
.. _,c- zscs:

TO; .
FROM:
SUBJECT:
DATE:

MSPM Distribution
R~ R. Widrig .
BF.20.13
12/01/67

The document has been expanded to include a.description
of a new entry, "check$device_narne"o

. MUL TICS SYSTEM-PROGRAMMERS" MANUAL SECTION BF .20.13 PAGE 1

Published: 12/01/67
·(Supersedes: BF.20.13 07/19/67)

Identification

GIM- Miscellanedus
D. R. Widrig .and s. D. D~nten

.Purpose

This section is part.S of· the complete description of
the GIM: see BF .20.02,

Ge·neral List Ut11ities-check$list .. check$device index, check~gioc,
- check$connect, check$statusp,

check$device~name

Many of the GIM procedures require val-idation and/or generation
of data relevant to a particular devic~. For instance, ··
the GIM may need a pointer to a user's Logical Channel
Table (LCT), or the GIM may wish to verify that an item
index is contained with a list, etc. The various checking
and generation routines are ~ontained within a single
module named "check". The various routines are ·described
in the following section.

A moments inspection reveals that many of the items relevant
to a user's list are quite inter-related. Specific relations
may be found among the following list items:

1 • list .ld

2. Logical ·channe 1 Table (LCT)

3. list number

4. item index

s. List Status Table (LST)

To derive and/or check the validity of.the above-mentioned
items, the GIM mak~s the following call:

call check$1ist (con.trol_bits, id, lctp, idf,. idx_.
lstp, lrtn)

where the arguments are d.eclared as follows:

control bits bit(B)
id bit (24)
lctp ptr-
(idf
idx) fixed bin(12)
lstp ptr
lrtn bit(36)

;-:c check and verificatfon control */
;·:r list 10 '"/
I* pointer to user's LCT *I
/'" 1 ist number "l'c/
/-,': item index ·::;
I* pointer t6 LST */
I* standard GIM error return word *I

MULTICS SYSTEM-PROGRAMMERS' MANUAL S~CTION BF.20.13. PAGE 2

The variable "control-bits" is used to control the checking
and validation of the list data. It can be conceived
of as.a micro-coded dispatch tqble with the following
meaning:

Bit Number Meaning if Bit is 1

1 Derive LCT pointer from !D

2 Derive 1 is t number from ID

3 Not used

4 Derive LST pointer

5 Ch~ck LCT pointer

6 Check list number .

7 Check item index

8 Check LST' pointer

Consideration of the items involved quickly reveal th~t
many subtle inter-relationships exist. For instance,
a request to derive an LST pointer requires prior vc:tlioation
of the list number and the LCT pointer as these two items
are necessary for deriving a LST pointer.

Assuming that various consistency inter~relationships
of the type mentioned above are handled automatically
by the check~ 1 ist procedure, the following i terns are (or
can be) tested:

1 • LC T poi n te r va 1 i d i t y

·Errors include: illegal logical channel number in id,
11 badid11 • LCT not found, il lctnf11 •

2. List number Validity

Errors include: illegal list number from bad id:
11 badid" •.

3. LS T pointer va 1 idi ty

Errors include: list not defined: ''lndef".

4. Item index validity

Errors incll.!de: bad item index: "badcall 11 •

-~·

MULTIC SYSTEM-PROGRAMMERS"' MANUAL SECTION BF .20. 13 PAGE 3

The device name offered by a DIM caller as a result of
its receiving an 11attach" call can he checked and processed
by an inter..;.GIM call of.the form:

call check$deyice_name(device name,dct index,device index,
drtn) . · · - · - . . - ·

where the arguments are defined as follolllfs·: .

devi"ce name char('"") /'': name of device in OCT ~"!
dct_index fixed bin(l7) f·k returned index of device in

. DC T -J:j
. device ·index fixed bin(17) 1~'r device index from DCT ~.,1
drtn bTt (3.6) 1~" standard· GIM error return

word ~"!

Check$device..,.name ·scans every ent~y in the Device Config~ration
Table searching for a match of ''device name". Upon f1nd1ng
a match, the entry number of the match1ng name is. returned
as "dct index".· The "device index is returned from the
data f.o~nd in the matching entry 0 .

Errors returned include only a name. for which no match
can be found, '' badca 11" o

The device· index offered by a DIM caller in such calls
as re~uest$~tatus and define$1ist can be verified by a
ca 11 of the form:

ca 11 check$device_index (device_index, lgch, lctp, drtn)

·where the arguments are defined as follows:

device index ·fixed bln(1?) ·
lgch fTxed bin(12') . ·
lctp ptr
drtn bit(36)

I* user device tag *I
I* logical channel number *l
I* pointer to LCT *I .
I* standard GIM error

word ~'r/

Check$device.index calls o.ut to the inter-process communication
ackage (See t30o6 .• 01) to get the relationship between the ·
device index, ''device index", and the logical channel
number, "lgch'' o The Togical channel number is returned .·
to the caller. The logical channel number is then verified
to insure that it is within the proper bounds. An error ·
results in the ''baddev'' ·error. Assuming the logical channel
number is within ·the proper bounds, the proper LCT segment
number is extracted from the Channel Assignment Table
(CAT) and checked. A segment number of zero indicates
no LCT is currently defined for this logical channel.
This error causes the '' lctnf" error to be set. Assuming
a legal segment number, a pointer to the LCT is constructed
and check$device_index returns triumphant.

MUL TICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BF .20. 13 . PAGE 4 .

