
TO:
FROM~
SUBJ~
DATE~

MSPM Distribution
P. G. Neumann
Standard Tape DCM
07/26/67

The attached document BF.6.02 presents the standard tape
device control module (DCM). BF.6.02 obsoletes the document
BF .6.10, Interface Specifications for thE! Tape Controller
Interface Module, (TCIM) 1/27/67. The TCIM no longer
exists, but is roughly subsumed functionally by the current
tape DCM. The tape device strategy module (DSM) wi 11
appear shortly as BF.6.01.

~1ULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF .6.02 PAGE ~

Published: 07/26/67
(Supersedes: BF.6.10 1 01/27/67)

Identification

Standard Tape Device Control Module (DCM)
c. D. Olmsted

Purpose

The Tape DCM is at the end of any sequence of 1/0 System
outer calls relating to tape I/0. It does the minimum
amount of processing that will accomplish the I/O service
and still permit maximum flexibility. Explicit calls
are provided which implement all tape primitive commands
plus entries which process interrupts and update status.

Introduction

For maximum flexibility the DCM operates workspace synchronously
only. All other operations are asynchronous. It must 1

therefore~ be modular with respect to starting and finishing
1/0 transactions. One module, the initiator, wi11 be
called to initiate transactions. I't does this logically
by creating a data base called the transaction block extension
(TBE). This data base is a part of the I/O system data
base structure (BF.2.20) and contains information which
is request dependent and which is used both in implementing
and cleaning up after the transaction. The initiator
also contains the entries for certain control calls (attach,
upstate, etc.). These are dealt with in a straightforward
way after which the initiator always makes a call to the
second module, the housekeeper, before it returns.

The housekeeper is the heart of the DCM.
implements requests and handles completed
Before we describe it, therefore, it will
to discuss the general logic of tape 1/0.

It actua 11 y
transactions.
be advantageous

The implementation of tape transactions is more complicated
than for other devices because, while each request is
directed to one of the several tape drives (the ultimate
devices), there is only one tape controller which has
available one or two GIOC channels. Thus the DCM must
keep track of the requests set up for the various drives.
For a two channel controller it must also choose a channel.

Handling completed transactions is also complicated by
the multiplicity of tape drives. In the most usual case
the completion of the transaction would be discovered
by a wakeup signal from the interrupt handler which would

