
.. 

,/ 

.,-

MULTICS SYSTEM-PROGRAMMERS~ ~ANUAL SECTION BG.10.04 PAGE 1 

Published: 03/27/68 

Identification 

Device Free-Storage Management 
J. D. Van Hausen 

t sviJ ~ ovl::t 
Oo t~' 

6JL C!P--u6~ ....r Purpose 
a..,.b S I rt(..(!) 

The file system free-storage manager (hen~after called brt'~ 
simply free storage) is that part of the DIM wt1ich keepsi}D 
track of the unused storage on a 11 on-1 ine clevices. Hvo(~r-records 
on the devices are withdrawn from or released ; nto ··he 
pool of unused storage by calling free storage. DeJ.·~:nding 
upon the entry point used, free storage wi 11 either ret: urn 
to the caller an unused hyper-record address or place 
the address handed it back into its lists. 

Another duty of free storage is to complain when t 1 1l~ level 
of unused storage drops below a certain ti1reshold percentage 
for that device. 

Introduction 

In the description which follows it is assumed that the 
reader is familiar with Section BG.1D.OO, since the basic 
DIM concepts are presented there. This section first 
describes the structure of the data bases used by free 
storage and then the use and internal mechanisms of the 
free storage procedure. 

The free list 

The free pool is the set of unused hyper-records on a 
device. Free storage keeps track of the free pool by 
keeping a list of addresses; this list is called the free 
list. There is a separate free list for each device. 
Only a portion of the free list is in core at any time, 
in order to be able to satisfy a request without performing 
any device 1/0. Residing in core at any time is some 
useful portion of the free list for each device. The 
bulk of the free list resides on the devices themselves, 
with each entry residing on the device which it describes. 
This scheme is intended to minimize the core required 
for the free list without degrading performance. 

Since the free pool is a collection of hyper-records arranged 
randomly over the device, the free pool must be divided 
into pieces small enough to fit into a hyper-record. 
These small pieces are called free maps. The size of 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.10.04 PAGE 2 

a hyper-record on a device is a system parameter and most 
likely will be different on different devices at any one 
time. Thus rather than change the size of the free maps, 
they are small enough to fit in the minimum hyper-record, 
128 36-bit words. As will be seen later, the free maps 
are stored in less than 1 per cent of the hyper-records 
in the free pool, and so the fact that the hyper-records 
containing free maps are inefficiently used is unimportant. 

The address of a hyper-record containing a free map appears 
in only one place in the free list: in the free map which 
it contains. Thus there is no danger of handing out a 
free map hyper-record until its contents have been read 
into core. 

Free maps are linked together into free chains. There 
may be several free chains in the free list for one device. 
The free maps which are in core are the ones at both ends 
of each chain. The map in core at one end of each chain 
is called the deposition buffer and may only be written 
onto the device. On the other end is the withdrawal buffers 
this buffer may only be read from the device. 

There are two reasons for having more than one chain. 
Since 1/0 is asynchronous, when 1/0 is initiated for a 
buffer, it should not be altered until the "all clear11 

signal is received from device control. This means that 
with one chain either no release request or no withdrawal 
request could be processed while 1/0 is in progress. 
With several chains, one may process the request using 
another chain. The other reason is to permit free storage 
to be more tolerant of non-recoverable 1/0 errors. With 
only one chain, an error would cause the complete collapse 
of free storage. Having N chains permits free storage 
to withstand N-1 errors by ignoring those chains which 
have had errors. 

The master sector 

The master sector contains data necessary to manipulate 
the free list for a device. It also contains sufficient 
information to permit a fairly complete recovery following 
a catastrophic system shutdown. A copy of the master 
sector is kept on the device to permit this recovery capability. 
In core the master sector describes the status of the 
free l~st for its associated device. 

. ' 



, . 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.10.04 PAGE 3 

When the system is shut down normally, the buffers are 
written out onto the device and the master sector in core 
is written over the copy on the device. Starting up the 
free storage procedure is just a matter of reading the 
master sector which contains the address of the beginning 
and end of each free chain and then reading in the required 
portion of each chain. When the system "crashes", ·hr 
master sector on the device contains addresses of free 
map hyper-records in each chain; by chasing throuqh c,'ch 
chain, the ends can be found. 

