
,~.

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.3.01 PAGE 1

Published: 01/10/68

Identification

Interaction between the 1/0 System and the
Quit/Start, Save/Resume, and Logout Mechanisms
s . I • Fe 1 dma n

purpose

This section describes the to ,an~rol procedure, which is the
Interface between the Overseer and the 1/0 System. Certain entry
points are called by the Overseer to stop, start, and reset
various lopaths. The other entries are call by the 1/0 System to
update the data base needed by the other entries of to ,antral,
the Overseer loname List (OIL).

lbA Overseer loname il&1 (OIL)

The OIL Is the data base of the lo control procedure. This table
contains the list of lonames of devices known to the process
group, and the set of event channel names associated with that
loname. The OIL also Includes a lock list, certain Indices Into
the tonames array of the OIL, and the process fd of the Overseer.
There Is also the name of an event channel to be signaled which
will cause to ,ontrolSeyent to be called In the Overseer process.

del 1 oil based(p), /•Overseer loname List•/
2 overseer_ld blt(36), /•process ld•/
2 qult_report_event blt(70), /•If lo_control$set_com_source

" has been called, this event
" will be signaled If a quit Is
" subsequently detected on the device•/

2 command_hangup_event blt(70), /•event to be signaled
" when command source hangs up*/

2 lo_control_event blt(70), /•event to be signaled to cause
11 lo_contro1$event to be called In the
11 Overseer process•/

2 response_event blt(70), /•event to be signaled when finished
11 handling to ctJSeyent•/

2 response_proc_ld bft(36), /•process to receive above signal*/
2 command_source fixed bin, /•Index In the lonames array

" of the present command source*/
2 create blt(l), /•If 1 when lo_control$event Is called,

" create an event. If O, destroy
" an event•/

2 current fixed bin, /•Index In lonames array of device

MULTICS SYSTEM PROGRAMMER 1 S MANUAL SECTION BF.3.01 PAGE 2

for which event Is to be created
II

II

II

2 maxlonames fixed bin,
2 last_used fixed bin,

If

"
2 ffrst_loname fixed bin,

or destroyed when io_contro1$event is ~
ca 11 ed•/ "'-'

I•=N2•1
/•Index In lonames array of last

element In use Cln free
or active ioname lists•/

/•Index of first foname
If

If
block In thread containing

presently-used Jonames•/
2 flrst_free fixed bin, /•Index of first foname block fn

" free thread•/
2 recursfon_count fixed bin, /•0 If unlocked, increased by

" 1 each time OIL fs locked In
II

If
a given process, and decremented
each time a routine returns•/

2 attach_rlngno fixed bin, /•attach ring number loname for
11 command source had before being changed
" to the command source•/

2 use_rlngno fixed bin,
II

II

2 oil_lock_lfst bltC144),
2 lonames(N2),

/•use ring number ioname for command source
had before being changed to the
command source*/

/•standard lock•/

3 next fixed bin, /•next block in present thread
" (active or free). If zero, no
11 more blocks•/

3 ioname charC32), /•loname to be used for device•/
3 type char(32), /•type to be used in attach call

" for device•/
3 description char(32), /•description to be used in attach

" call for device•/
3 dmp_proc_ld blt(36), /*process td of the DMP*/
3 qult_event bft(70), /*signaled by Overseer to stop the

" device•/
3 restart_event blt(70), /•signaled by Overseer to restart

11 the device•/
3 hangup_report_event blt(70), /•If device can hang up, this

" event fs signaled if that happens•/
3 qult_state fixed bin; /•0 If device neither quit nor held

11 1 If device quit
" 2 If device held•/

The lonames array of the OIL contains the Information on all of
the devices attached by this group. The elements of the lonames
array with Indices less than or equal to oll.last_used are
threaded onto two lists. The active list contains all of the
blocks that represent presently-attached devices. The free list
contains blocks freed by a detachment and available for use when
another device Is attached. When a new lon~me Is to be added to
the active list, a block Is removed from the free list If there
are any. Otherwise, otl.last_used Is incremented by one unless
it Is already greater than or equal to otl.maxionames. tf this

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.3.01 PAGE 3

condition holds, the OIL has overflowed. Otherwise, the block
with Index equal to oll.last_used Is used as the new block and
threaded at the head of the active list.

