
status queue may appear as follows: 

~ status control word 8 

! ~ · status control word A 
LJ~ 



MULTICS SYSTEM-):)ROGRAMMERS' MANUAL SECTION BF.2D. 12 PAGE 2 

After exhausting the queue controlled by SCWB, the G!OC 
exchanges SC1rJB and SCWA. Thus, if th~ prime queue is 
exhausted~ one might ~xpect to see the following arrangement: 

,---, 
I 

~-------------~ stat us cant ro 1 word B 

-V I r--
i 

status control word A 

To put it another way, the current upper bound of the queue 
is always obtained by inspecting SCWB. The role of SCWA 
is discussed later in Moving of Hardware Status Words. 

One can consider the hardwar~ status queues to be one 
logical aueue as follows: 

last 

status middle 1~~--~ 
c_ontrol-----.._· · ~~ } 
word B ~ 

. first d 

processed queue 

un-awakened queue 

The "un-awakened'' queue represents status words not yet 
· processed by the GIM. As such, the device manager processes 

interested in these status words have yet to be notified. 
The ''processed'' queue represents status words that have 
been processed by the GIM and have been brought to the 
attention of the appropriate device manager process; 

The GIM~s task upon being called by the Interrupt Interceptor 
is to awaken all device manager processes associated with 
status words in the "unawakened" queue. Clearly, if the 
"middle" pointer and the "first" pointer are identical, 
all status words have been processed. If "first" is less 
than 11 middle", the queue has wrapped around. To simpTTtY 

·processing, the upper bound is set to the end of the queue 
for a wrap-around case. Otherwise, the upper bound is 
set to contain the area b~tween ''middle" and "first". 

,r 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION SF .20. 12 PAGE 3 

Having established the boundaries of the.status words 
to be inspected, the following actions are performed for 
each status word, first the time of the interrupt is 
stored iri a soft~~re ana,og to the hardware status storage. 
In effect, the sc,ftware augments the hardware and simu 1ates 
the effect of the storing of the time of an inte~rupt 
as well as the status storing. Having stored the time, 
the channe 1 numbE:r stored in· the status word is extracted 
and tested. If t-he channel is a user's channel, the Channel 
Assignment Table (CAT) is referenced to obtain the device 
index of the charn~l. · A call to dstm$set_dev_signal (see 
BQ.6.01) is made to wake up the device manager processo 
Upon being awakened, the device manager process should 
call the GIM for status information via the reouest$status 
ca 11. 

If the channel is a connect channel, a call to the GIM 
~ntry conn~ct$int is made so as ~o restart the channel 
shoul~ there be some more CCWs to process. 

In a manner similar to the·queueing strategy discussed 
in List or Connect Channel Activation, the "middle" pointer· 

· is moved up to the end of the cu rrerit ''un-awakened" queue 
(thus expanding the "processed" quel!e) unless the end 
pointer is off the end of the queue·o If the end pointer 
has run off the end, the ''middle" pointer is reset to 
the base of th~ queueo The entire loop described above 
is then repeated until there are no new status words to 
be processed. The· routine the~ returns to the Multics 
Interrupt Interceptor. 

In qui ring as to Dev.i<:~ Status - requ·est$status 

Whenever a DIM wishes to discover the status of its associated 
lists and retrieve hardware status relevant to the active 
device,· th~ following call. is mad~: 

ca 11 request$status (device_i ndex, cur _stat,. rtn_stat,. 
[$tats)) · 

where the arguments are defined as follows: 

device index fixed bin. (17) 
cur_stat bit (1) · 

rtn_stat bit (36) 

I* user device tag *I 
I* O.N if current status 

desired *I 
I* standard GIM error return 

word ~·~1 



MULTICS SYSTEM-PROGRAMME~S' MANUAL SECTION HF .20.12 PAGE 4 

The opt iona 1 ar~g.Jment ( s), "stats'', is a st rL'ct u rc dec 1 areq 
as· follows: · 

del 1 stats, 
2 f i 1 1 ed !: it ( 1 ) , 

2 active bit (1);. 
2 s~~tus_wait~ng bit (1), 
2 started bit (1) 
2 int_id bit (24), 
2 int_idx fixed bln.(12), 
2 ta1 ly fixed bin (12), 

I* status frame *I 
I* ON if frame has data in 
. it ~'(I 

I* ON if channel is active */ 
I* ON if more status waiting·~': I 
I* ON if channel has started */ 
I* id list for· this ftame *I 
I* index of item in list */ 
I* current otw tally, if 

app 1 i cab 1 e -,'(I 
2 time bit (52), I* time of interrupt or 

· status ·kl 
2 stat_length fixed bin (17), I* length of status array *I 
2 stat (stat_ length) fixed bin (24.); /.,': breakdown or 

status '':I 

The remainder of this section discusses the setting of every 
item within a status frame and illustrates possible errors 
encountered by t~1e G IM. 