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.6.02 ·PAGE 2

~~~ec~~~~!~~~na0~a~~a~~a~~!~~~~~t0~ft~~~e~7~~-sif~!fying 
wait coordinator would then be able to call the dispatcher 
which would decode the signal and send an upstate call 
to the DCM. This chain of calls would ensure proper communi.cation 
(copying of status, etc.) between the device manager process 
and the working process. 

However, in the case of tapes the interrupts will be associated, 
not with a specific drive, but with the channel through 
which the drive is run. Thus a simple upstate call cannot 
be made because the dispatcher cannot direct it to any 
specific device; only the DCM keeps track of tape drive 
activity. 

Furthermore, in the interests of efficiency, a policy 
is maintained of minimizing the number of interrupts and 
channel terminations so as to maximize channel activity. 
This dictates that the channel be kept in multiple peripheral 
instruction mode and be stopped only when necessary as 
in the case of errors, certain tape commands, rewind initiation, 
etc. Because of this minimization policy there wi 11 be 
requests whose completion can be determined only by noticing 
that their corresponding DCWs have been executed without 
error. This is strictly the domain of the DCM and the 
GIOC interface module (GIM). 

Thus all hardware events having to do with tape must be 
routed directly to the DCM. The housekeeper then determines 
which transactions are complete, posts status for them, 
and generally cleans up (deallocates storage, sets switches, 
etc.). In the case of a transaction which is completed 
but which is not signalled as a hardware event, the posted 
status will be a fixed standard one. After this the housekeeper 
simulates a hardware event for each drive which it has 
found to have completed a transaction. This will eventually 
precipitate upstate calls directed for each such drive. 
The DCM, upon reception of the upstate call will note 
that the hardware event has been realized and, since all 
the housekeeping has been done previously, return with 
the appropriate status. 

When the transaction completions have been dealt with, 
then the requests which have been set up by the initiator 
are implemented. Appropriate changes to a pseudo-DCW 
list are made by means of calls to the GIM. This is continued 
until all requests have been implemented or until list 
space is used up. Unimplemented requests are left queued 
pending future ca.lls. 



MULTICS SYSTEM-PROGRAMMERS' ~ANUAL SECTION BF.6.02 PAGE 3 

The housekeeper also deals with special cases such as 
rewinding tapes and transactions resulting in errors. 
Rewinding tapes are singular in that the request completion 
nEy come before the actual rewind is complete. A special 
interrupt signals the physical rewind completion but does 
not specify which tape has rewound. Therefore the DCM 
must determine which drive(s) has rewound. 

In handling errors the housekeeper is unsympathetic. 
All outstanding requests for the drive In error are deleted 
and no more are accepted until the error is acknow1edoed 
by a special call to· the DCM. -

The calls to the DCM are as shown in Figure 1 where the 
jagged lines indicate signals and the numbers are explained 
as follows: 

1. The DSM signals for an I/0 call. 

2. The wait coordinator calls the dispatcher~ 

3. which calls the driver 

4., 5. which calls the DCM at the initiator 

6. which calls the housekeeper. 

Control is returned back along the line to the wait 
coordinator. 

When a hardware interrupt occurs 

7. the interrupt handler signals a tape interrupt. 

8. The wait coordinator calls the housekeeper 

9. which signals simulated hardware events 

10. the wait coordinator makes upstate calls through the 
dispatcher~ 

11. and the driver, 

12., 13. to the DCM. 



I~ 

MULTICS SYSTEM-PROGRAMMERS ... fvlANUAL SECT! ON BF. 6.02 P/4GE 1-+ 

~ttachment 

The attach call is passed on from the tape device strategy 
module (DSM). At this stage most of the attach work (validation~ 
authorization, etc.) will have been done. The DCM, however, 
must account for those features which are particular to 
the specific device (tape drive). The call is 

where 

call attach (ioname~ type, device_name, mode, status, 
pibptrJ; 

ioname is the attached ioname, 

~ must be '' tape_dcm'' , 

device name will be a drive identification, i.e., a 
registry file name such as 11 drive_811 , 

mode 

status 

can be any comb ina t ion of " P11 11 R" 11 W11 11 A" , , , , 

pibptr 

returned status string, 

is a pointer to the base of the per-ioname 
data base (PIB) which is provided by the 
I /0 switch. 

The only processing done with the~ and~ arguments 
is error checking. If they are not as given above, then 
the attach call is rejected. Otherwise pibptr is used 
to access the PIB. In the PIB area, storage is allocated 
for the PIB extension which has the following declaration. 

del 1 pib_ext based (p), 

2 chain, 
3 next ext bit (18) 
3 last-word bit (18), 

2 tape_no fixed bin (17), 
2 channel fixed bin (17), 
2 attach_substatus bit (6), 
2 error_switch bit (1 ), 
2 rewind_ptr ptr, 
2 device event name bit (70), 
2 signal:set_sw bit (1); 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION SF.6.02 PAGE 5 

The first entry, chain contains two relative pointers. 
These are a standard part of every PIS extension. One 
points to the next ex tens ion. if any (the tape DCM wi 11 
have only one extension), and the other points to the 
last entry in the structure (i.e. signal __ set_sw). The 
remaining items wi 11 be explained in latE:r parts of this 
document. 

The device name is looked up in a table of global information 
