
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.l PAGE 1

Identification

The Known Segment Table (KST)
R.C. Daley, D.M. Ritchie

Pureose

Published 01/17/67
(Supersedes: BG.l, 5/9/66)

The Known Segment Table (KST) is a paged segment within
each process. It contains information sufficient to allow
segment control to service segment faults for each segment
with an entry in the table. This information consists
essentially of the mapping between a segment number-
all that is supplied by the hardware at the time of a
segment fault - and the unique identifier and location
in the directory hierarchy of the associated segment.
A KST entry also contains less vital information gleaned
from the directory branch pointing to the segment at the
time of the creation of the entry.

Introduction

Segments are entered in the KST primarily as a result
of linkage faults while attempting to access the segment.
The hardcore supervisor is prelinked, however; linkage
faults are not allowed while executing in the hardcore
ring. Thus a segment in this ring might never have an
entry in the KST. To allow segment faults to be processed
for these segments, there is a system-wide table, the
Hardcore Segment Table (HST), which serves in lieu of
a KST for these segments.

A segment is known to a process if

1. It has been assigned a segment number in the process,
and

2. A missing-segment fault on the segment can be handled
properly.

Operationally, then, a segment is known to a process if it
has an entry in the KST or HST.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.1 PAGE 2

There is a KST for each Multics process; the branch pointing
to this segment is kept in a special directory associated
with each process called the Process Directory (BD.6.09)
which contains segments whiCh 1 though part of the process~
are normally kept hidden from the user. The KST is maintained
exclusively by segment control.

Structure of the KST

The KST is organized into the following sections.

1. The KST entries themselves.

2. An entry table 1 with one entry for each known segment as
well as some vacant entries corresponding to segments
that have been removed from the table. Entries in the
entry table contain a pointer to the actual entry for a
segment 1 if it corresponds to a known segment~ or link in
formation threading together the vacant entries otherwise~

3. A name and an ID hash table 1 present for reasons discussed
below.

4. A header section~ which contains information pertinent to
the entire table 1 such as the sizes of various subtables
and their locations.

KST Entries

The following is a list of items which are stored for
each entry in the KST and is followed by a detailed description
of each item.

1. List of symbolic names for this segment

2. Unique identifier of this segment

3. Effective mode

4. Protection list

5. Directory-segment switch

6. Directory-segment-hold switch

7. Transparent-usage switch

8. Segment number of directory segment which is immediately
superior to this segment

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.1

9. Index relative to immediately superior directory
of branch defining this segment

10. Date and time branch was last modified

PAGE 3

11. Count of the number of segments which are currently
known to this process and to which this directory
segment is immediately superior

Entries in the KST are indexed by segment number through
the entry table. As a result, segment numbers are not
explicitly stored with each entry in the KST. The above
items are now described in detail.

1. List of symbolic segment names--these names are
stored for directory segments only; they are used
by segment control in communicating with directory
control. When a new name is used by the process .
for a directory segment, the new name is appended
to the list of names already existing for this segment.

2. Unique identifier for this segment -- this item uniquely
identifies the precise copy of the segment to which
the process is currently committed. This identifier
is constructed by directory control so that no two
segments within any version of Multics will ever
have the same identifier. When segment control attempts
to reactivate an inactive segment, this identifier
is used to insure that only the correct segment is
used.

3. Effective mode -- this item contains four switches
corresponding to the four access attributes (REvJA),
and is used to control access to the segment by the
current process. This item is kept up to date by
comparing the date-and-time-branch-last-modified
item in the AST (Active Segment Table; BG.2) entry
for the segment, and refreshing when necessary from
the branch pointing to the segment.

4. Protection list-- this section contains a list
of items extracted from the segment's access control
list. The protection list allows computation of
the access attributes of the segment according to
the ring mechanism (cf.BD.9) The first item is the
lower access ring, then an optional upper access
ring number, then an optional call access ring number,
finally an optional list of segment offsets corresponding
to entry points for this (procedure) segment. This
item, like the last, is kept up-to-date by use of
the date-and-time-branch-last-modified item.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.1 PAGE 4

5.

