
MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BG.10.03 PAGE 1

,,-.., Publishedz 01/25/68

Identification

DIM service procedures
R. K. Rathbun

Purpose

This section describes all of the service procedures internal
to the File System DIM. {See BG.10.00 for an overview
of the File System DIM.) The procedures represent tasks
whose code would otherwise appear in more than one of
the DIM~s procedures. Herein, the term request-initiator
refers to the procedure dim command and the term hardware
interface refers to any of the procedures drum_ctl, disc_ctl,
race_ctl, or the like.

Manipulation 2f. the l.LQ queue and ~ done-lis.t

From the time the DIM receives a new request to the time
the request is completed, the request has associated with
it a primary lLQ queue entry. The queue entry serves ·
as a working space for the request-initiator, as an error
repository for its associated hardware-interface, and
in general, as an identification of the request. When
all of the hardware commands generated by the request
have been completed .. the queue entry is placed in the
done-list where it remains until the DIM signals that
the request is completed. Once completion is signaled
{by a call to iodone), the entry is taken from the done-list
and is placed in the free-Jist from which it was allocated
when the request was initiated.

For certain pathological write-requests {see BG.10.02),
an additional {or secoodary) entry is required by the
request-initiator. An entry of this type is merely a
temporary merrio.ry for the request-in! tlator. When the
secondary entry is no longer needed, it is placed in the
free-list directly -- it is not placed in the done-list
as an intermediate step.

Regardless of how pathological the request, it needs at
most one secondary entry at a given moment. However.
since every request potentially requires two queue entrys,
there must be at leasts

number of processors + 1

entries in the free-list at initialization-time. A smaller
number of entries permits a total lock-out situation in
the DIM.

MULTICS SYSTEM-PROGRAMMERS .. Mt\NUAL SECTION BG.1 0.03

The queue has the following overlay for the management
procedures:

del 1 q_linkage based (xx).
2 free done

3 lock blt (36),
3 first_free bit (18),
3 free_count bit (18),
3 first_done bit (18).
3 done count bit (18),

2 normal_link (1024),
3 fil11 bit {54),
3 linkage bit (18),
3 fil12 bit {36)J

where the items of the structure are as follows:

PAGE 2

free-done is the header for both the free-list and the
done-list. The next five sub-items constitute the
current linkage-status of the queue.

~ is set 11 on11 before any attempt is made to 1 ink or
UOTink an entry from either the free-list or the
done-list.

first-free is an index to the first free entry,
provided that the free-list is not empty.

free-coynt is the number of entries in the free-list.

is an index to the first entry in the
~--~~- provided that the done-list is not empty.

done-count is the number of entries in the done-list.

normal-link is an array each element of which overlays
one normal queue entry.

fi111 is a filler to align the next item.

linka~ is an index to the next entry in the list,
provided that the entry itself is in either the done-list or
the free-list and that the entry is not the last entry in
the list.

fi112 is a filler to align successive queue entries.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.10.03

To obtain a free queue entry (primary or secondary)~ the
DIM makes the following call:

call dimsSgf (qx~ err);

where:

del qx fixed binary (35)
err fixed binary (35);

I* queue index *I
l.,'r error-code *I

PAGE 3

If free_count is non-zero~ the entry whose index is first_free
is removed from the free-list. Items linkage and fill2
of this entry are set to zero as initial values. The ·
parameter qx is set to the index of the newly removed
entry and the error-code err is set to zero (i.e.~ no
error); these values are then returned.

If~ on the other hand~ free_count is zero~ dimsSservice_
done list is called to have entries in the done-list moved
to the free-list. If free_count is now non-zero~ the
removal is performed as above. If the count is still
zero~ then dims~wait is called to cause processing of
other requests and dimsSservice_done_list is called to
have entries in the done-list moved to the free-list.
The sequence of a call to dims~wait followed by a call
to dimsSservice_done_list is repeated until a free entry
appears.

If ever dims~wait returns an error-code~ the error-code
is returned to the caller~ thus signaling that every file
system device is inoperative; i.e.~ no queue index is
returned.

To link an entry to the free-list~ the following call is made:

call dims~ lf (qx);

The queue entry whose index is qx is placed at the top
of the free-list.

To obtain an entry from the done-list~ the DIM makes the
following call:

ca 11 dims~ gd (qx);

If the done-list is empty~ then qx is returned as zero.
Otherwise~ an entry is removed from the top of the done-list
and its index is returned as qx.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.10.03 PAGE 4

To link an entry to the done-list, the following call is mader1

call dims~ld (qx);

The queue entry whose index is qx is placed at the top
of the done-lists

Posting hyper-commands

Whenever a request to a device control module is found
to be completed, the requesting module must be notified
of this fact. This action is called posting. For every
hyper-command handed to a hardware-interface, some type
of posting is done when the hyper-command has been run.
(Briefly, a hyper-command is that group of DIM commands
necessary to move a hyper-record; cf. BG.10.00). Since
the actual posting is device-independent, the hardware-interfaces
share the same posting procedure. The procedure is called
as follows:

call dims~post (id, flag, type, indx, arg);

where:

de 1 id fixed binary (35),
flag fixed binary (35),
type fixed binary (35),
indx fixed binary (35),
arg fixed binary (35);

I* id of device *I
I* error flag *I
I* posting type *I
I* user id *I
I* posting argument *I

The arguments have the following definitions:

1£ is the device id of the device belonging to the
hardware-interface which called the posting procedure.

fllg is the error flag pertaining to the hyper-command
b g posted. A value of zero indicates successful
completion. A non-zero value indicates unsuccessful
processing. By the poster, no significance is attached
to the particular value of a non-zero flag, the value
is simply passed on to the initiator of the request,
whenever this is possible.