The freepool segment 

The master sector and all buffers for a device arc contained 
in a wired-down segment whose name is freepool-NN, where 
NN is the device identification index. The first block 
of 128 thirty-six bit words contains the master scctnr, 
the next M blocks contain the deposition buffers for the 
M chains, and the next M blocks contain the wi thdr.::\ ::tl 
buffers. 

The free storage procedure 

There are two entry points into free storage; c. '( ·~ : 
withdrawing a hyper-record address and one for re ·leasing 
a hyper-record address which is no longer needed. 

Usage 

Free storage as the term is used in this section is really 
two separate procedures combined into one segment. One 
procedure is called withdraw; the other release. The 
rocedures were combined to conserve core space, since 
free storage must be wired down. 

Thus there are two entries to free storage. The corresponding 
call statements are (1) call free-store~ withdraw (did, 
add, errcode) and (2) call free-store~ release (did, 
add, errcode). The declaration of the arguments is as 
fo 11 ows: 

de 1 (did, 

del add, 

errcode) 

fixed bin (35); 

I* device id *I 

I* address */ 

I* error code *I 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BG.10.04 

If errcode is zero the request has been satisfied; if 
it is nonzero the request has not been satisfied for any 
of the following reasons: the device is inoperative, 
the free pool is empty or there was an error on the one 
remaining free chain. With each call only one address 
is withdrawn from or replaced into the list. 

The free storage procedure 

PAGE 4 

When a buffer has had I/O initiated on it, free storage 
must find another chain to use. This it does by using 
the "nxchain" array in the master sector. The 1-th element 
of "nxchain" gives the chain to be used following the 
i-th chain. When an error occurs on a chain, the 11 nxchain" 
element which pointed to the chain with the error is modified. 
As an example, consider the case of four chains. Initially 
the "nxchain11 array would look as follows: 

nxchain (1) a 2 

nxchain (2) = 3 

nxchain (3) a 4 

nxchain (4) = 1 

If now an error were detected on chain 3, the array would 
be modified to the following: 

nxchain (1) a 2 

nxchain (2) = 4 

nxchain (3) = 4 

nxchain (4) = 1 

Thus after using chain 2, free store uses chain 4 and 
chain 3 is skipped. 

The process of going to the next chain using the "nxchain11 

array is called commutation. The commutation at the deposition 
and withdrawal buffers is not synchronized; this simplifies 
the logic in free storage. Since the "nxchain" array 
causes free storage to use all usable chains before repeating, 
all of the chains are maintained at approximately the 
same length. 

' . 



MULTICS SYSTEM-PROGRAMMERS' ML\NUAL. SECTION BG.10.04 

Free storage reduces the number of times IIO is needed 
by using both buffers to make withdrawals and both to 
make depositions. Without sharing the buffers in this 
manner a constant overhead of IIO would be required~ 

PAGE 5 

In a stable system, i.e., one in which the number of depositions 
is approximately equal to the number of withdrawals, buffers 
would continually be written onto the deposition end of 
each chain and read from the withdrawal end of each chain. 
HO'tlllever, by sharing the duties of the buffers, they act 
as a small free list which can handle the requirements 
of a stable system. When the system becomes unstable, 
commutation and IIO can be brought into play to handle 
the requests. 

Sharing the buffers in this manner has another advantage: 
two requests for a single device can be processed simultaneously. 

In order that the master sector on the device be usable 
for recovery it must be updated occasionally so that the 
data it contains will not be so completely outdated as 
to be useless. When the commutation process at the withdrawal 
end has covered all usable chains the master sector is 
rewritten. At this point the percenta~e of the device 
in the free pool is recalculated by us1ng the length of 
each chain, the size of each map and the number of usable 
chains. If the percentage has dropped below a certain 
threshold for the device, a call is made to device-distress 
with the device identification. 

