
MULTICS SYSTEM-PROGRAMMERS .. MANUAL SECTION BG.3.01 PAGE 1

,-...., Published: 05/24/67

Identification

Segment Control, The System Interface Module
R.C. Daley, M.R. Thompson, D.M. Ritchie

Purpose

The system interface module of segment control consists
entirely of privileged primitives provided for the use
of supervisory procedures and certain administratively
privileged processes- e.g., the backup and multilevel
system. Primitives ate provided by which a segment is
made available (or unavailable) to the current process.
In addition several primitives are provided for use in
·servicing segments already known to the current process.

Introduction

Two primitives of the system interface module (makeknown
and getdirseg) are provided by which a segment is made
known to the current proces?. If a user wishes to use
a segment within his process, one of these two primitives,
must ultimately be invoked. When this occurs a segment ·
number is assigned to the segment making the segment known
to the current process and an entry is made for this segment
in the known segment table (KST).

A known segment becomes active only when and if it is
referenced by the process, at which time an entry is made
for the segment in the active segment table (AST) and
the segment is active. Normally, the segment is also
loaded at this time (page table assigned) and the referenced
page or pages read into core. The remaining pages may
be read into core by page control as missing-page faults
occur. When, due to relatively low activity, the number
of pages in core of a loaded segment drops to zero, page
control unloads the segment by removing its page table.
Segment control may decide to deactivate an active but
unloaded segment by removing its AST entry. AST entries
are normally deleted only to make room in the AST for
more active segments.

Once a segment becomes known to a process it remains known
to that process until an explicit call is made to segment
control to make the segment unknown. However, a known
segment may enter and 1eave the active and loaded states
many times without any explicit call on the part of the
user.

1,-..._

/,...

MULTICS SYSTEM-PROGRAMMERS .. ~NUAL SECTION BG.3.01 PAGE 2

Another primitive of the system interface module (makeunknown)
is provided by which a known segment is rendered unknown
to the current process. Most of the remaining primitives
provide service functions relating to segments already
known to the process.

Primitives

The following is a list of the primitives provided by
the system interface module and is followed by a detailed
discussion of each primitive. All of the primitives are
procedures within the hard-core supervisor and may only
be called by other hard-core procedures except as indicated.

1. unknown

2. s im2~getdi rseg

3. makeunknown (b)

4. segfau lt

5. boundfault

6. sim2~moveseg (b)

7 • s i m1 ~ d i rmod

B. sim1~branchmod

9. sim1~updateb

1 0. s im1 ~un loadseg

11. sim1~deleteseg

12. get_ring (a)

13. sim1~transuse (b)

14. initiafize_kst

(a) Callable from the administrative ring.

(b) Callable by backup and multilevel.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.01 PAGE 3

1 • makeknown

Directory control provides a primitive (estblseg) which
locates a branch in the directory hierarchy and makes
the associ?ted segment known to the current process.
If and when the bra~ch is found, directory control calls
segment control to/make the segment known to the process
by means of the following call.

ca 11 make~nowrl (name, id,mode, pt 1 ist ,di rsw, dtbm,dp,
1 slot,dhs,rsw,segptr,slotlist,errcode);

In this call; name is the pathname of the branch defining
the desired segment, IS is the unique identifier from
the branch, ~ is the effective mode of the segment,
ptlist islthe segment protection list as specified in
the access control list of the current user and determines
from which protection rings the segment may be accessed
(see section 80.9), dirsw specifies whether the segment
is a directory or non-directory segment, 9.lQm is.the date
and time indicating When the branch was last modified,
£Q is a pointer to the base of the directory containing
the branch, ~ is the index of the branch within the
directory, dhs specifies the desired setting of the
directory-hOld switch in the KST entry to be created,
and rsw is the reserved se~ment number switch (see below).
Upon normal return from th1s call, a pointer (ITS pair)
to the base location of the segment is returned as the
value of segptr. In addition, a list of slot numbers
(see BG.7) defining the path of branches from the root
directory to the current branch is returned in the array
slot 1 is t. If, however, the length of the slot 1 i st array
is zero, no slot information is returned.

If~ is ON, then segptr specifies the segment number
desired by the caller for the segment being made known;
an error return is given if the segment is already known
with another number or if the number is unavailable.
This feature is used only during system initialization
when the Multics trigger is turning itself into a process.