which conta1ns the physical drive numbers corresponding 
:o the device names. This number is entered in tape no 
in the PIB extension. The entry channel is set to zero. 
lt will be filled in with one of the two tape channel 
device indices when a request is made to use the attached 
device. Substatus for the drive is got by means of a 
GIM call. This substatus will be stored in pib_ext.attach_ 
substatus and will be used along with a major status of 
"subsystem ready" to manufacture status for transactions 
which are completed with neither an error nor a status 
event to signal the completion. If at this time the major 
status is not "subsystem ready", then a default minor 
status is stored. At every status request which results 
in a major status of "subsystem ready" attach substatus 
will be updated. Eventually the substatus will indicate 
whether the tape drive is 7 or 9 track and whether the 
reel is write protected or not. Also indicated will be 
the 11 tape at leader" status. This, however, wi 11 be assumed 
to be off, since because of backspacing operations it 
would be prohibitively complex and time consuming to maintain 
it. 1 n order to check 11 tape at 1 eader11 stat us the DCM 
must make a separate 11 request status" ca 11. 

The remaining quantities in the PIS extension are initialized 
by setting error switch off, rewind ptr null, signal set sw 
off, and device event name by means of the get_hardware 
entry in the dispatcher. This event identification will 
be used by the housekeeper for simulating hardware events 
for individual tape drives. 

The pibptr is stored in a global drive information table 
which is indexed by physical drive number and which contains 
information which is more relevant to the attached drive 
than to the ioname. Before attachment pibptr should be 
null. If not the attach call is rejected. Also in the 
drive information table is a pointer which indicates any 
uninitiated requests. This is initialized as a null pointer. 

Status is returned as "transaction logically and physically 
complete and successful" and "status reporting complete'•. 



. ~. 

I 
,-.., 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF .6.02 PAGE 6 

Calls to the Initiator 

The data transfer calls are 

read 
call (ioname, workspace_ptr, word_count, read_count, · 

status, pibptr); 
write 

where 

ioname has been previously attached, 

workspace ptr points to the work space to be 
read into 

written from 

word count 

reed count 

is the number of words to be read 
written 

(element size is fixed at 36), 

is the number actually read. It is ignored 
because of the asynchronous nature of the DCM • 

status, £ibptr are as before. 

To implement the remaining tape primitives and also to 
provide other services a general call is provided. 

where 

call order (ioname, op_group, op_ptr, status, pibptr); 

ioname has been previously attached, 

op group is a character string which identifies the 
group in which the operation will fall. There 
are two groups: op_group = "drive_op" which 
specifies physical hardware operations and 
op_group = •: swi tch_set" which specifies software 
mode and sw1tch changes. . · 

op ptr is a pointer to an integer which is a symbolic 
op code. The meaning of the code in its operation 
group is given below. In the drive-op group, 
where each corresponds to a tape controller 
command: 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF .6.02 

code meaning 

0 request status 

1 reset status 

2 forward space record 

3 forward space fi 1e 

4 backspace record 

5 backspace file 

6 erase (8 1/2 inches) 

7 write EOF mark 

8 set high density 

9 set low density 

10 set file protect 

11 rewind 

12 rewind and unload. 

In the switch_set group: 

cogg meaning 

1 set read/write binary mode 

2 set read/write 9 track mode 

3 set read/write BCD mode 

4 reset error switch in PIB extension. 

The default read/write mode is binary. 

status, pibptr are as before. 

Request HanglJng in the Initiator 

PAGE 7 

A request is any read, write, or "drive_op" order call. 
Its processing begins with the allocation of a transaction 
block extension (TBE) in the PIB area. The TBE includes 
request dependent information such as the op code of the 
tape drive operation and the expected (if all goes well) 
major status at the terminat1on of the operation. A pointer 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BF.6.02 PAGE 8 

to the TBE is stored in the transaction block (TB), a 
<mta base which is allocated automatically at each outer 
c;all by the I/0 switch. The TB contains, among other 
things, the returned status, various switches which indicate 
completion of the transaction (BF.20.02), and the pointer 
to the TBE. 

These TBs are threaded together in a list, the top and 
bottom of which are pointed to by entries in the PIB. 
Thus the external data structure with which the DCM is 
concerned looks like Figure 2. 

Request Handling in the Housekeeper 

Once this data is set up, the request is implemented with 
a call to the housekeeper which, among other things, makes 
the appropriate GIOC interface module (GIM) calls. Except 
when there are no outstanding requests (pseudo list inactive) 
this will entail extending the currently executing pseudo 
list by means of a change call to the GIM. The pseudo 
OCW for a read ca 11 wi 11 be set to cause an externa 1 signa 1 
in order to fetch and draw attention to the DCW residue 
and the read count. If there are no outstanding requests 
at all then there will also be a connect call. A list 
of pointers, the reguest ~o)nter list, is maintained in 
parallel with the pseudo lst and has one entry for every 