The GfM begins processin_g ~ request$status call by calling 
a general utility, check$device index; to verify the user 
device ta~, "device index". Possible errors from 
check$dev1ce_ind~x Tnclude an illegal device index, "baqdev", 
and no Logical Channel Table (LCT) associated with this 
device i'!dex, "lctnf''. 

Having vaJidated the user dev~ce tag and having obtained 
a pointer to the caller's LCT, the GIM calls gioc_stat$move 
to move all hardware status relevant to this user into 
the user's work ?lreas. Specifically, all relevant hardware 
status data is moved into the free storage area within 
the user's LCT. (Se~ the later section~ Moving of Hardware 
Status Words for further detai 1 s of the status moving ·. 
mechanism.) · 

After moving the stat~s d~ta, a call to ~etargs wi11 collect 
pointers to the ca11er's status frames, 'stats"-o · If there 
are no status frames to. be filled, ~ the caller $UPP1 ied 
none, request$ status immediately returns. Note that the 
main effect of a ca 11 with no supp 1 led st(;itus frames is 
to simply collect the status for later use. The status 
is not lost. · -· 



.. 
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF .20.12 PAGE 5 

Assuming that the caller did supply one or more status 
frames, th~ GIM now proceeds to ·fi 11 them. A ca11 to· 
ch~ck$gioc and 1pw$active wi 11 collect a·po!nter to the 
GIOC mailbox ast.ociated with the caller and determine· 
current channel activity. Possible errors from the above 
two calls incluc:e ille~al GIOC number, ''badcall", and 
GIOC not available, ''g1ocnf". · . 

A check of "cur stat" is now made in order to determine 
the order of status being returnee!. If 11 cur ·stat'' is 
ON, the caller e.'l(pects· to receive the current list status 
i.n the first (and possibly, only) status fral'l'le supplied 
in the calling· sequence. The following discussion assumes 
that '\cur_stat" is ON. · 

For active lists, the GIM m~st 6onstruct a list status 
which is relevant to the actual G!OC processing of the 
caller's DCW lists~ For an active list, the GIM collects 
the current LPW and DCW mailboxes via ca·lls to doub1e$load, 
a sma 11 EPLBSA r•)Ut i ne which gets mai 1 box area!; via doub 1 e-word 
instructions. Double-word instructions are necessary 
to insure the consi~tency of the dat~ gotten from the 
mailboxes. The LPW mailbox is examined and the equivalent 
list id and item index derived by a call ~o 1pW$fnd. · 
The only error pos·sibili1:y is a system or machine error, 
11 syserr". Lpw$fnd a 1 so determines whether the LPW has 
moved since the connect$1ist call by matching the current 
LPW with the LPW saved at the time of the connect$1 ist · 
call. If the LPW has moved since the connect$1ist call, 
''stats.started" in the caller's status frame is set ON .. 

Having matched the LPW, a test is made to determine whether 
the LPW is pointing at a ·patch list. If the LPW is pointing 
at a patch list, the list data for the list which is being 
patched is substituted. The substitution insures that 
the patch is· transparent to th~ user. (See Patching Live 
Lists.) ' 



MULTICS SYSTEM~PROGRAMMERS~ MANUAL 

EXAMPLE 

mair list 

~· pate~ 
I 2 

I 3 
I LP.W pointer 

SECTION 8F.20.12 PAGE 5 

1 

2 

3 

4 

Equivalent 
· LPW pointer 

.. 