PL declarations 

del I* master sector *I 

msec based (ptr), 

2 miow, 

3 ok bit (9), 

3 pending bit (9), 

3 error bit (18), 

2 diO'tlll (16), 

3 ok bit (9), 

3 pending bit (9), 

3 error bit (18), 



MULTICS SYSTEM-PROGRAMMERS"" MANUAL SECTION BG.10.04 PAGE 6 

2 wiow (16), 

3 ok bit (9), 

3 pending bit (9), 

3 error bit (18), 

2 allocatedsectors fixed bin (17), 

2 catastropheflag bit (1), 

2 numusablechains fixed bin (17), 

2 dchain fixed bin (17), 

2 wchain fixed bin ('17), 

2 diolock bit (36), 

2 wiolock bit (36), 

2 dbuflock bit (36), 

2 wbuflock bit (36), 

2 dend (16) fixed bin (35), 

2 dndx (16) fixed bin (17), 

2 wend (16) fixed bin (35), 

2 wndx (16) fixed bin (17), 

2 nxchainlock bit (36), 

2 nxchain (16) fixed bin (17); 

miow, diow, wiow - master sector, deposition buffer, 
and withdrawal buffer I/0 words. 

ok - set on by device control when 1/0 has been 
successfully completed. 

pending - set on by free storage when initiating l/0 
and set off by device control when the 1/Q 
has been completed either successfully or not. 

error - set on by device control when there has 
been an l/0 error. 

' . 



--

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG. 10.04 

allocatedsectors - the number of hyper-records 
in this partition. 

PAGE 7 

catastropheflag - set on at system initializat1on 
time and set off at system shutdown time. 
This is used to check for catastrophic 
shutdowns. 

numusablechains - the number of chains which have 
had no errors. 

maxchain - the number of chains including those 
with errors. 

dchain, wchain - the index of the chains currently 
being used for depositions and withdrawals. 

diolock, wiolock - used to keep two processors 
from sensing an 1/0 completion. 

dbuflock, wbuflock - used to lock buffers whenever 
they are to be modified by withdrawals, 
depositions or 1/0. 

dend, wend - used by the free storage initialization 
procedure. These contain the addresses of 
the ends of the chains. 

dndx, wndx - these are the indices giving the next 
available slot in the deposition buffer and 
the next ava i lab 1 e atddress in the wi thdrawa 1 
buffer. 

nextchainlock - keeps two processors from changing 
the next chain array. 

nextchain - is used to get the next usable chain. 

When an error.occurs on any chain, the next
chain array is modified so that the chain is 
no longer used. 

del /* buffers and free maps */ 

buf (16) based (ptr), 

2 checksum bit (36), 

2 fill_1 bit (1), 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECT I ON BG. 1 O. 04 PAGE 8 

2 seqnum bit (35), 

2 f i 11_2 bit ( 1 ) , 

2 chainnum bit (35), 

2 backadd bit (18), 

2 frwdadd bit (18), 

2 add (248); 

checksum - contains the Multics standard checksum of the 
entire buffer excluding checksum. 

seqnum - contains a number which is incremented by 
one for each map going from the withdrawal to 
the deposition end of the chain. 

chainnum - the index of the chain in which this buffer 
occurs. 

fill 1, fill 2- used to right adjust the two 35-bit 
-strings-in the 36-bit machine words. 

backadd, frwdadd - the backward and forward 1 inking 
pointers. 

add- the free hyper-record addresses, (add (1) is a 
self-pointer). 



! 

~ 

• 
• 
• 

) 

deposition 
buffer 

' ( 

Jt 

/ 

--• • • 

• 
• 
• 

~~ 

¥ 

::;Ill; 

~( 

. 
• • 

• 
• 
• 

~ 

~ 

) 

The Structure 0 f 

~ free-map cha i n 

core storage 

device storag e 

-- -~ -
--

~ ~ ( 

~maps_ -. 

. 

. . 
• 

• 
• • 

~ 

~ 

../'( 

withdrawal 
buffer 

... 

-
• . 
• 

• • 
• 

) 

i 

l 

I. 

( 

' 

':. 
~ 

I 

~-~--1-- --
e-- --

X . 
~= & =---. 

• .. 

• • • 

) • 

:::s::: 
c 
r 
-1 -(') 
(/) 

(/) 

-< 
(/) 

-1 
fl1 
:::s::: 
I 

"'0 
;:o 
0 
G> 
;:o 
l> 
:::s::: 
:::s::: 
fl1 
;:o 
(/) 

\ 

~ 

~ 
z c 
l> 
r 

(/) 

fl1 
(') 

-1 -0 
: z 

co 
G> 
• -0 

.L • .-
~ 

;g 
G> 
fl1 

1.0 