6.

7.

8.

9.

Directory-segment switch--if the segment corresponding
to this KST entry is a directory segment 6 this switch
is set ON.

Directory-segment-hold switch--for reasons described
below6 segment control normally removes entries in
the KST for directory seg~ents as soon as they are
no longer needed by 1nfer1or segments. However,
if a user wishes to keep a directory (such as a working
directory) known to his process, he may do so by
specifying that this switch be turned ON. When this
switch is in ON, segment control will not remove
the corresponding KST entry until the user explicitly
requests its removal. Proper use of this switch
can save the.time associated with deactivating and
re-activating frequently used directories such as
the user's working directory. If the directory-segment
switch is OFF, the directory-segment-hold switch
is ignored by segment control.

Transparent-usage switch-- this switch is turned
ON to prevent the file system, on behalf of the current
process, from changing the time-last-used or the
time-last-modified in the branch for the se~ment.
For example, the backup system might use th1s switch
to dump a file on magnetic tape without changing
the time-last-used of the file. This switch is also
set ON for all directory segments, since only directory
control can determine when a directory has been "modified".

Segment number of directory segment immediately superior
to this segment--when a process references an inactive
segment, a segment fault occurs, and segment control
is called to activate the segment. (See section
BG.O). To do this information must be retrieved
from the branch in the immediately superior directory
which points to the segment. This item identifies
the needed directory so that it can be read by directory
control for segment control.

Index of segment branch in superior directory-- this
item, together with the previous item, form a complete
pointer to the branch defining the segment.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.1 PAGE 5

10. Date and time branch last modified--this item is
used to assure that the access attributes and protection
list (items 3 and 4) are up to date. If the current
process has the most recent information~ as determined
by the equality of this item and the corresponding
item in the Active Segment Table (AST) entry for
the segment~ then the access control information
is up to date. If these entries are not equal~ then
some process may have changed the access control
situation and the attributes and protection list
must be recomputed. The comparison takes place
when a segment fault occurs.

11. Count of the number of segments which are currently
known to the process and to which this directory
segment is immediately superior--each time a new
segment is added to the KST which is immediately
inferior to the directory segment represented by
this entry~ this count is incremented by one. Whenever
an immediately inferior segment is removed from the
KST~ the count is decremented by one. If this count
is reduced from one to zero~ and the directory-segment-hold
switch is OFF~ then this entry is removed from the
KST. The removal of this segment may cause the entry
for the next superior directory segment to be removed
and so on. In a KST entry for a non-directory segment~
this count is always zero.

This automatic removal of directory segment entries from
the KST prevents the KST (and the associated descriptor
segment) from being overloaded with segmen~s no longer
required by the process. Segments numbers freed by removal
of KST entries are reused as new segments become known
to the process thus keeping the KST and its associated
descriptor segment tightly packed.

The Entry Table

All the KST entries are kept in a common area in no particular
order; but there is an entry table~ indexed by segment
number~ which contains points to the actual KST entries.
Each entry in the entry table contains

1. vacant switch

2. entry pointer or next-vacant-entry pointer

3. last-vacant-entry pointer

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG. 1 PAGE E

If the vacant entry switch is OFF, item 2 points to the KST
entry for this segment number. If the switch is ON, there
is no such entry, and items 2 and 3 link this entry into
a doubly-threaded list of vacant entries.

Since the number of segments known to a process may grow
or shrink, the entry table must grow or shrink accordingly.
When it becomes necessary to change the size of the entry
table, the new table is allocated, the existing information
is copied into it, and the old table is discarded. To
save time the original size is made large enough so that
the table will not usually have to grow.

The Hash Tables

As one might expect, the KST is frequently accessed by
segment number or by symbolic segment name. The KST is
also accessed by unique identifier for a not-so-obvious
reason. Before entering a new entry in the KST, segment
control searches the KST for an entry having the same
unique identifier a~ the new entry about to be entered.
If an entry already in the KST has the same identifier
as the new entry, the name of the new entry is merely
appended to the list of symbolic names of the existing
segment and no new KST entry is made. This situation
is brought about when a process uses a new name to refer
to a directory segment which is already known to the process
under one or more different names.