4~--+-3 

5 Curr~nt list: patch 5 
Current list: main 
Current item~ ~ · 

Current item: 2 

Before Sub~ti t~t'ion · After Substitution 

Having gotten the 1i st IO and i te!TI in.dex, "sta·~s. i nt_idx'', 
and "stats.il!t_id'' are 1nserted into the caller~s status 
frame. The DCW tally from the DCW mailbox is copied into 
"stats.tally''. Note that for. an inactive channel as noted 
by the earlier call to 1pw$active, the list ID, item inde·x, 
tally, etc. ~re all set to zero. · 

Having collected the li$t data, the current time is noted 
in "stats. time", the channel activity is m~rked in "stats.active" 
and the "fi llecf' ~ritry is set ON. This completes processing 
of ·the first st~tus frame if current status was requested. · 
The GIM continued by translating rel~vant hardware status 
words into items required by the caller for all caller-suppl led 
s~atus frames except the current status frame (if one · 
was requested). · 

Recalling that the earlier call ~o gloc_stat$move h~s 
·moved all relevant status into the caller~s Logical Channel 
Table (LCT) the GIM examines the start o.f the status thread, 
II lct.fststat''. If the start of the thread is zero, no 
status data currently exists for this caller. In the 
case of a zero thread, request$s.tatus simply sets ''stats.filled" 
and "stats. status_wai ti ng" to ~ero in a 11 caller-supplied· 
status frames. That is, the G!M announces there is no 
status to return. 

For a non-zero thread,.the st~tus data pointed at bY ''lct.fststa~' 
is unthreaded and prepared for use. The first item in · 
the chain i~ the oldest status data; the last item is 
the most recent. 

:. 

.....J. 



. ' -

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 8F.20.12 

The declaration for each status data block is 

1·k Declarations for chained status frame ·kl 

del 1 sfrm based(fststat), 
2 nextp bit ( 18 ), 
2 time b i t (54), 

I* chained status *I 
1-1~ offset of· next frame ~'r I 
I* time at interrupt *I 

PAGE 7 

2 statwd bit(72); I* interrupt status word */ 

To unthread the first item, one simply r-esets "1ct.fststat'' 
to be equal to "sfrm.nextp'', thus re-1ir)king the chain 
around the first status block 

EXAMPLE 

·~ fststat_! 
1 s·tstat 

!. ' 

nextp r=l. 
lt 0 ~~extp 

Before unt~reading 

fststat 
lststatl 

i 
I 

i . J. 

\_g_:::(.,._ nextp 

After unthreadiMg 

A check is then made to see if the end of the chain is 
reached. If the end has been reached, "lct.lstst9t" is 
zeroed. The user-supplied status frame is updated with 
the "status;_waiting" swit~h by simply setting the switch 
ON if the thread has not ·been reduced to the empty thread. 

By matching the LPW tally stored ~n the hardware status 
word with the LPW which was saved in "1ct.stlpw' at the 
time of the connect$list call, the GIM determines whether 
the LPW has moved since it was set up. The proper entry 
in the caller's status frame, "stats.started", is set 
accordingly • 

. Request$status continues by matching the LPW tally with 
the tally base and len~th of all currently defined lists 
in order to find the l1st and item associated with the 
LPW tally stored in the hardware status word. Reference 
to the section entitled Generation-of DCWs gives the mechanism 
which insures a unique match. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF .20~12 PAGE 8 

·If a match is found,. the .1 ist ID and item index are posted 
in "stats.iDt'T'i,~'':and "stats,int_idx", respectively. 
If no match w1t'1 any currently- defined list is found, 
the ID and inde;-< are set to zero. In addition, a no-match 
case will cause "stats.started" to be set OFF, by convention. 

Havin~ posted the list identity, the DCW tally residue 

.. 

and t1me of interrupt are copted from the status block 
into "stats. tally" and II s tats. time"" respectively. Reques t$status 
now calls statfil, a routine which takes a hardware status 
word and proces~:es it a<;cording to the instructions found 
in the appropriate-Class Driving Table. Possible errors 
from statfil include COT not found, "cdtnf", illegal field .. 
action coqe in COT, 11 i llfld", GIOC not available "giocnf", 
bad GIOC number, "badcall", ~nd too many lists, 11 tmlst". 

The role and actions of statfil is more completely discussed 
in a later section,· Stetus Word Translations. ·We note 
now, however, that statfil. updates the channel activity 
flag to reflect whether the channel is still a=tive. 
This flag is then PQSted by request$status int.:) "stats.active'' 
for the caller's convenience. 

'• 

As final actions for the caller-supplied status fr~me, 
the ''filled'' switch is set ON, the unthreaded status block· _.~ 
is freed and the next caller-supplied status frame is ~ 
selected, Upon exhausting the status frames, request$status 
returns. 