Initialization

The following call Is made by the overseer procedure In the
Overseer process before any other call to the 1/0 system In the
process group:

call lo_control$1nlt(qult_report_event,hangup_report_event);
del qutt_report_event blt(70),

hangup_report_event blt(70);

In response to this call, the followt ng steps are taken:

1. If an OIL s$gment already exists In the group dIrectory, set
bit 3 of cstatys and return.

2. Create the OIL segment as a branch of the group directory
wlth.entry name oll_seg_.

3. Store the process ld of the Overseer In oll.overseer_ld.

4. Create an event channel, declare
channel, and store the name
oll.lo_control_event. Whenever that
Coordinator calls to contro)Seyent.

It to be an event
of the channel

event Is signaled, the

ca11
In

Wait

s. Initialize the switching complex by making the following
ea 11 :

call atm$group_lnlt;

6. Initialize the Transaction Block Maintainer by making the
following call:

call tbm$1nltC"O"b);

7. Store gylt report eyent In oll.qult_report_event and store
hangyp report eyent In oll.command_hangup_event. When the first
event Is signaled, the quit procedure In the Overseer Is called.
The second event Is signaled by lo control when the command
device hangs up.

s. Zero oll.recurslon_count and zero the lock list.

9. Set oll.last_used, oll.flrst_loname and oll.flrst_free equal
to zero, and set oll.maxlonames equal to some appropriately large
number.

10. Return.

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.3.01 PAGE 4

Locking

All calls to lo control other than lo controlSeyent and
lo controlSinlt call the Locker to lock the OIL and not to return
until It Is locked. The OIL must be locked since Attachment
Modules executing In the various processes call certain entry
points of to control. In certain cases, one entry of this
procedure will call another entry In the same process. This
recursive calling happens only 1n certain special cases. Because
of the possibility of recursion, a recursion count Is kept In the
OIL. Each call that locks the OIL Increments the recursion count
by 1 when It Is entered and decrements It by 1 when It returns
(with one exception). When the recursion count goes to zero, the
OIL Is unlocked. Note that In most cases, a recursive call does
not occur.

There are several exceptions to the above rule. First,
Jo contrglSinlt neither Jocks nor unlocks the OIL since, at the
time It Is called, no other process Is capable of locking the
OIL. Another special case Is the entry point .l9 controlSlock.
This procedure Is called by the Attachment Module when .Jt must
rename some nodes In the Attach Table and the note the change In
the OIL. The OIL Is locked by the call to lo 6ontro1Slock In
order to prevent another process from using an Inconsistent OIL.
The OIL remains locked throughout recursion count or unlock the
OIL upon return. Therefore, the OIL stays locked until the last
call to lo ,ontrol has been completed.

The other exception to the rules Is lo controlSeyen~. This call
can only be made In the Overseer process. When an entry Is added
or deleted from the OIL, an event channel that belongs to the
Overseer may have to be created or destroyed. By means of an
event call channel, lo controlSeyent Is Invoked, although the
caller may be In a different process. The caller Is expected to
lock and unlock as necessary.

Calls fQL ~ ~ 1ha Oyerseer

Five calls are made by the Overseer to handle quit and start:

When the Overseer Is signaled that a quit has been detected on
the command devIce, It quIts a 11 of. the workIng processes In the
group and then makes the following call:

call lo_control$stop(cstatus);

In reponse to this call, the following steps are taken:

1. Lock the OIL and Increment otl.recurston_count by 1.

-

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.3.01 PAGE 5

2 •. Signal the quit_event for each ioname In the active ltst tn
the OIL.

3. If there ts no command source (otl.command_source equals
zero), go to (5).

4. Otherwise, divert the command source:

call dlvert(oll.lonames(oll.command_source).Joname,
oll.lonames(oll.command_source).Joname,"",status);

Scan all of the blocks on the active list of the OIL. Whenever
an toname on that ltst has a qult_state equal to zero, change
that state to one (from normal to quit).