Access to a KST e~try by segment number is simple because
the KST is indexed by segment. number. For example, if
11 i" is a segment number and "a'' is an array of entries,
then one could logically refer to the entry for segment
'' i" as "a (i)". HovJever, when it becomes necessary to
find an entry in the KST which has a specified name or
identifier, the KST must be searched.

To speed searching for entries, a hash-coded table-lookup
technique is used. There is a hash table for unique identifiers
and one for names. Each hash table entry contains the
following information.

1. vacant switch

2. deleted switch

3. segment number

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.l PAGE 7

When a name or unique identifier is to be searched for,
it is hash coded to produce a pseudo-random number which
is used as an index in the corresponding hash table.
If the vacant switch is ON, the desired entry does not
exist; if it is OFF, the KST entry for the segment number
obtained from the hash table entry is examined for a match
with the desired name or ID. If no match is found, the
next higher entry in the hash table is treated in the
same way until a match is found or a vacant entry is reached.
If the deleted switch is ON in any of the hash table entries
that entry is simply passed over; it does not terminate
the search.

When an entry in the KST is added, its name and ID are
hashed and used to find an entry in the proper hash table
as above. If this entry is vacant or deleted, both the
vacant switch and deleted switch are set OFF and the segment
number of the new entry is put in place. If the hash
table entry is not vacant or deleted, consecutive hash
table entries are tested until a vacant or deleted one
is found.

If the number of non-vacant entries in the hash tables
exceeds a preset percentage of the table, larger hash
tables must be constructed by rehashing the names and
ID's of each KST entry. Similarly if the number of non-vacant
entries falls below a preset percentage, ·a smaller table
is constructed. In either case,· the old table is discarded.

The KST Header

The fixed-length header portion contains the following infor
mation:

1 • size of the entry table

2. pointer to entry table

3. size of, numb~r of used entries in, and pointer to name
hash table

4. size of, number of used entries in, and pointer to ID
hash table

5. highest assigned segment number

6. pointer to first member of vacant entry 1 i st

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG. 1 PAGE 8

These items are used as follows:

1. entry table size- when a segment number about to be
assigned exceeds this item1 a new table must be created

2. entry table pointer - used to access the entry table

3. hash table information - to manipulate the hash tables

4. same

5. highest assigned segment number

6. pointer to first member of vacant entry list

Whenever an entry is added to the KST and item 6 is null,
the entry is assigned the segment number next higher than
item 51 and item 5 is updated. If item 6 is not null 1

the entry pointed to by item 6 is used and th~ vacant
entry list is rethreaded. In either case the corresponding
entry in the entry table is marked nonvacant and entries
for the segment are added to both hash tables.

Whenever an entry is deleted from the KST, its hash table entry
is marked "deleted" if the next consecutive hash table
entry is non-vacant or "vacant", if the next higher hash
table entry is also vacant. The entry table entry for
the segment is then marked ''vacant" and is added to the
vacant-entry list.

The . Ha rdccrre Seq men t Tab 1 e

The hardcore segment t~ble (HST) is a system wide table
constructed during Multics system initialization. This
table contains an entry for each segment of the hardcore
supervisor. Each entry in the HST contains the segment
number of the se~ment, its unique identifier, the descriptor
control informat1on, and the status of the segment (defined
below). Information collected in the HST allows segment
control to manage the descriptor segment for the hardcore
ring in the absence of a KST. The main advantage of this
scheme is that much of the work involved in process initiali
zation can be done by the process being initialized. This
means that a process may be created with an empty KST
and that segments required for normal execution may be
filled in by the .process itself using the normal file
system primitives.