pseudo OCW. The entries are null except for those corresponding 
to the last pseudo DCW of a request. In this entry is 
put the index of the corresponding transaction block, 
and the corresponding pi~ptr. Obversely, for purposes 
of cross reference, thendex of this pseudo OCW is placed 
in the TBE. 

If there are no requests outstanding for the particular 
device, then the channel whose list contains fewer unprocessed 
pseudo-DCWs is chosen and the channel name entered in 
the PIB extension. The number of unprocessed pseudo-Dews 
is maintained as a running count which is incremented 
as new pseudo-DCWs are added to the list and decremented 
whenever a transaction is terminated. If there is a request, 
then subsequent requests must1 of course, be sent through 
the same channel. Thus if pio_est.chan is not null then 
it is used to deteMmine the channel. 

It is possible that there will be no room on the proper 
one or both pseudo-lists. In this case the uninitiated 
request pointer in the drive information table is examined. 
If it is not null, then it points to the TB of the first 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BF.6.02 PAGE 9 

such uninitiated request. It is assumed that subsequent 
requests are also uninitiated. If the pointer is null 
then it is replaced with a pointer to the current TB. 
In either case the arguments of the call are stored in 
the TBE. Control is then returned to the caller. 

It is also possible that a change$1ist call to the GIM 
which alters an active list may occur too late and the 
channel be already stopped. When such a situation is 
signalled by the GIM the channel must be restarted by 
issuing another connect call to the GIM. 

D&lts Bases 

The declaration for the PIS extension has already been 
given. The remaining data bases are declared here and 
explained briefly. · 

The transaction block extension declaration is 

del 1 tbe based (p); 

2 chain, 

3 next_ext bit (18), 

3 last_word bit (18), 

2 opcode bit (6), 

2 exp_stat bit (4), 

2 workspace_ptr ptr, 

2 word_count, 

I* standard chain relative ••• */ 

I* ..• pointers as in PIBE */ 

I* tape controller op code *I 

I* expected status for error 
free transaction */ 

I* pointer to data work space */ 

I* number of words to read 
or write */ 

2 list index fixed bin (17), /* index of last pseudo DCW 
- for this transaction */ 

2 pib_relp bit (18)j I* back pointer to PIB */ 

The global data base (a read only segment which is provided 
·during initialization) which supplies the names of the 
channels and the drives is called the tape names table 
and has the following declaration: 

del 1 controllers (MAX) based (p), 
2 channel_name(2) char (32), 
2 drive_name(16) char (32); 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.6.02 PAGE 10 

The entries are, respectively, the symbolic names of the 
2 tape channels and the 16 tape drives. MAX is the number 
of tape controllers in the installation. If a controller 
has only one channel, channel_name(2) is null. 

The drive information table and the request pointer 1ist 
are combined in 

del 1 drive_request_info (MAX), 

2 rqest_ptr_list(2), 

3 rqest_ptr(LISTLGTH) bit (18), 

3 pibptr (LISTLGTH) ptr, 

2 drive_info(16), 

3 pibptr ptr, 

3 uninit_rqest bit. (18); 

where rqest ptr(i) is zero unless the ith pseudo DCW is 
the last of a block of pseudo DCWs corresponding to a 
request. In this case rgest ptr(i) is the index of the 
transaction block for the request and pibptr(i) gives 
the PIB with which the request is associated. In the 
drive information table pitptr(i) points to the PIB of 
the ioname attached to drive i. uninit rqest(i) is the 
index of the TB of the first uninitiated request for drive 
i • 

The Housekeeper 

Whenever the DCM gets control for any reason, the housekeeper 
is called. This routine tends to all transactions which 
have been completed since the last call to the housekeeper. 
The flow chart in figure 3 gives its structure. 

Status and the list index corresponding to the DCW which 
caused the status event are gotten by means of a request 
status call to the GIM. This list index is compared with 
the list index corresponding to the last request terminated 
by the housekeeper. All requests in between (but not 
including) are consid~red implicitly terminated and the 
standard termination procedure is called for them. 



MULTICS SYSTEM-PROGRAMMERS" MANUAL SECTION BF.6.02 PAGE 11 

The tennination procedure does the following 

1. stores status in the TB, 

2. sets the completion bit on, 

3. deallocates the TBE by a call to tbm$remove (see BF.2.20), 

4. signals a simulated hardware event for the device and 
sets the signal set switch in the PIS on. This step 
is omitted if the signal set switch is already on. 

s. If there is an error, call the error routine. 

After dealing with the implicitly terminated requests 
the housekeeper examines the status for the request causing 
the status event. Special interrupts are noted for later 
processing. If there was a terminate signal the request 
is checked to see if it initiated a rewind. If so the 
rewind pointer in the PIB extension is set and a "request 
status" pseudo DCW is set up in a special list. This 
list will be used in processing the special interrupts 
which signal termination of tape rewinds. 

If the status event is an external signal, we test for 
special interrupt. If there is one, then the channel 
is stopped and a rewind has completed. Control is transferred 
immediately to the rewind handler. Otherwise we know 
that a read request has been completed since we set up 
an external signal only for read operations. The GIM 