~ identifies the initiator of the request, or
equivalently, the type of posting to be done. The
following are the valid codes:

o = initialization posting
1 = primary queue posting
2 = secondary queue posting
3 = free-storage posting
other= call panic

Additional types may be added, if the need arises.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.10.03 PAGE 5

~ is the identification of the user within the
class type. Initialization has no indx. For queue
types. indx is the index of the primary queue entry.
For free-storage. it is the index of the free storage
buffer associated with device id.

arg is an argument passed from the initiator of the
hyper-command to the poster via the hardware-interface.
For secondary queue type posting. it is an index into
the secondary queue entry where is contained a
hyper-record number and its hyper-sector address.
This parameter is not used for other types of posting.

The particular action taken for the various posting types
is described here.

(Type 0). Since the system is so "primitive•• at initialization
time. a non-zero flag is a command to call panic; on the
other hand. a zero flag causes only a return.

(Type 1). The flag is or'ed into the status-word of the
queue entry whose index is indx. The count of the number
of hyper-colllTlands outstanding for this queue entry is
decremented. If the count is still non-zero. nothing
else is done. If the count is now zero. then the request
is completed and the queue entry is linked to the done-list.

(Type 2). The request-initiator may interlock a hyper-record
of a file when it is necessary to initialize that hyper-record.
To do this. the request-initiator requires the temporary
use of a secondary queue entry in order to identify the
hyper-record and to save the hyper-sector address.

A secondary queue entry has the following overlay:

de 1 1 ioq2 (0:1024) based
2 fmo bit (18).
2 count bit (18),
2 fi111 bit (1).
2 hrn1 bit (17),
2 h ra1 bit (18).
2 fil12 bit (1).
2 h rn2 bit (17) •
2 hra2 bit (18).

(xx}.
I* relp to file-map *I
I* inits outstanding */
I* fill to align next *I
I* h-record number *I
I* h-record address */
I* fi 11 to align next */
I* h-record number *I
I* h-record address *I;

where "h-record'' means hyper-record.

The secondary queue entry is located via the linkage of
the primary queue entry (designated by indx) associated
with the request. Posting amounts to locating the file-map
associated with the request. and then replacing the current
hyper-record address with the one stashed in the secondary

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.10.03

queue entry. Arg specifies which of the two possible
replacements carried in the secondary queue entry is to
be performed. If this replacement is the last (of the
two), then the secondary queue entry is unlinked from
the primary entry and is linked to the free-list. The
primary entry is then posted as above.

PAGE 6

(Type 3). The flag is stashed in the status word associated
with device id and free storage buffer index thereof.
If the flag is zero, then the buffer is designated as
having no errors in transmission. Lastly, a switch is
set to indicate that the IIO has been completed (see BG.10.04).

(Type not listeci above). The poster calls panic.

Servicing the done-list

The done-list contains all queue entries for which IIO
has been completed. The DIM may cause the done-list to
be emptied and the entries therein to be "posted" (i.e.,
Page Control is informed) by the following call:

call dims~service_done_list;

For each entry in the done-list, parameters of the entry
are removed and passed to the page control entry iodone
as follows:

call iodone (op, fmc, state, mem, status);

where:

del op bit (3)
fmo bit (18),
state bit (10),
mem bit (18),
status bit (18);

I* file operation *I
I* relative pointer to file-map *I
I* see below *I
I* memory address */
f·k error code .,~/

All of the parameters~ except status, were handed to di~file_io
when the request was initiated. The or'ed error codes
from all hyper-sector I/0 operations is stored in status.
The parameter state is an argument from the caller of
the DIM to iodone and is not altered by the DIM.

After its parameters are removed, each entry from the
done-list is linked to the free-list, thus replenishing
the supply.

,.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BG.10.03 PAGE 7

Passing ~ time waiting fQ(!LQ

Occasionally, a portion of the DIM will be unable to continue
operation until one or several IIO operations are complete.
For example, if there are no free queue entries, then
at least one request must be hammered to completion before
an entry will be available. A similar situation exists
for free storage1 i.e., when its load is heavy and its
service from the hardware-interface is lagging.

Although a portion of the DIM may be unable to proceed,
the DIM itself can sti 11 do useful work. At such times,
the following call is made:

call dims~wait (id, err)J

where a

del id fixed binary (35)
err fixed binary (35)J

I* device id *I
I* error-code -.'rl

Generally, this call causes the hardware-interface(s)
to be run 1 running a hardware-interface speeds up posting
and thereby increases effective throughput.

If the inability to proceed is due to a particular device
(as with free storage), then the caller sets id to the
device identification of that device. In this case, the
hardware-interface for only that device is run. If the
hardware-interface returns an error-code, that code is
returned to the caller. This indicates, of course, that
the device is inoperative and further 11 waiting" is futile.

If the inabi 11 ty to proceed is not attributable to a particular
device (as with dims~gf), then the caller sets id to zero,
the identification of'an illegal device. This causes
the hardware-interface of every operative device to be
run. If every hardware-interface returns an error-code,
then an error-code is returned by dims~wait, indicating
that every device is inoperative. On the other hand,
one zero error-code indicates that useful work can still
be done, and so dims~wait returns a zero error-code.

A return from dims~wait with a zero error-code does not
imply that the difficulty has been removed. Indeed, it
is the responsibility of the caller to check that and
to call again, if necessary.

Regardless of the setting of id, all errors returned from
hardware-interfaces are recorded in dims_dct (described
in BG. 1 0. 01) •