Several other utility routines include~ in the check module
are:

check$gioc (giocno, gioc_ptr, grtn)
check$connect (giocno, connect_no, connect_ptr,

gioc_ptr, crtn) . . . ·
check$statusp (giocno, statno, status_ptr, g1oc;...ptr, srtn)

where the arguments are declared as follows:

(giocno
connect no
statno)-fixed bin(17)
(gioc_ptr
connect_ptr

status_ptr) ptr
(grtn ·

crtn
srtn) bit(36)

I* GIOC number *I
/')'r connect channel number ·kf
I* st~~us channe1 number */
I* pointer to·GIOC base *I

.·f* pointe~ to connect channel
LCT *I

I* pointer to status channel LCT *I
I* ~t~nd~rd GIM .error ~eturn

word*/
•••

A 11 of these routines validate the input arguments and
return the proper pointer to the desired data base. The
information relevant to each data base is contained within
the CAT and is processed in a manner similar to the processing
of the LCT pointer in the check$device_index call.

S§tting an Lf'W f1silbqx• 1pw$set

The GIM makes the following call when it is desired to
set the list channel mailbox:

call lpW$set (lctp, lstp, idx, srtn)

where the arguments are defined as follows:

lctp ptr
lstp ptr

idx fixed bin(12)
srtn bit(36)

I* pointer to user'~ LCT *I
/~'r pointer to 1 ist to point LPW

to */ ·
l* ·index of · i tern to point LPW to ~·c;
I* standard GIM error retur~ word *I

Upon receiving this call, 1pw$set calls lpw$mktra to make·
a transfer DCW which points at the proper item in the
indicated· 1 ist. Inspection of lpw$mktra reveals that
lists with no currently defined pews are translated and
readied for use. Having gotten the transfer DCW from .
lpw$mktra, one makes the shrewd observation that the only
c1ifference between· a transfer DCWand an equivalent LPW

··mailbox is the 3-bit type code. Thus, lpw$set transforms

--.,...)

MULTICS SYSTEM~ PROGRAMMERS' MANUAL SECTIONBF.20.13 PAGE 5

the transfer DCW into an LPW mal lbox entry by .simply resetting
the DCW type code.

A call to check$gioc will verify that a working GIOC is
to be used and will return a pointer to the GIOC mailbox
area. Errors include an un.usable GlOC, "giocnf" or a
bad GIOC number, 11 badcall". ·

Assuming no errors, the LPW is placed in ttie proper mailbox
via a call to double$store. Double$s.tore is a tiny,
machine-coded, routine which accomplishes the setting

· of the 2-word mailboxes by such doub le.;.word ope rat ions
as STAQ. This is necessary since setting only one word
of the mailbox at a time could run into emb~rrassing and
unpredictable GlOC behavior. ·

Having inserted the LPW into the mailbox, a copy is placed
in the user's LCT at the entry "lct.stlp\-.111 for later use

. in the lpw$fnd call. Lpw$set then returns. ·

Relating a LPW to, a List- lpw$fnd

At certain times during editing of active lists and during
the request$status call from a DCM writer, the GIM needs
to be able to relate a hardware List Pointer Word (LPW)
mailbox content~ to a particular list. and item within
the list. To relate the above quantities, the GlM makes
the following call: ·

call lpw$fnd (lctp, fbit, fidf, fidx, flpw,. rtnf)

where the arguments are declared as follows;

lctpptf.
fbit bit (1)

fidf fixed bin(1~)
f i dx fixed bin (12)
f 1 pw bit (72) ·
rtnf bit(36)

I* point~r to user's LCT *I
i'~ ON ir LPW has not moved since

startup -.trl
I* list number of related list *I
I* index of related item */

· I* test LPW to be related *I
I* standard GIM error return

word ·kf

Upon receiving the call, ·lpw$fnd starts by setting the
list number,. ''fidf",. and the item index,. "fidx" to 0 indicating
no related list or item could be found. The address field ·
contents within the LPW are extracted for later use.
The LPW is then matched against a copy of the starting
LPW which was saved during the last time the list was
activated. (Recall that this item was saved in the user's.
LCT as "lct.stlpw" during the lpw$set call from connect$1ist.)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.20.l3 PAGE 6

A match indicates that the user's LPW is sti 11 pointing .
at the first item and has not moved. The caller of 1 pw$fnd
may be interested in knowing this so 11 fbi t" is set ON
to indicate it.

A mis-match indicates the LPW has moved since the list
was activated. To put it another way,· the GIOC·has done
some processing on the DCW lists. A mis-match causes . .

. "fbit" to be set OFF' and the absolute address saved earlier
to be backed up 2 locations •.. This "backing up" or decrementing
of the LP\rJ address reflects the fact that the GIOC LPW
discipline is such that the LPW always points to the.~

· thing to be done. That is, the item of interest is the
one immediate 1 y before the LPW address. ·

Having got'ten the LPW address, a search is made of a 11
defined lists which have defined DCW lists •. Errors in
conversion of pointers into absolute addresses wi 11 cause
the system or machine error, "syserr'', to be set. For
each DCW list, the span of absolute addresses covered
by the list is checked to see if it covers the LPW address.
If it does, the 11 st related to the offered LPW has been
found. Simple arithmetic will get the item, lpw$fnd returns.

If no list spans the LPW addrE?ss, the default settin~s
for the Ust number and item 1ndex are returned. Th1s
case is not considered an error. · ·

