
MULTlCS SYSTEM-PROGRAMMERS' MANUAL

· Iden~lfJco~ion

External DIM Functions
R. K. Rathbun

Purpose

SECTION BG.10.06 PAGE 1

Publishedz 03/08/68

For each file residing on a file system device. the DIM
maintains a~·~ which defines the location (on the
device) of the files records. A file map is of use only
to the DIM. but must exist somewhere in the Multlcs hierarchy
as long asthe file exists. When the file is active.
its file map must reside in wired-down coreJ when the
file is inactive. its file map resides in the directory
which contains the branch defining the file.

To permit file system procedures external to the DIM to
manipulate file maps without·being aware of the file map
structure. several primitive procedures are provided.
The procedure dimf$fm_max_size returns the number of bits
required for a file map needed to describe a file of known
maximum length. This procedure is used when a file is
created. to determine how large an area in core is needed
to hold its file map. The procedure dimf$fm_init initializes
a file map so that it describes (to the DIM) a file which
has no device space yet allocated. A call of this type
immediately' follows the allocation of an in•core area
for a new file map. The procedure dimf$fm_move is called
by directory control to move a file map within a directory
whenever the maximum length of the related file is changed.
It should be noted that a file map cannot be shortened
until the trailing records have b'en deleted via calls
to the DIM. .

Also provided is dimf$optimum_page size which returns
the "best" page size for files resTding on a given device.
Files so paged receive service with minimum overh~ad from
the DIM., ·

8. dimf const1nt

The ·file maps generated and manipulated via calls to dimf
are device independent in the sense that the length of
a file's map is the same no matter on which device the
file actually resides. This requires that dimf consider

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.10.06 PAGE 2

every file system device to have a hyper-record size which
is (at most) equal to the smallest hyper-record size of
all file system devices. This smallest hyper-record size
is a constant between compllte file system reloads. Thus
a file with 11 x11 1 024-word b ocks requ res (at most) a
certain number of hyper-record addresses, denoted by da(x),
which value is independent of the device containing the
file. The value of da(x) is given by the integral part
of:

(16 *X+ t- 1) I t

where t is the smallest hyper-record size •

.Elk mse. ~
The file map is declared as follows:

del fm based (xx),
2 lock bit (36),
2 add (1024) bit (18)J

where:

lock is an interlock to prevent simultaneous
modifications to the map by the DIM.

add(i} is the hyper-record address
of the i-th hyper-record of the file.

The callin~ sequence to determine the number of bits needed
for a file s file map is given by:

call dimf$fm_max_size (size, bits)J

where a

and:

del size bit (9),
bits fixed binary (35)J

~is the length of the file in 1024-word
blocks (specified by the caller).

bits is the number.of bits needed for the
file's map (returned by DIMF).

The value of bits is given by:

36 + 18 * da(size)

as can be seen from the declare.

MULTICS SYSTEM-PROGRAMMERS' MANUAL

Initializing a file mae_

A file map is initialized by the call:

call dimf$fm_init (size~ mp)J

where:

and:

del size bit (9) 1

mp pointerJ

SECTION BG.10.06 PAGE 3

~is the length of the file in 1024-word
blocks •

.!!!Q points to the space allocated for the map.

This causes the lock to be zeroed and the first da(size)
hyper- record addresses to be set to '' nu 11" addresses in
the file map pointed to by mp. (See BGo10.02 for the
definition of a null address). ·

Moving a .!!!2Q.

Whenever the maximum length of a file is changed 1 the
file map is moved by the call:

call dimf$f~move(osize 1 omp, nsize, nmp)J

where:

and:

del (osize1 nsize) bit (9) 1

(omp 1 nmp) pointerJ

osi•~ and nsize are the old and new maximum
lengths of the file in 1024-word-blocks.

omp and QlP are the gld and new pointers
to the f1 e map space.

If the length of the file is unchanged, then the lock
is zeroed and da(osize) hyper-record addresses are copied
from the old file map into the new map.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.10.06 PAGE 4

If the length of the file ls increased, then the above
is performed and then the addresses in the map from da(osize)+1
to da(nsize) are set to null.

If the length of the file is decreased, then the lock
is zeroed and the first da(nsize) hyper-record addresses
are copied into the new map. The addresses from da(nsize)+1
to da(osize) in the old map are untouched; that is, they
are expected to be nulls resulting from delete requests
to the DIM.

Paging

If a file resides on a device whose hyper-record size
is .bJ:i, then optimum service can be expected from the
DIM if the file has a page size of hr.§.. In this case,
the DIM does not have to go through the overhead of breaking
hyper-records into their component records in order to
satisfy requests. The next best page size is a multiple
of .bJ:i, since this still requires no breaking down. Although
other page sizes are not optimal, they are still functional.

The optimum page size is obtained via:

call dimf$optimum_page_size (did, page_slze);

where:

and:

del did bit (4),
page_size fixed binary (35);

did is the device 1d of the device on which
the file resides.

gage-size is the returned hyper-record size
for the indicated device as obtained from
a list of initialization-time constants.

