
BGs .. JS.oO 
• MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION i~uli,Q~ PAGE 1 

ldentif·catlon 

Draft for approval 
Published: 5/27/66 

Locking and Blocking in the Basic File System 
C.A.Cushing; M.R.Thompson 

Purpose 

Most of the file system procedures rely on shared data bases. 
In order to avoid confusion, a procedure must be able to use 
a stable (i.e., one that no other process is currently modi
fying) copy of the data base. Since only one copy of a 
common data base exists, it is necessary that one process be 
able to prohibit all other processes from usin~ the data base 
(i.e., lock the base) when this process is mod1fying it. It 
is also necessary that a process which wishes to read a stable 
copy can be sure that no other process is currently modifying 
the base. The method and details of the locking and checking 
procedures are discussed in section BG.18.02. 

When a process finds that it is unable to use a data base in 
the manner that it desires, it normally wants to go blocked 
and wait until the data base is free. The freeing of the 
data base is called an ~ent for which the process is waiting. 
When such an event occurs, the process that knows of it must 
initiate a procedure that will notify all the processes 
waiting for the event and cause them to be re-scheduled. The 
waiting and notifying procedures are described in BG.18.01. 

Processor Masking 

Once a data base has been locked for one process, no other 
process can use that data until the first process is finished 
with it and unlocks the data base. Thus, a process may wish to 
insure that it will not lose the processor for any indefinite 
period during the time that it has a data base locked. A 
privileged utility masking routine is available (see Section 
BK.1.04)for this process that will set the processor mask to a 
new value and return the previous value of the mask. This 
mask can ave one of two values; if it is ON, any interrupt that 
causes the processor to be given to another process for an 
indefinite period of time is masked (for example the timer
runout interrupt), if the mask is OFF, no interrupts are 
masked. The processor should be masked for only a short 
period of time (less than 1 millesecond). The call to the 
masking routine is made from the procedure that calls the 
locking routine rather than from the locking routine itself. 



· MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.(4r~ PAGE 2 

In accordance with the general Multics policy that masking 
should be kept to a minimum. the permission to use the masking 
routine must be granted by a system administrator. Thus. the 
processor will be masked only when a process has a data base 
locked that is essential to efficient system operation and 
when the duration of the masking time can be shown to be less 
than one millisecond. A data base is essential to efficient 
system operation if many'processes must use this data base 
whenever they are running. An example of an essential data base 
might be the core map. If a process had the core map locked 
and lost the processor for an indefinite length of time. 
it is possible that most of the other processes currently 
running on the system would become blocked waiting for the 
core map to become available. Eventually. of course. the 
original process will reach the top of the scheduling queue 
and run again. this time finally unlocking the core map. 
However. meanwhile quite a bit of time has been spent blocking 

·and rescheduling other processes. This time would have been 
saved if the processor had been masked while the core map was 
locked. 