6. Decrement oll.recurslon_count by 1. If thts Is zero, unlock
the OIL.

7. Return.

Start

When the Overseer wishes to restart the quitted processes In the
group, It wakes up the working processes and makes the following
ca 11 :

call lo_control$start(cstatus);

The following steps are taken In reponse to this call:

1. Lock the OIL and Increment oll.recurslon_count by 1.

2. If oll.command_source Is zero (no command source), go to (3).
Otherwise, make the following call:

call revert<otl.lonames(oll.command_source).Joname,
"",status);

3. Signal the restart_event associated with each loname on the
ac~ve list, and then call JoswSgupue restart for each of those
tonames.

4. For each element of tonames with qult_state equal to 1,
change qutt_state to 0 (from quit to normal).

5. Decrement oll.recurslon_count by 1. If It Is zero, unlock
the OIL.

6. Return.

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.3.01 PAGI! 6

When the Overseer wishes to destroy the present set of working
processes and the present lopaths for the devices (other than the .J
command source), It makes the following call:

call lo_control$reset(cstatus);

The following steps are taken to handle this call:

1. Lock the OIL and Increment oll.recurslon_count.

2. For each element of oll.lonames on the active list other than
the command source with qult_state equal to 1, set the qult_state
equal to zero and make the following two calls:

call dlvert(loname,Joname,"",status);

call lnvert(foname,status);

The first call Is guaranteed to pass through any 1/0 System locks
and creates a new lopath. The second call destroys all paths
other than the newly created (by the dlyert) one for the device.

3. If the qult_state of the command source Is one, set It equa1
to zero and make the following call:

ca 11 Invert (o 11 • I onames (o 11 • command_source), status);

4. Decrement oll.recurslon_count by 1. If It Is zero, unlock ~
the OIL.

s. Return.

When the user wishes to put his quitted processes In the .. hold"
state, the following call Is made:

call lo_control$hold(cstatus);

For each loname on the active list In the OIL with qult_state
equal to 1, the qult_state Is changed to 2 (from quit' to hold).

Release l:IQl.d.

When the user wishes to release his processes from the hold state
and place them In the quitted state, the following call Is made:

call lo_control$release_hold;

For each loname on the active list of the OIL with qult_state
equal to 2, qult_state ts changed to 1 (from hold to quit).

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.3.01 PAGE 7

ial Command Soyrce

When the user changes command sources or when the Overseer
Initially assigns the command source, the following call Is made:

call lo_contro1$set_com_sourceCioname,cstatus);
del cstatus bltC18);

This call may only be made In the Overseer.

1. Lock the OIL and Increment oll.recursion_count by 1.

2. Search the active list of the OIL for loname.
entry Is found, set bit l of cstatys and go to (7).
remember the Index of the entry for use below.

If no such
Otherwise,

3. If oll.command_source Is non-zero, do the following:

a. Make the following call:

call orderColl.lonamesColl.command_source).toname,
"trap_qults",argptr,null,status);

del argptr ptr,
1 arg basedCargptr),

2 proc_ld blt(36),
2 event_name blt(70);

Both proc_ld and event_name are zero.
the related Device Manager Process
Overseer whenever a quit Is detected.

ThIs ca 11 wIll stop
from signaling the

b. Make the following calls to restore the loname to Its
old accessibility:

call atm$set_attach_rtngno(oll.lonames(oll.command_source),
oll.attach_rlngno,cstatus);

call atm$set_use_rlngno(oll.lonames(oll.command_source),
oll.use_rtngno,cstatus);

4. If loname Is nujJ, zero oll.command_source and go to (7).

5. Store the Index found In step 2 In oll.command_source and
then make the following call:

call order(oll.lonames(oll.command_source),"trap_qults",
Jddr(oll.overseer_ld),null,status);

Whenever a quit Is detected for that device, the report event
will be signaled.