If~ is OFF, a check is made to determine if any segment
already known and listed in the KST has the same unique
identifier, using a utility routine (suntJidsrchkst).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.01 PAGE 4

If a match is found, and the segment is a directory segment,
the new name is appended to the list of names for the
entry at which the match was found. If the name is not
different from those already present, or if the segment
is not a directory, errcode is set to indicate the segment
is already known.

If no match is found, the Hardcore Segment Table {HST)
{see BG.1) is searched for the unique identifier; and
a KST entry is created with the segment number associated
with the matching unique ID in the HST.

If the unique ID is not found in the HST, the several
unique IDs in the PST entry for the process are searched
{see BG.2). These are the identifiers of the KST itself,
the process data segment, and the hardcore stack. If
a match is found, the associated segment number is used
and a KST entry is created.

If both these searches fail, a KST entry is created using
the first available segment number. If dirsw is ON, the
segment is a directory segment, and the segment name is
stored with the KST entry and the transparent-usage switch
is turned ON. No name is stored if the segment is not .
a directory.

2. s im29 getdi rseg

In order to search a given directory in the hierarchy,
directory control must first obtain a se~ment number for
that directory segment. To establish th1s segment number
from a symbolic directory path name, the following call
is provided for the exclusive use of directory control.

call sim2~getdirseg{name, segptr, mode, errcode);

In this call name is the symbolic path name of the desired
directory segment. Upon normal return from this call,
a pointer to the base location of the desired directory
segment is returned as the value of segptr and the effective
mode of the directory segment is returned as the value
of mode.

Upon receiving this call, a utility routine (nsrchkst)
is called to search the KST for the specified name. If
found, the segment number and mode are immediately returned
to the caller. If the name is not found in the KST, a
directory control primitive (finddir) is called to attempt

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.01 PAGE 5

to find a branch corresponding to the specified path name.
If the branch is found, directory control calls the makeknown
primitive to establish an entry for the directory segment
in the KST, and re+urns to getdirseg. Once the KST entry
is created, the desired information is returned to the
caller.

3. makeunknown

When a process no longer needs a particular segment which
is currently known to the process, the segment may be
made unknown (no longer known) to the process by means
of the following call.

call makeuhknown (segptr,·errcode);

In this call, segptr is a pointer within the segment which
is to be made unknown. This primitive may be called from
procedures in the administrative ring.

I

Upon receiving this ca11, the segment number of the segment
is extracted from the pointer variable (ITS pair) and
used to access the corresponding KST entry to find i·he
unique identifier of this segment. The unique identifier
is then used to search the AST to determine if the segment
is currently active by calling a utility routine (searchast).
If the segment is _active, a check is made to determine
if the current process is listed with the AST entry as
an active user of the segment. If this is the case, the
current process is removed from the list of processes
actively using the se~ment, by means of the page control
routine setfaults. S1nce AST entries are normally removed
only to make room for new AST entries, no attempt is made
to remove the AST entry at this time.

Before returning to the calling program, the KST entry
for the specified segment is deleted and directed faults
are placed in any segment descriptors belonging to the
current process which refer to the segment.

4. segfault

When a process refers to an inactive or unloaded segment,
a directed fault occurs in the segment descriptor word
of the referenced segment. When this fault occurs, control
is immediately passed to a master-mode procedure to process
the fault. Normally this procedure calls segment control
to process the fault and to activate and load the referenced
segment. For this purpose the following call is provided.

call segfault (scuptr, dbrptr, errcode);

('

Ml)LTICS SYStEM-PROGRAMMERS' MANUAL SECTION BG.3.01 PAGE 6

In this call scuptr is a pointer to the location where
·the processor control unit was stored at the time the
fault oc~urred, and dbrptr is a pointer to the descriptor
base reg~ster va]ue at the time of the fault. The processor
c6ntrol 1nformat1on includes the segment number of the
segment descriptor causing the fault_, the address within
that segment which the process was attempting to reference
and the ring within·which the process was operating when "
the fault occurr~d.

Upon receiving this call_, a check is made to determine
if the fault ~curred in the hardcore ring. ·If so, the
~ST is examined to determine if it has an entry for the
segmernt number on Which the fault occurred. The corresponding
unique identifier_, whether directly from the HST or in
the PST and pointed to by the HST, is used to find the
AST entry for the segment, using the ut!lity rou!ine searchast.
(Thus these segments must always be act1ve.) Us1ng the
AST entry_, the segment can be loaded and the referenced
WQrds read into core. The HST entry for the segment contains
the access bits to place in the SDW of the segment.

