
TO:
FROM:
SUBJ:
DATE:

MSPM Distribution
c. A. Cushing
BG.8.01-BG.8.04
07/14/67

The following major revisions have been made to sections
BG.8.01, BG.8.02, BG.8.03 and BG.8.04 to reflect the changes
made to the primitives they describe.

1. Alternate returns on error conditions will no
longer be taken. If an error occurs, a non-zero
error code will be returned.

2. PL/I declarations for the arguments of each primitive
have been included in each write-up. (Beware! Some
have changed.)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.8.01 PAGE 1

Published: 07/14/67
(Supersedes: BG.8.01, 05/17/66;

BG.8.01, 01/30/67)

Identification

Directory Maintainer
c. A. Cushing

Purpose

The directory maintainer is responsible for finding, deleting,
and itemizing the entries in a directory. It is essentially
a utility package used by directory supervisor. All primitives
of the directory maintainer are privileged i.e., they
reside in the hard-core ring and are callable only by
hard-core procedures, and are actually used only by directory
supervisor.

Primitives

1. packer
2. fi ndentry
3. findbranch
4. hash
5. rehash
6. removeb
7. removel

1. packer

The primitive packer itemizes the contents of an entry
in a directory. All of the items listed in section BG.B.OO
are taken from the entry and packed into an area specified
by the caller. In this context, the caller refers to
the caller of directory supervisor. The mode item for
a branch entry is obtained by calling the access control
module to find the apparent mode of the user with respect
to the branch from the access control list (ACL) of the
branch and the common access control list (CACL) of the
directory.

call packer$packb (j,branchp,user area,i,ep);
call packer$pack1 (j,linkp,user_area,i,ep);

del j fixed bin(17), /*index into an array of structures
(given by directory supervisor)*/

(branchp,linkp) ptr, /*pointer to the base of the array of
structures (returned)*/

user_area area((*)), /*pointer to an area in which the array
of structures is stored (given by
caller)"~'~'/

/ ~""""'
I

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BG.8.01 PAGE 2

i fixed bin(17), /*signed slot number of the branch or
link whose contents are to be packed
into the jth element in the array
(given by directory supervisor)*/

ep ptr; /*pointer to the ith branch or link in the
directory whose contents are to be stored
into the jth eler~nt of the array (given
by directory supervisor)*/

The entries Packb and eaRkl in packer store the contents
of a given branch or l1n nto a structure for the caller.
The structure is part of an array of structures which
was allocated in the area given by the caller. See the
discussions of list_dir and status (BG.8.02) for the actual
declarations of these arrays.

2. f indent ry

The primitive findentry reads a directory to search (by
hashing as defined in Section BG.8.00) for a specified
entry. The effective mode of the user with respect to
this directory is checked against the mode needed by this
user. If the user has the needed permission, directory
maintainer searches the directory for the given entry.
When the entry is found, it is locked and the pointer
to the entry and the signed slot number for the entry
are returned to directory supervisor.

There is a convention whereby the caller may refer to
an entry by slot number rather than by name. If the slot
'number of an entry is 10, the caller may specify this
entry by the character string "> 1 O". The use of ''>" l n
an entry name is illegal bacause of its special meaning
in path names (see sx.a.oo). Hence if ''>" appears as
the first character of an entry-name argument, it indicates
that the argument contains a slot number.

If entry then contains a slot number rather than a name,
the directory need not be searched (by hashing) because
the requested entry can be found immediately through its
pointer in the slot table (see BG.7.00).

call findentry (dlr,entry,slot,mode,ep,code);

del dir char(*), /*character string containing the path name
of the directory (given by caller)*/

entry char(*), /*character string containg the name of
an entry in £1£ (given by caller)*/

,r-
1

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.8.01 PAGE 3

slot fixed bin(17), /*signed number pointing to a location
in the branch or link slot table
(returned)

mode bit(S),

if sign = +, entry is a branch
if sign=-, entry is a link */

/*five bit flag representing trap,read,
execute,write and append. If a bit is 1,
the corresponding attribute is ON. This
is both an input and output argument.
It specifies