6. Make the following calls to save the access Information for
the loname and then to make the new command source accessible for

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.3.01 PAGE 8

use from the user's ring but detachable only from the
administrative ring:

call atm$get_attach_rlngno(oll.tonamesCo11.command_source),
oil .attach_rtngno,cstatus);

call atm$get_use_rlngno(oll.tonames(oll.command_source>,
oll.use_rlngno,cstatus);

call atm$set_attach_rlngno(otl .tonames(oll.command_source),
admlnlstratlve_ring_number,cstatus);

call atm$set_use_ringno(oll.lonames(ofl.command_source),
user_rlng_number,cstatus);

7. Decrement oll.recurslon_count by 1.
unlock· the OIL.

8. Return.

Logoyt

If It Is now zero,

\

When the user logs out, the Overseer makes the following .call:

ca 11 I o_contro 1$1 ogout (cs ta tus);

In response to this call, the following two calls are made for ~
loname on the active list of the OIL:

call divert(loname, loname, '"',status);

ca 11 de tach (I oname, '"','"',stat us);

After the calls have been completed, Jo control returns.

~ .AJJ.d Resyme

Two calls are supplied to handle save and resume. The functions
of these calls are not specified at present:

call to_control$save;

ca 11 lo_control $restore;

Calls~~~ !bA lLQ System

The Attachment Module (see BF.2.23) makes use of six entry points
of to control. One has already been discussed: to controlSlock.
Other entry points are for maintaining the OIL after handling
attach, dtyert, reyert, and detach outer calls. Three of these
entry points run In the proc~ss In which they are Invoked. The

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.3.01 PAGE 9

other Is called by signal fng an event since It must run In the
Overseer (It creates and destroys certain event channels for
which the Overseer Is the receiving process). Finally, there Is
an entry that fs called In the Overseer process whenever a device
assigned to the group hangs up.

Attach
t

When a new device Is attached, the following call ls!made by the
Attachment Module:

call lo_control$attach(loname,type,descrlptlon,overseer_ld,
dmp_proc_ld,qult_event,restart_event,hangupable,
overseer_hangup_report_event,cstatus);

del toname char(•),
type char (*.),
description char(•),
overseer_td blt(36), /•return argument•/
dmp_proc_ld blt(36), /•forward argument•/
quft_event bft(70), /•forward argument•/
restart_event blt(70), /•forward argument•/
hangupable blt(l), /•forward argument•/
overseer_hangup_report_event blt(70),

/•return argument•/
cstatus blt(l8); /•return argument•/

The following steps are taken In response to this call:

1. Lock the OIL and Increment otl.recurslon_count by 1.

2. If oll.flrst_free Is non-zero, remove the first block from
the free list and put It at the head of the active list.
Otherwise, ff oll.last_used Is greater than or equal to
oll.maxlonames, set bit 2 of cstatys and go to (9). Otherwise,
Increment oll.last_used by one and thread the element of
oll.fonames with that Index at the bead of the active list.

3. Store loname ln.tn ofl.lonames(oll.flrst_foname).loname.

4. Store oll.overseer_ld In overseer lg.

5. Store gylt event and restart event tn the corresponding
entries In the element of otl.tonames.

6. Create the quft_response and hangup_report event channels by
the following steps:

a. Store the Index of the element of otl.lonames being
handled In oll.current.

b. Set ofl.create ON.

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.3.01 PAGE 10

c. If hanguoable Is OFF (equal to zero), store zero In
oll.lonames(oll.current).hangup_report_event and In . ~
overseer hanguo reoort event and go to (7). ~

d. Create an event
oll.response_event and store
oll.response_proc_ld.

channel, store Its name
the present process ld

In
In

e. Signal the event channel with name oll.io_control_event
for for the receiving process with ld equal to
oll.overseer_ld and walt for the response event to be
signaled.

f. Upon return from walt, destroy the response event
channel.

g. Store the name of the event channel stored In the
hangup_report_event entry of the element of the OIL In
overseer hangyo reoort eyent.

It Is necessary to use this roundabout method
the event channel because only the receiving
permitted to create or destroy an event channel.

of creating
process Is

7. Store dmp oroc ld In the corresponding entry In the OIL.

s. Set quit_state equal to zero for the new ioname.