If the fault did not occur in the hardcore ring or if
the referenced segment did not appear in the HST_, the
KST is examined to find the entry for the faulting segment.
If no entry is found_, the faulting SDW is checked to determine
whether a simulated bound fault (see below) has occurred;
if so, boundfault is called. Otherwise_, a utility routine
(detastentry) is called to locate (or create if not found)
the AST entrv for the desired segment.

Once the desired AST entry is located_, a check is made
to determine if the effective mode and protection list
in the KST entry for the segment is currently up-to-dateo
This check is made by comparing the date/time-branch-modified
item in the KST entry with the date/time-branch-modified
in the AST entry. If the time in the AST is more recent
than the time in the KST, a directory control primitive
(refindb) is called to recompute the effective mode and
return the latest effective mode and protection list to
segment control. This information is then used to update
the KST entry.

A page control primitive (pcreadseg) is then called to
insure that a pa~e table is assigned to the segment and
the page contaln1ng the referenced word is in core. Upon
return from this call, the segment is loaded even if it
was unloaded before the call. A check is then made to
insure that the current process is listed in the AST entry
as an active user of the segment by a call to a utility
routine (maketrailer).

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BG.3.01 PAGE 7

Once the address of the page table is established, a segment
descriptor is created and stored in the descriptor segment
of the protection ring in which the process was operating
at the time the fault occurred. If the segment is a directory
segment, the descriptor access control bits are set to
allow only ring zero procedures.

The segment descriptor access control bits for a non-directory
segment are determined in the following way.

a. If the ring in which the fault occurred (call it
ringno) is higher (less privileged) than the call
bracket all access is denied.

b. If ringno is within the call bracket, access is
permitted only through procedure calls to prespecified
procedure entries by means of the 11 ring crossing"
mechanism (see section 80.9).

c. If rin9no is within the access bracket, access is
determ1ned according to the effective mode of the
segment as specified in the KST entry.

d. If rin9no is below the access bracket, access is
determ1ned again from the effective mode with
the exception that execute permission is denied.

For a more detailed and motivated discussion on segment
access and protection see section 80.9 in this manual.

The boundary field of the descriptor word is prepared
in cases c and d above. If the append permit is given 1

the boundary is set to allow the entire segment (up to
its maximum length) to be accessed. If the append permit
is not given, the boundary is set to allow the segment
to be accessed only up to its current length.

The 645 hardware, when checking for a bound fault, tests
only whether the page number of the referenced word is
greater than the number in the boundary field of the SOW
for the segment. Thus zero-length segments cannot be
represented in the boundary field of an SOW.

To allow detection of the accessing of a word in the first
page of a segment whose length is currently zero, a
missing-segment fault is placed in the SOW, and a special
code is used in the boundary field, which is normally
zero for SOWs of missing segments. When this code is
detected by segfault, boundfault is called to simulate
the fault.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.01

In preparing a segment descriptor word, segment control
may make use of the following directed faults.

PAGE 8

1. All access denied- This fault is used to indicate
that the process has no access to the segment.

2. Ring-crossing fault -This fault is used to indicate
that the segment is accessible only by calling
prespecified procedure entries.

3. Incompatible access fault - This fault is used
in cases when the effective mode cannot be
represented within the framework of the descriptor.
access bits. This case arises when the read
attribute is OFF and the write or append attributes
are ON.

4. Simulated bound fault -This fault, which is
actually a missing segment fault with a special
code in the boundary field, is used to represent
zero-length segments.

6. boundfault

The 645 takes an "out-of-bounds" fault on paged segments
r' in two cases • .

1. The process has used a segment number so lar9e that it
refers to a descriptor segment page whose number 1s larger
than that in the DBR boundary field.

2. The process has used an internal address so large
that it refers to a page whose number is larger than that
in the boundary field of the SOW for the segment in which
the internal address lies.

The first case is always an error, but the second may
or may not be a true error. To sort out the possibilities,
the following call is available to the interceptor for
out-of-bounds faults and to segfault (which catches "simulated
bounds faults"; f.£ discussion of segfault above.)

call boundfault (scuptr, dbrptr);

Here scuptr is a pointer to the SCU information dbrptr
is a pointer to the DBR at the time of the fault

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.01 PAGE 9

This routine first checks the SCU information to determine
if the processor was attempting to fetch an SOW when the
fault occurred (that is, case 1 above applies); if so
an error is returned.