Moving of Hjrdware Status Wgrds - g~oc_stat$move 
. . . . .· .. . ... '. 

At certain times. it is necessary to move the contents 
of a hardware status q~eue into a larger. pageable ar~a. 
Such moves generally occur as a result of a DIM calling 
the GIM for status·through the request$status entry. 
To move status Words,. .the GIM makes the following call: 

call gioc_stat$move (lgch, lctp, polsw) 

where the arguments are d~fined as follows: 

lgch fixed bin (12), 
lctp ptr 
polsw bit (1) 

I* 1 og i ca 1 channe 1 number ''(I 
I* pointer to LCT */ · 
1,'( always 1'0"b in current 

implementation *I. 

In order to move the status words, the GIM first moves all 
relevant status words on all GIOCs -into a large, pageable, 
data base known as the Channel Status Table (CST). 



... ,, , ' 

MUL TICS SYSTEM- PROGRAMMERS"' MANUAL PAGE 9 

The move to the CST is accomplished in the fo 1 ~owing manner. 

For each GIOC, a pointer to the GIQC base is ~xtracted 
via a check$gioc call. Then, .the following ac:tions are 
performed for each status channel on the selected GIOC. 
A pointer to the selected status channel's LCT is extracted 
via a ca 11 to c~1eck$statusp. · The "last" and '; midd1e11 · 

pointers for the statu~ queue are extracte~ and tested. 
If !'last'' and "middle" are identical, there are no un-·processed 
status words so no further action is needed fer this status 
channel. HowevE·r, if 11 last" is less. than "middle'', then 
all the status words from "last" to "middle" must be moved 
into the CST. If "last" is greater: than "middle", the 
queue has wrapped around the end and on1y the status words 
from "lastn to the end of the queue should be moved. 
Having selected the boundaries, the following action occurs 
for each status word. 

Until the model 3 GIOC arrives, a call to "fak·=72'' is 
made to transfor.n each 36-bi t status word into a format 
approximating the 72-bit status word stored by the mode1 
B GIOC. The GlM is oriented around a 72-bit status word 
so that installation of the model B GIOC requires only 
the removal of the fake72 ca11. 

The physical channel number is extracted from the hardware 
status word and tested to see if it is a user channel 
or a connect channel. Assuming a user channel, the following 
actions are performed. 

For a user channel with a defined Logical Chanoel Table 
(LCT), the GIM attempts to insert the hardware status 
data into the Channel Status Table (CST). The storage 
is done by inspecting the free storage chain originating 
in slot 0 of the index table of the CST. A chain pointer 
of 0 indicates no free stora.ge is available. For a 0 
chain pointer, a new slot must be extracted by reference 
to the highest index currently allocated. This index 
is incremented anq the appropriate CST entry, cst.hix, 
is updated. It is hoped that careful re-use of free storage 
will tend to keep the CST compacted and alleviate paging 
necessity as much as possible. Each status block has 
the following declaration: 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF o20. 12 

I* Declarations for chained status frame *I 
de 1 1 sf rm ba sec! ( f s t stat ) , 

2 nextp bit (18), 
I* chained status */ 
I* offset of next frame *I 
I* time at interrupt */ 

PAGE 10 

2 time bit (54)., 
2 statwd bit (72); I* interrupt status word */ 

Having selected a slot for storing the status data, the 
free pointer is threaded to point to the area indicated 
by the forward pointer of the ·new area. The forward pointer 
of the new free area is then reset to indicate no forward 
chain. The chai~in~ up to this ~oint is illus~rated in 
the following diagram: · 

Before Threading 

Pointer o· fstx i . ~, I . . 

. . : ~J 
New Area 1 · f nxtx · 

Free Free Pointer 

New Area 

Free Area Free Area 

- . 

Free area discipline 

After Threading 

fstx 

,.----:::------. n X t X 
0 

The status word is now inserted in the status block entry, 
11 statwd11 .: The· time of the interrupt is copied into the 
new status block entry. The status block is then threaded 
into the other status blocks relevant to the logical channel 
under inspection. A simple demonstrat-ion of the threading 
of a status block is shown in the following diagram:· 



... • 1 

MULTICS SYSTEM-F'ROGRAMMERS' MANUAL SECT I ON 8 F • 2 0. , 2 PAGE 1 1 

f3efore Threading After Threa¢ing 

channe 1 #n l s tx~-:~r------.'- fstx channel #n 
..._,_-~1-r 

fstx 

status 
block 

... , 
I 

0-+-

lstx 
nextp ril.nextp 

! . I I 

new 
status 
block 

~nextp 

! 