is called to get and process the tally residue and the 
read_count is encoded in the status string. Then for 
either status event, termination is called for the request 
which caused the event. Termination is not called, however, 
if the request initiated a rewind. Control is then returned 
to the beginning and status is again obtained from the 
GIM. 

This loop is terminated when the GIM call indicates that 
there is no more status. At this ~ime special interrupts 
(if any) are processed. The special pseudo list is started 
(provided that the channel has stopped) and a loop on 
the request$status call is entered to wait for the completion 
of the request status. When the status is returned the 
substatus is either "device busy" (tape still rewinding) 
or "tape at leader". In the .latter case the termination 
procedure is called for the request which caused the tape 
rewind. This routine is repeated for each drive which 
is rewinding. 



MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION BF.6.02 PAGE 12 

The last housekeeping job is setting up uninitiated requests. 
This includes left over requests and requests recently 
set up by the initiator. A non-null pointer in the drive 
information table will point to the TB of the first such 
request. If there is now room on the proper list, the 
request is set up with GIM calls and, if th~ channel is 
inactive, it is restarted. This is repeated for all subsequent 
uninitiated requests until either all requests have been 
initiated, or until available pseudo list space is again 
exhausted. In the former case the drive information table 
entry for the drive is set null. In the latter it is 
replaced with a pointer to the TB of the next uninitiated 
request. If the pointer is set null, then uninitiated 
requests will be sought on other drives and the above 
procedure repeated. Whenever the housekeeper is unable 
to initiate all requests it leaves an index containing 
the drive number whose uninitiated requests are to be 
processed at the next call to the housekeeper. This ensures 
impartial queueing of uninitiated requests. 

Error Hangling 

When the termination procedure finds an error (status 
is unexpected) all I/0 for the affected drive is abandoned. 
This means that all requests for the drive are aborted, 
i.e. 

1. Using the request pointer list and the list index in 
the TB£, the pseudo DCW lists which had been set up 
for these requests are replaced with null-cps and the 
pointers in the request pointer list are set to null. 

2. The TBEs are deallocated. 

3. The abort bit is set on and the hold lower bit is set 
off in the TB. 

4. The error switch is set in the PIB extension. 

s. The uninitiated request pointer in the drive information 
table is set null. 

6. Rewind_ptr is set to null. 

Non hardware errors are sent back to the DSM. They include 

1. Attach rejects because of improper argument sequence or 
type, redundant ioname, a non-null pibptr (drive not 
detached). 



MULTICS SYSTEM-PROGRAMMERS' Ml\NUAL SECTION BF .6.02 PAGE 13 

2. Request rejects because of improper argument sequence 
or type undefined software opcode. 

3. Detach rejects because of improper argument sequence 
or type. 

The Ups tate Ca 11 

This call will result from having simulated a hardware 
event in the housekeeper. Its only function is to force 
a normal sequence of calls so that the driver can copy 
status for completed transactions. The signal set switch 
in the PIB is set off, the hold bits in all TBs which 
show completion are set off, and control is returned to 
the caller. 

Detachment 

The detach call frees a previously attached drive. This 
will cause the same behavior as does an error on the drive 
attached to ioname except that the error switch is not 
put on. Further, all entries for the drive in the drive 
information table are set to null. 

I n i t i a 1 i za t ion 

Upon receipt of the first attach call after system initialization_ 
the DCM will initialize its tables (the request pointer 
table and drive information table) and make define list 
calls to the GIM for its various channels. 



''11 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF .6.02 PAGE 14 

iocall 

Working Process 

PIB 

PIB 

Device 

Manager 

------·-
\ 

I 

I 
I 

I 
I 

\ 

I 

\ 

I 

I 

\ 

\ 
\ 

\ 

I 

I 
I 

,_ - ... ---

DSM 

Driver 

Initiator 

Dispatcher 

G) Housekeeper 

Process DCM 

,~ GIM 

Interrupt 

Handler 

FIGURE 1: Calls to the Initiator and the Housekeeper 



I 

' I 
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BF.6.02 PAGE 15 ,......, 

Transaction 
Block List 

PIB TBl TBEl 

--I ~ -I extension .. -
i ptr - "' I Drive information 

___ , 
table I PIB Extension ("'fif32 TBE2 

' .... ..... 

1 pibptrl t tape_no, status, op code, 

' 
channel, hold switch, - expected 

2 ~ibptr2 
I 

etc. abort switch, status, etc. 
etc. ... 

I 
~ 

7 
• • • ·~ I u r:rRN T'RF.N 

i. pibptri t . ' 
I .... 
I -
I 

I 
I 

~6 
I 

pibptrl6 
I 

internal external 

Figure 2: Tape DCM Data Bases 

,,......... 



MUL TICS SYSTEM- PROGRAMMERS' MANUAL SECTION BF. 6.02 

Figure 3: The Housekeeper 

Start the 'Jrequest 
status" list. For 
every "tape at leader" 
status call terminate 
for the request which 
initiated the rewind. 

Dispatch unimplemented 
~equests. Restart in.
active channels in MPI 

RETU~) 

Get stat~ 
list in~ 

Call terminate for all 
implicitly terminated 
requests up to (but not 
including) the current 
list index. 

NO 

External 

Signal 

Terminate the 
current transactio 

PAGE 16 

Set the 
special 
interrupt 
switch and 
issue a sto 
channel 
command. 

on the 
"request 
status" 
list. Put ..,t. 