If the process was operating in the hardcore ring at the
time of the fault, then the number of the segment whose
attempted access caused the fault is examined to determine
whether the segment is a hardcore segment (appears in .
the HST). If so, an error is returned because the SOWs
for such segments always have a boundary field corresponding
to the maximum length of the segment, and any reference
beyond the maximum length of any segment is always an
error.

If both these tests fail the KST entry for the segment
is examined; if the process has append permission an error
is again returned because as in the last case the boundary
field of such segments reflect their maximum length.

If the process does not have append permission the boundary
field reflects the actual segment length at the time of
creation or the sow. In this case the AST entry for the
segment is obtained using a utility routine (searchast).
If the referenced portion of the segment is beyond the
current segment length given in the AST entry, an error
is returned; but If the referenced page Is within the
current segmen't length, the SOW boundary field is updated
to reflect the new length and a normal return is given.
This last possibility arises because some other process
With append permission may have increased the length of
the segment subsequent to the creation of its SOW in this
process.

The remaining possibility is that the attempt by searchast
to find an AST entry for the segment is a failure; this
may occur if the segment is deactivated by some other
process between the instant the fault occurs and the searching
of the AST. By the time the ''not found" return from searchast
occurs the SOW for the segment will contain a missing
segment fault, so boundfault simply gives a normal return.
When the immediately subsequent segment fault takes place,
the true segment length will be used to create the new
SOW. Resumption of the instruction causing the segment
fault may or may not cause an out-of-bounds fault but
at this point the segment is active so an out-of-bounds
fault can be handled.

MULTI CS SYSTEM-PROGRAMMERS' ML\NUA L SECTION BG. 3. 01 PAGE 10

5. sim2Smoveseg

The multilevel system (see section BH.1) operates as a
privileged process within Multics. This process decides 1

on the basis of activity, when a segment should be moved
to another on-line secondary storage device. When multilevel
decides to move a segment it first makes the segment known
to the process in the usual way. Once the segment is
known, multilevel causes the segment to be moved by issuing
the following call.

call sim2~moveseg(segptr, did, errcode);

In this call, segptr is a pointer to the base of the segment
to be moved and did is the device identification of the
device to which the segment is to be moved.

Upon receiving this call, a utility routine (getastentry)
is called to insure that the segment is active. This
routine is passed the identification of the specified
device which is used to indicate in the AST entry that
the segment is being moved. Upon return from this routine
a page control utility routine (pcreadseg) is called to
insure that at least one page is in core. This call serves
to trigger the automatic page-move mechanism. While the
page is being read into core 1 control is returned to the
calling program.

7 • s i m1 S d i rmod

Directory control reserves the right to determine when
a directory has been modified. This strategy allows directory
control to record only those modifications to a directory
which represent a significant change to the logical structure
of the directory. Insignificant modifications, such as
the setting and resettin~ of internal interlocks, need
not be recorded. When d1rectory control wishes to indicate
that a directory has been modified 1 it calls the following
primitive.

call sim1~dirmod(segptr, errcode);

In this call, segptr is a pointer to the directory which
has been modified. Upon receiving this call segment
control calls a utility routine (getastentry) to find
the AST entry for the specified directory segment. Once
the AST entry is obtained, segment control merely calls
a page control primitive (updates) to update the date
and time last used and last modified items in this AST
entry and all its superiors.

MULTICS SYSTEM-PROGRAMMERS" MANUAL SECTION BG.3.01 PAGE 11

8. s im1Sbranchmod

Whenever directory control makes a change to a branch
which mi~ht affect the access rights of any user, segment
control 1s informed by means of the following call.

call sim1~branchmod(id, dtbm, errcode);

In this call 1 lQ is the unique identifier of the branch
and dtbm is the date and time when the branch was modified.
Upon-reGeiving this call, a utility routine (searchast)
is called to determine if the associated segment is currently
active. If an entry for this segment is found in the
AST, the date-and-time-branch-modified item in the AST
entry is replaced by the new 91Qm. A page control primitive
(setfaults) is then called to place directed faults in
all segment descriptors currently pointing to the segment.
If and when these faults occur, segfault will recompute
the access rights from the latest information in the branch.