·i 

To express the threading in words, the CST is a number 
of single-thread~d chains in which each·separ~te chain 
corresponds to a particular logical channel's unclaimed 
status words. 

ne?<tP 

After threading in the status data, a check is made to 
oetermine wh~ther a hardware status sub-queue boundary 
was passed. If a boundary was passed, SCWA of the appropriate 
status channel is reset to re-use the sub-queue just emptied. 
If the mid-boundary was passeo, SCWA is reset to point 
to the lower sub-queue. · If the upper boundary was reached, 
SCWA is reset to point at the upper sub-queue. 

Having moveq the status d~ta into the CST, the "last" 
pointer is updated to the end of the status words that 
were moved. If the upper end of the queue is reached, 
"1 ast" is reset to the first item in the queue. After 
processing all status queues on all GIOCs, the second 
phase of the sta,tus block moving commences. 

In the second phase. status data relevant to the logical 
channel indicated in the call to gioc_stat$move must be 
moved from the CST into the user's work area within the 
Logical Channel Table (LCT) for this ·channel. 

Moving status blocks from the CST to the indicated LCT 
consists mainly of the allocation and ·threading of a status 
block within the user's LCT and the filling in of the 
status block from data contained within some particular 
status block in the CST. The actions are performed in 
the following manner. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 3F .20.12 PAGE 12 

The first and L3st pointers for the proper 1oqica1 channel's 
thread· in the C.")T are extracted and saved. Ii: the first 
poi~ter is zero, there are no entries in the thread. 
For a zero threc:td, an immediate return is madE·o 

. A non-zero threa:d pointer indicates one or more status 
blocks exist and must be moved into the proper LCT. The 
following actions.are performed until all of the chain 
elements have been moved into the proper LCT. 

The status block structure is allocated in the LCT. It 
has the following declaration: · 

I* Declarations for chained status frame *I 
del 1 sfrm based(fstst~t)~ 

2 nextp bit (18), 
2 time bit (54), 
2 statwd bit (72); 

I* chained status *I 
I* offset of next frame '"I 
I* time.at interrupt*/ 
I* interrupt status word ,.,1 

After allocating the $'1;ructure, its forward pointer, ''sfrm.nextp", 
is zeroed to indicate·no further entries are currently 
threaded to this item~ The hardware status and time are 
then copied from the ~ppropriate entry in· the CST. Note 

I ' •,.. 

that the oldest entries for a particular channel are copied 
first. · ._f 

If no entries are currently chained in the LCT, the forward 
thread, ''lct.fs.tstat'', is set· to point at the allocated· 
status block. ·If one or more entries are already threaded 
in the LCT, ~he forward thread of the last alloc~ted block 
(exclusive of the block under cons.ideration), "sfrm.nextp", 
is set to point at the new status block. In either event, 
the end-chain pointer, "lct.lststat", is set to point 
at ·the newly a 11ocated block. 



... ' ' 

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BF.20.12 PAGE 13 

~xpmP,le 

fststat - 0 

1 ststat - 0 

, New status r-;:J_ · 
block ~ nextp 

Before threading 

New status . . 
block ~nextp 

No blocks 
threaded 

One or more blocks 
already threaded 

fststat-, 
I 

1
-lststat 

I 
I nextp 

After threading 

fs.
1

tst?t"'.t. 
1 lststat 

t__: nextp 

After· threading the status plock within the LCT, the matching 
entry within the CST.must be unthreaded. The CST unthreading 
is accomplished by simply setting the thread starting 
pointer, ''est .xtab (n). fstx11 , to point to the same p 1 ace 
as the current first block's forward pointer. Ineffect, 
this action threads around the first block. If the new 
forward pointer is zero, there are no more entries in 
the thre~d. For an empty thread, the end pointer, 
"cst.xtab(n).lstx", is zeroed and the entire chain of 
(now unused) status blocks· is returned to the free storage 
chain by splicing the beginning of the free storage chain, 
"cst.xtab(O).fstx", to point to the first status block 
in the thread and setting the last status block in the 
thread to point to the old beginnin~ of the free storage 
chain. After updating the chain, g1oc_stat$move returns. 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION 8F~20.12 PAGE 14 