A secondary advantage is that segments listed in the HST
need not have corresponding entries in the KST of each
Multics process. This results in a significant saving of
space since most of the segments of the hardcore supervisor
are not normally referenced by user programs.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.1 PAGE 9

The HST is used in two distinct ways. When a se~ment fault
occurs for one of the segments in the hardcore ring~ the
HST is consulted. The entry corresponding to the segment
number on which the fault occurred yields a unique identifier
which may be used to access the AST in order to load the
segment (see BG.2 for a discussion of the AST and BG.3.01
for a discussion of seq fault). The access control information
in the HST is placed in the segment descriptor word (SOW)
for the segment~ completing the treatment of the fault.

If a segment fault occurs in the hardcore supervisor~
the HST is always consulted first. Since the fault can
be serviced from information in the HST 1 it is now possible
to service missing segment faults for the hardcore stack
and the KST of a loaded process.

The HST is also used when a segment is made known (see section
BG.3.01 for a discussion of makeknown). Although hardcore
segments can refer to each other without linkage faults~
a linkage fault will occur when a procedure ih an outer
ring references a hardcore ring segment - for example~
to call a supervisor routine. This fault will ultimately
result in an attempt to make the hardcore se~ment known~
that is 1 to create a KST entry for it. Originally, there
are no KST entries for hardcore segments~ but whenever
a KST entry is created for a hardcore segment, the segment
number assigned to this segment in the KST must be the
same as that used within the hardcore ring. Thus makeknown
searches the HST for a unique identifier the same as that
given in its calling sequence; if this unique ID is found,
the corresponding segment number will be assigned. Otherwise,
the first available number will be used.

Each hardcore se~ment table entry contains the following in
formation. Entries are indexed by segment number.

1. unique ID- this item is used as described above

2. PST index- there are a few segments which belong to
the hardcore rin~ but are different segments for each
process. These Include the KST itself, the hardcore
stack, and the process data segment. The unique ID's of
these segments cannot appear in the HST, which is a system
wide table. Instead1 this item, when nonzero, gives
an index in the PST (see BG. 2) entry of the current
process, where the unique ID of these segments is kept.

3. Status- this item specifies whether the corresponding
segment is always active, loaded, or wired down.
It simplifies the handling of segment faults for
hardcore segments.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG. 1 PAGE 10

4. SOW access field - this item corresponds to the access
control information kept in the KST of each known
segment. It consists of the bits to be placed in
the access field of the hardcore ring SOW of the
segment.

5. Enforced access switch- see item 6

6. Enforced access mode- certain segments must never cause
a segment fault when accessed in any ring. These
include~ for example, the fault and interrupt handlers.
When item 5 is ON the SOW for this segment in any
but the hardcore ring will contain the access bits
specified by this item~ never a segment fault.

7. Current segment length- used in preparing the boundary
field of an SD\JJ.

The HST hash table and header

During makeknown the HST is searched ~Y unique identifier.
To speed this searching a hash table 1s provided. The
unique identifier is the item which is hashed. The structure
and use of this hash table are the same as those in the
KST.

The HST also has a header section containing information per
taining to the whole table; it contains the fo1lowing infor
mation:

1. number of entries

2. highest always-accessible segment

3. size of hash table

1. Number of entries- segments in the HST are assigned
numbers sequentially. Thus, a se~ment with a number
greater than this item cannot be 1n the HST.

2. Highest always-accessible segment- this is the highest
se~ment number in the HST with the Enforced access
SWitch ON.

3. Hash table size- this item is used in the same way as
the sizes of the ID and name hash tables for the KST.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.1 PAGE 11

PL/1 Implementation of the KST

The KST Header

The entire KST is declared as controlled storage containing
a fixed number of pointers to tables of variable length.
The header~ or fixed-length~ portion of the KST is declared
by the following statement:

del kst ctl (kstp)~

2 ec fixed bin (17)~ I* entry count */

2 etp ptr~ /* pointer to entry table */

2 hcname fixed bin (17)~ /* size of name hash table */

2 huname fixed bin (17)~ I* used entries in name hash table*/

2 hpname pt r 1

2 hcid fixed bin (17)~

2 huid fixed bin (17)~

2 hpid ptr~

I* pointer to name hash table */

I* size of ID hash table */

I* used entries in ID hash tables */

I* p'ointer to ID hash table -!:f

2 highseg fixed bin(l8)~ /* highest segment number *I
2 freeseg fixed bin(l8)~ /* first free segment number *I
2 kstarea area ((N)); I* KST allocation area *I

The identifier kstarea defines an area of storage within
the KST segment in which all additional information is
allocated. (In the context of this writeup~ the capital
.letter 11 N11 is used to denote an intes;er constant which
must be decided upon before compilat1on.)