9. sim13updateb

At certain times~ directory control may wish to update
a branch of an active segment with the more-current information
in the segment"s AST entry. For this purpose, the following

r' ca 11 is provided.

call sim1~updateb(id, segptr, errcode);

In this call, id is the unique identifier of a branch
defining an active segment and its AST entry~ and segptr
is a pointer to the directory within which the branch
resides. Upon receiving this call, a utility routine
(searchast) is called to locate the desired AST entry
from the unique identifier. Once the AST entry is located,
the desired information is extracted from the AST entry
and a directory control primitive (wrbranch) is called
to update the branch. If no AST entry is found corresponding
to the specified unique identifier, it is assumed that
the segment has been deactivated and a normal return is
given to the caller.

1 0. s im1 gun 1 oadseg

In order to cause a segment to be unloaded or deactivated~
the following call is used.

call sim1~unloadseg(id, deactsw~ errcode);

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.01 PAGE 12

In this call, iQ is again the unique identifier of a segment
and its AST entry. If deactsw is ON, the segment will
be unloaded, then deactivated; if it is OFF, the segment
will be unloaded but not deactivated.

Upon receiving this call, a utility routine (searchast)
is called to locate the AST entry from the unique identifier.
If no AST entry is found, it is assumed that the segment
is already inactive and a normal return is given. If
it is found, the segment is unloaded by use of a page
control primitive (cleanup) to remove any pages in core
and unload the segment when the number of pages drops
to zero. If deactswis OFF, return is made at this point.
Otherwise another utility routine (delastentry) is called
to deactivate the segment and delete its AST entry.

A segment which is to be deactivated by this routine (deactsw
ON) must be a terminal node in the hierarchy--that is,
it must either be a non-directory segment, or, if it is
a directory segment, there must be no inferior active
segments.

11. sim1gdeleteseg

When directory control wishes to delete a branch in the
hierarchy, the associated segment must first be deleted.
To accomplish this, the following call is provided

call sim1~deleteseg(segptr, errcode);

In this call, segptr is a pointer (ITS pair) to the base
of the segment to be deleted which must be a terminal
node in the hierarchy.

Upon receiving this c~ll, the segment number is extracted
from segptr and used to locate the KST entry of the specified
segment. A pointer to this KST entry is then passed to
a utility routine (getastentry) to locate (or create)
the AST entry of the segment. Once the AST entry is found,
a page control primitive (pctruncate) is called to truncate
the segment to zero length. Finally, the AST entry is
deleted by calling unloadseg, with deactsw ON.

12. get_ring

In order for the gatekeeper (c.f. BD.9.01) to determine
the ring to which control should be switched on an inter-ring
call, the following call is provided:

call get_ring (callptr, oldring, newring);

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.3.01 PAGE 13

Here callptr and oldring are supplied by the caller and
are respectively a pointer to the desired entry point ·
and the number of the ring in which the call took place.
The argument newrinq is returned and is the ring to which
control should be switched.

To compute newring, get_ring examines the call and access
brackets of the segment corresponding to callptr by examining
its KST entry (see BG.1)o If oldrina is below the call
and access bracket the lower bound is returned; if oldrinq
is within the call bracket but outside the access bracket
then get_ring checks that the offset specified by callptr
corresponds to a legal entry point, or gate. If so, the
upper bound of the access bracket is returned. If oldring
is outside the call bracket or within the access bracket
an error return is given.

1j. sim1Stransuse

Frequently, it is necessay for processes of the backup
and multilevel system to use segments without affecting
the date-and-time-last-used of these segments. To accomplish
this, the following call is available exclusively for
the use of processes of the backup and multilevel system
(see section BH).

call sim1~transuse(segptr~ tus, errcode);

In this call, segptr is again a pointer to the base of
the segment and !Y.§. is the desired setting of the
transparent-usage switch to be stored with the KST entry
of the.segment. Upon return from this call~ the previous
value of the transparent-usage switch is returned as the
va 1 ue of ,ill.

14. initialize kst

Before any segments can be made known by entering them
in the KST, the KST entry and hash tables must be initialized.
The following call is provided for this purpose:

call initialize_kst;

This routine merely allocates storage for the minimum
size id and name hash tables and sets the "vacant" switch
in each entry ON. The minimum size entry table is then
allocated, the vacant switches are turned ON, and the
entries are threaded together as described in BG.1. This
routine is called by a Process Load Module·routine (loadproc)
when the process is begun. It is intended that the smallest
KST entry table be sufficiently large so that it wi 11
usually not have to grow, since this is a time-consuming
operation. ..