Stetus Worp Trar.s 1st ion .... statf i 1 

In order to relieve the DIM writer of much of the burden 
of deciphering raw hardware status words, the ~IM offers 
the capability of pre-programmed trans1ation oc status 
words into meaningful symbolic units. In orde- to obtain 
translations, the request$status module makes the following 
ca 11 : 

call statfil (lctp~ lgch, sfp, swdt, actbit, srtn) 

where the arguments are declared as: 

lctp ptr ~~~ pointer to Log ica 1 · Channe 1 
Table ~'>I 

fixed bin ( 12) I-;'; lgch lo~ical channel number *I 
sfp pt r I·'· po1nter to user's status frame " 
swdt bit (72 ). 1-;r hardware status word ";'rf 
actbit bit ( 1) f"k channe 1 act~vity bit ~.,I 

srtn bit (36) I* standard GIM error return 

One can conceive of the translation mechanism as a reverse 
implementation of the normal Class Driving Table (COT) 
manipulations used in list editing. That is, one receives 
the necessary ind~ces, .literals, §.l£. instead of giving 
them. 

word 

In order to remove device-dependent information from the 
.GIM, three standards must be adhered to in constructing . 
a Class Driving Table-zcDT) used for status word translations; 

1. Field 1 of the status translation part of the COT 
must contain a description of a terminate condition 
form of hardware status word. 

2. Field 2 of the status translation part of the COT 
must contain a description of an adapter error . 
hardware status word. 

3. Field 3 of the status translation part of the COT 
must contain a description ·of a GIOC-wide error 
hardware.status word. 

If the above three requirements are met, then the DIM 
writer can expect to find three straightforward status. 
flags contained in the returned status frames. Moreover, 
as wil 1 be shortly demonstrated, the GIM also expects 
to use these flags. Assuming the above requirements are 
met, the following wi 11 be adhered to by the GIM: 

• ~ I .... 

,, !.f 

"'irf 



...... ' 

MUL TICS SYSTEM- PROGRAM~ERS' MANUAL S.ECTlON BF .20 •. 12 PAGE 15 

. . 
1 • Statf.stat(1) =·1 if and only if a terminat~ .condition 

WaS detected in a relevant hardware Status '.NO.rd. 

$tatf.stat(2) = 1 if and only if an adapter error was 
detected in the GIOC adapter containing the relevant 
physical channel. 

3. Statf.stat(3) = 1 if and only if a GIOC-wide error has 
occurred. 

To faci 1 itate trans lations, the "Gompre·ssed" status word 
is used throughout ~he statfil module. The compressed 
status word is a condensed raw status word which leaves 
only those items of interest ·to the ·user. It will be 
recalled that such items as DCW residue, LPW tally, ~. 
are all handled separately by other GIM programs~ The 
compressed status word which is constructed has the following 
declaration: 

del 1 cswd based (p) I I* declarations for compressed 
status word *I · 

2 cause bit (4), I* bits 0-3 of mod B GIOC status 
word *I 

2 int~ig bit (2 ), I* l::;lits 4-5 of mod 8 GIOC status 

2 status bit (12)" 
word ·~:1 

I'": device status from GIOC 

2 dcwsw bit ( 1)" l''r 
adapter ·kl 
low-order bit of devic~ channel 
number ·kl 

2 given bit (4), I* not used on mod B GIOC; on mod 
A GIOC, the four bits relate 
how much status is relevant *I 

Following initial setup, statfil prepare~ for translation 
by determining the greatest number of fields that can 
be safely processed by taking the smaller of the number 
of COT fields and the length.of the status array, . 
"statf.stat1''. This number is then used to control the 
following loop iteration· count. The following processing 
occurs for each field found in the COT for type 1 (status 
request) entries. · 

for each field, the COT i~ ~hecked to insure that the . 
field is defined. Undefined fields will cause the matching 
status frame entry to be set to ;zero; no other processing 
action for that frame takes place. For a defined field, 
a pointer to the appropriate COT "field" sub-structure 
is generated. The action code for this field is extracted 
from the·''fieldn Sl:Jb-structure. 



MULTIC~ SYSTEM ... PROGHAMMERS·, MANUAL SECTION BF.20.i2 PAGE 16 
. . . 