The Entry Table

The data layout for the entry table is indicated by the
following statement:

del et (kstp~->kst.ec) ctl (etp)~

2 VS bit (1)~

2 ep bit (1 8) ~

I* vacant switch */

I* entry pointer or forward
vacant-list· pointer*/

/,.........

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.1 PAGE 12

2 bp bit (18) i I* backward vacant-list pointer *I

The Hash Tables

The data layout for both hash tables is given in the following
statements:

del 1 htname (kstp~ kst.hcname) ctl (hnp) 1

del

The

2 VS bit (1L

2 ds bit (1) 1

2 segno bit {18);

1 htid (kstp~kst.hcid)

2 VS bit (1) 1

2 ds bit (1 L

2 segno bit (18) i

KST Entries

I* vacant switch *I
I* deleted switch *I
I* segment number *I

ctl (hip)#

I* vacant switch ,'(I

I"'' de 1 eted switch "''I
I* segment number ... I

"

Each KST entry is divided into two parts, a fixed-length part
and a variable-length part. Since a segment may have sev
eral names of variable length, the list of segment names
may grow and shrink while the remainder of the KST entry
is unchanged. As a result~ the names are stored separately
from the rest of the KST entry.· The fixed length portion
of a KST entry is defined by the following statement:

del 1 kste ctl (kstep);

2 namep bit {18) 1 I* pointer to list of names *I
2 id bit (7DI*uidsize*l), I* unique ID *I
2 mode bit. (5) 1 I* effective mode *I
2 psize bit (17) 1 1-'- • " SlZe of protection 1 ist '~'I

2 plrp bit (18) I I* pointer to protection list

2 dirsw bit {1 L I'~' directory - segment switch

2 dshsw bit (1) ~ I* directory - hold switch -!:f

~:;

... I
"

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.1 PAGE 13

2 tusw bit (1),

2 xsegno bit (18),

2 xbranch bit (18),

I* transparent-usage switch */

I* number of immediately superior
directory */

I* slot number of this segment
in xsegno -!:f

2 dtbm bit (52/*dtsize*/), .

2 infcount bit (17);

I* date qnd time branch last
modified -/(f

I* count of known inferior
segments */

The following declaration specifies the storage layout of
a single segment name in a linked list of names:

de 1 1 namst ct 1 (np),

2 nlen bit (17), /* length of name *I
2 name char (np~ namst.nlen),

I* the name itself *I
2 nrp bit (18); I* pointer to next name*/

The following declaration specifies the storage layout of
a protection list:

del plist (kstep~ kste.psize) bit (18) ctl (plp);

PL/1 Declaration for the HST

The following defines the storage layout of the HST:

del 1 hss ctl (hssp), I* HST structure *I

2 hscnt fixed· bin (17), /-.'(number of hardcore segments-.'(I

2 nmm fixed bin (17), f-1: number of always accessible
segments -!:I

2 htcnt fixed bin (17), I* hash table size ·'·I "

2 ht (hssp-? hss.htcnt), · l·k hash table -.'(/

3 VS bit (1),

3 ds bit (J),

I* vacant switch *I

I* deleted sw. (not used; for
compatability) */

MOLTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.1 PAGE 14

3 segno bit (18),

2 hst (hssp~ hss.hscnt),

3 uid bit (70),

3 pste_index bit (3),

3 status bit (3),

3 ds ace bit (6),

3 easw bit (1),

3 ea ace bit (6), -
3 csl bit (12);

I* the subscript to hst */

I* the table itself */

I* unique ID I*

I* access bits */

I* enforced access switch */

I* access bits for enforced access*/

I* current segment length *I