9. Decrease the recursion count by 1. If It It zero, unlock the
OIL.

10. Return.

Rename

When revert and dlyert calls are being handled, the loname of the
device may change. If this Is the case, the following call Is
made:

call io_contro1$rename(newloname,oldloname,cstatus);
del newloname char<•>,

oldloname char(•),
cstatus blt(l8);

In response to this call, the following steps are taken:

1. Lock the OIL. Increment oll.recursion_count by 1.

2. Search the active Jist of the OIL for Joname oldloname. If
no such entry Is found, set bit 1 of cstatys and go to (4).

3. Otherwise, replace the present loname with newloname.

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.3.01 PAGE 11

4. Decrement oll.recurslon_count by 1.
unlock the OIL.

If It Is now zero,

5. Return.

Detach

If a device Is detached, the following call Is made:

call lo_control$detach(loname,cstatus);
del toname char(*),

cstatus blt(18);

The following steps are taken In response to this call:

1. Lock the OIL and Increment oll.recurslon_count.

2. Search for loname loname In the active list of the OIL. If
It Is not found, set bit 1 of cstatus and go to (5).

3. Remove the element of oll.lonames found above from the active
list and thread It at the head of the free list.

4. If the hangup_report_event In the OIL Is zero, go to (5).
Otherwise, do the following to destroy that ~vent channel:

a. Set otl.create OFF.

b. Store the Index of the present element of oll.tonames In
otl.current.

c. Create an event
otl.response_event and store
oll.response_proc_ld.

channel, store Its name
the present process ld

In
In

d. Signal the event with name oll.lo_control_event and wait
:for the response event.

e. Destroy the response event channel.

Upon return from watt, the event channels will have been
destroyed. Again, this roundabout method Is necessary because
only the receiving process can destroy an event channel.

s. Decrement otl.recurslon_count by 1.
unlock the OIL.

6. Return.

Hangyo

If It equals zero,

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.3.01 PAGE 12

When a hangup event Is signaled, the Watt Coordinator makes the
following call:

call lo_control$hangup(lndex,event_lndlcator);
del Index fixed bin, /•Index In oll.lonames of ioname for

" this device•/
event_lndlcator(3) blt(70);

In response to this call, the following steps are taken:

l. Call the Locker to lock the OIL.
oll.recurslon_count by 1.

Upon return, Increment

2. If Index equals oll.command_source, signal the event channel
with name oll.command_hangup_event and go to (4).

3. Make the following calls:

call dlvert(oll.lonames(lndex).loname,"",status);

call detach(oll.lonames(lndex).loname,"","",status);

del status blt(144);

4. Decrease oll.recurslon_count by 1. If It Is now 0, call the
Locker to unlock the OJL.

5. Return.

Eyent

The following call Is Issued when the lo_control_event Is
signaled In the Overseer, and Is used to create or destroy event
channels, as necessary~

call lo_control$event(null,event_lndlcator>;

The arguments are Ignored. The OIL Is neither locked nor
unlocked In response to this call.

The following steps are taken:

1. If oll.create Is OFF, go to (2). Otherwise,
channel and store Its
oll.lonames(oll.current).hangup_report_event and
event will be signaled If the device
lo controlShangyo will be called by the Walt
response to the signal.

create an event
name in

go to (3) • Th I s
hangs up, and
Coordinator In

2. If oll.create Is OFF, destroy the event channel with name
oll.lonames(oll.current).hangup_report_event.

MULTICS SYSTEM PROGRAMMER'S MANUAL SECTION BF.3.01 PAGE 13

3. Signal the event channel with name oll.response_event for
process ofl.response_proc_ld.

4. Return to the Waft Coordinator.

SummarY of Cstatys Bits

1 loname not found In search of oll.tonames
2 OIL overflow
3 Attempt to Initiate to control twice
4 OIL not found
5 aopendb error
6 ATM error
7 ECM error
8 Outer call error
9 Unimplemented call
10 Locker error
11 TBM error