(a) mode needed by user to find en~ry
(given by directory supervisor

{b) actual mode of user with respect to
Sir (returned) *I

ep ptr, /*pointer to entry (returned)*/

code fixed bin(17)J /*if non-zero, it represents the code
of an error detected by the file
system*/

The primitive flndentry first calls getdirseg in segment
control to get the pointer to the base of dir and to get
the effective mode of the user with respect to dir. If
the mode of the user does not contain the permission specified
in myde, then ~ is set equal to the mode returned by
getd rse~ and an error is reflected to the caller. If
the user s mode does contain the needed permissions, then
m9de is set equal to the mode returned by getdlrseg and
f1ndentry then goes about finding entry in dir. The segment
dir must be loc~ed for reading. If ynjry is a symbolic
name it must be hashed in order to f n the entry in dir
to which it refers (see hash primitive in this section).
If entry is a slot number, it is converted to a binary
num6er and the entry to which It points is determined
immediately through the proper slot table. In either case
slot and ep are set, the entry is locked, the directory
is unlocked and control is returned to the caller.

3. findbrapch

The primitive flndbranch finds the branch to which a given
entry effectively points.

call findbranch (dir,entry,slot,mode,ep,code);
arguments are defined as for findentry

r,
I MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.8.01 PAGE 4

The primitive findbrancb reads directory dir to search
for entry as described for findentry. When entry is found~
it is tested to see if it is a branch or a link. If entry
is a branch~ the effective mode of the user with respect
to the directory is checked against the needed rnode supplied
by directory supervisor in mode. If the user has the
needed permission, then the<rrrectory maintainer locks
the branch and returns the pointer to the branch, the
positive slot number of the branch and the actual mode
of the user with respect to dir to directory supervisor.

If entry is a link the mode needed in this directory is
not the mode specified by directory supervisor. The mode
specified by directory supervisor is only needed in the
directory containing the branch. If the effective mode
of the user with respect to the directory containing this
link indicates execute permission (or if mode given by
directory supervisor has all bits 0, then no permission
is needed) then the path name of the entry to which the
link points is saved and the date and time last used of
this link is updated. The last entry name is extracted
from the saved path name dividing the path name into two
partsJ the path name of the directory containing the entry
to which the link points and the name of the entry. The
directory maintainer then calls segment control at getdirseg
to get the segment number for this new directory and the
effective mode of the .user with respect to it. If the
effective mode indicates the execute permission (or if
mode given by directory supervisor has all bits 0, then
no permission is needed) then the directory will be searched
for the entry. When the entry is found, the same tests
are applied as stated above. · This process is repeated
for each link found.

In order to prevent a loop, the number of links used to
find a branch will be limited (possibly to 20). If a
branch cannot be found in this limited number of tries~
an error will be reflected to the caller.

4. .!ltib

The procedure ~ contains three entry points search,
lo, and out. me-purpose of these primitives is, respectively~
to find, add and delete hash table entries. The search
routine is not only called externally but is also called
by 1o to find an empty hash location for a given name
in order to fill it and by out to find the hash location
used by a given name in order to delete it. (The structure
of a directory hash table is described in the MSPM section
BG.7.00).

/ MULTICS .SYSTEM-PROGRAMMERS' MANUAL SECTION BG.B.01

call hash$search (dp~name~foundthloc~slot,ep,code);
call hash$in (dp,name,slot~codeJ;
call hash$out (dp~name,code);

PAGE 5

del dp ptr~ /*Pointer to base of directory containing the hash
table (given by directory supervisor)*7

name char(*)~ /*character string conta·inlng the name to
be hashed (given by caller)

found fixed bin(1)~ /*a switch when 1 means a hash table
location is being used for ~
when 0 means a hash table location
isn't. being used for !J.i!D&*/

hloc fixed bln(17), /*index of the location in the hash
table found for name (returned)*/

slot fixed bin(17), /*signed slot number taken from hloc
and returned by hash$search and
(possibly subsequently) put into
hloc by hash$in*/ ·

ep ptr; /*POinter to the entry with the name ~
(returned)* I

The directory dlr must be read-locked or write-locked ·
before a call to hash$search and write-locked before a
call to hash$in or hash$out. The status of the directory
lock is not changed by hash.