An action code of 1 inqicates a mask-value substitution. 
In .mask-va 1 ue subs t ~ tut idn; statf i 1 ·searches the "va 1 ue" . 
array of the current fleld.for an item which, when viewed 
through· the current field. mask, matches the f.Q~,ore;:;_~9 
hardware statu;; word. Upon finding a match, the 1~ 
of the ''va 1ue11 array -cqntaining the match is placed .1n 
the status frame entry, 11 statf. stat (n)!'. If no match 
occurs, a zero is pl,:tc~d in· the status ·frame entry. 

Note that mask-value substitution must be carefully considered 
when constructing a CDT as it is apparent that the field ·. 
mask selected for a particular field has a powerfu1 effect 
on the choice of ''va1ue" entries.. A moments consideration 
of the fo11owinq entries wi 11 reveal that the example's 
field mask has the effect .ot nullifying three of the "value" 
entries. 

EXAMPLE 

fIELD MASK 

VALUE ( 1) 

VALUE (2) 

VALUE (3) 

VALUE(4) 

VALUE(S) 

, 00 •••••. 

. .00, ••••• 

· 010 •• ~ •• 4 ... These values appear 
· ~ identical when AND'"'ed 

011 ••••• r· ... ·through the field 
· · . . mask 
100 ••••• ··.·· . . 

101 ••••• 

An action code.of 2 indicates literal substitution. In 
literal substitution, the compressed hardware st~tus word 
is ANO'ed th.rough the current field .mask, 24 bits are 
extracted from the resu.l t and. placed in the p·roper status 
fram~. The selection of wh~th 24 bits to use is. given 
by the "field end" quantity for .the current field~ The 
1 i tera 1 subst Ttut ion ·opt ion might we·ll be used to extract 
the raw 12-bi t device ·status and return it to the caller 
for further processing, .· · · · 

Any other act ion code is in error ·and wi 11 cau;;e the 11 i 11 f 19" 
error to be set. Since the action codes are derived from 
the CDT itself, the."illf.ld" error indicates a defective 
Class Driving Table. After translating the hardware st~tus 

· word, statfi l must now· tend to· any Charine 1 activity and 
check for major syste~ errors. · 

The curre~t channel activity is ~tched against the detection 
of a term1nate status in the current hardWare status word. 



MULTICS SYSTEM-::~ROGRAMMERS .. MANUAL SECT!I)N BF.,20.12 PAGE 17 

·should the channel have ceased activity (as dEmcnstrated 
by the current ~tatus word) a call to cread w111 insure 
that a 11 data h.;,s been moved to the user "'s arE a 0 (see 
~o2J:io.9. Q.slts Jflt.Q ,S .!J.?er"'s ~).. Possible errors from 
cread include: bad GIOC number, nbadcall", GlOC not available, 
"giocnf'', systerr or machine error, "syserr", a:1d LCT space 
exhausted, "tmlst11 o After copying any outstanjing data, 
a call to lpw$safe wi 11 insure the channel is ·:ompletely 
stoppedo Possible errors include bad GIOC number, "badca11 11 , 

and GIOC not available, .11 giocnf 11 
0 .L\fter shutting down 

the channe1, a11 pew and data areas are released via a 
ca 11 to mkdcw$f n~e. 

The GIM now tests statf.stat(2) to .see whether an adapter-wide 
~rror occurred. A typical ac;iapter error is a delay-(ine 
aychronization error on the teletypeadapter. Should 
an adapter error occur, the GIM proceeds to note an adapter 
error for all channels connected to the adapter containing 
the; current channel. ·The adapter error bit, 11 c1dper", 
(found in the CST) is t~rned ON for all affected channels. 

. . 
After testing for an adapter error~ the GIM tests the 
statf .stat (3) word for a GIOC-wide error. Such errors 
reflect the ultimate in calamity as all Multics devices 
except the Fire Hose Drum will be adversely affected. 
Upon detecting a GIOC-wide error, a11 channels on the 
affected GIOC have their GIOC error bit, "giocer", (found· 
in the CST) turned ON. · 

Having checked for major errors, statfil tests the adapter 
error bit, "adper",. (within the CST) for the current cha"1ne1 o 

Should the bit be ON; the adapter error flag is set in 
the proper status frame, 11 Statf.stat(2)11 , and the cs:-
entry i~ reset. Similar actions occur for the GIOC ~rror, 
"giocer", except that the GIOC error flag is set in 
11 stat f. stat ( 3 )" • 

After completion of the above error checking~ statfil is 
finished. 