The argument n1m1 is hashed and the resulting location
(primary locatiOn) and possibly successive locations (secondary
locations) in the hash table are checked. Each location
is checked to see if It contains a slot number which points
to an entry with the name, ~.

In the case of hash$search, if a location containing such
a slot number ls found, the found switch is set on, hloc,·
ep and slot are filled and control Is returned to the
caller. In the case of hash$ln, an error is reflected
to the caller and ln the case of hash$out, this location
ls vacated (see below for the distinction between empty
and vacated hash table locations).

If when checking the primary location and secondary locations
a never-used empty location (see explanation below) is
encountered and no slot number was found which pointed
to an entry with the name, n1me, then for hash$search

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.8.01 PAGE 6

the found switch is set off. hloc is set to the index
of this empty location and control is returned to the
caller. In the case of hash$in. the empty location is
filled in with slot and control is returned to the caller.
In the case of hash$out. an error is reflected to the
caller.

·A general description of hashing techniques is discussed
in section BG.a.oo. however. the following explanation
of the distinction between two types of empty hash table
locations is necessary to clarify the above discussion
of the ha~h primitives. There are two types of empty
locations in a hash table. A hash table location from
which a signed slot number has been deleted. called a
vacated location. is distinguishable from an empty location
which has never been used. This distinction is needed
in order to find a slot number which is in a secondary
location after the contents of the primary location have
been deleted.

Whenever adding or deleting hash table entries. hash must
check to see if the hash table needs to be rehashed. If
the number of locations currently in use is greate (less)
than a set fraction YQ1 (lowt) of the total number of
locations in the tab~e~ t~the size of the table must
be increased (decreased) and the names of the directory
entries must be rehashed. If the number of locations
which have been used (currently used locations plus vacated
locations) but not the number of locations currently in
use is greater than the set fraction Y2l of the total
number of locations in the table. then the names of the
directory entries must be rehashed. but the size of the
table does not have to be changed.

5. rehash

The primitive r~hash rehashes the names of the directory
entries after possibly changing the size of the hash table.
The hash$in or hash$out primitive calls rehash after a
check has shown that the hash table is either too full
or too empty for efficient use.

The ca 11 1 s as fo 1. 1 ows :

call rehash (hp,size);

del hp ptr, /*pointer to the hash table*/

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.8.01

size fixed bin(17); I*= -1~ hash table size to be
decreased

= + 1 ~ hash table size to be
increased

= 0~ hash table size not
changed*/

to

The names of each entry in the directory are hashed and
the signed slot numbers of these entries are placed in
the resulting locations in a newly created hash table.
The old table is then deleted.

6. removeb

The primitive removeb removes a branch which was found

PAGE 7

be

by findentry or flndbranch. The directory containing
the branch must be write-locked before calling removeb.
This primitive first calls hash$out to vacate the locations
in the hash table used by the names of this branch. The
date-and-time-branch-last-modified item is updated~ the
vacant entry switch is set ON~ and this branch is threaded
into the list of vacant branches.

If the number of vacant branches is greater than a certain
fixed number~ then an attempt is made to free the storage
used by one of the vacant branches.

The date and time this chosen branch was last modified
must be less than the date and time it was last dumped~
i.e.~ the fact that this branch had been vacated must
be known to the backup system before the branch can be
freed.

The directory and branch are unlocked before control is
returned to directory supervisor.

call removeb (ep~ slot~~);
arguments are defined as for hash

7. removel

The primitive removel removes a link which was found by
find~ntry. The link is removed~ and the hash table is
modified etc.~ as stated for removeb. substituting link
for branch.

call removel (ep~ slot, ~eee);
arguments are defined as for hash

