
MUL TICS S YS TEt~-PROGRAt"1MERS' ~1ANUAL SECTION BH.3.01 PAGE 1

Published: 12/23/66

Identification

The Hierarchy Reconstruction Process
Gerald F. Clancy

Purpose

The hierarchy reconstruction process is used to begin
restoration of the file system directory hierarchy following
a catastrophe which destroyed any contents of the secondary
storage system. A complete secondary storage reload is
executed in two distinct phases: 1) the restoration of
all directory segments present when the catastrophe occurred
along with sufficient system and accounting segments necessary
for normal Multfcs operation and 2) the restoration of
user owned segments. The hierarchy reconstruction process
executes before Multics can operate in a normal fashion
and performs the tasks of the first phase. The second
phase tasks are accomplished by the secondary storage
reload process (BH.3.02) which operates during normal
Multics operation and restores to the file system hierarchy
the bulk of user owned segments.

Introduction

As stated above~ the objectives of the hierarchy reconstruction
process are:

1 0

2.

Restore to the directory hierarchy the most recently
dumped version of each entry of each directory present
on-line when the storage catastrophe occurred. This
set of data comprises the hierarchy skeleton.

Restore to the file system hierarchy the last dumped
version of each segment contained in a predefined set
of system and accounting segments.

Once the above steps are accomplished~ t~e hierarchy skeleton
exists in the last state-before the catastrophe for which
it is accurately removable and hence. no part" of it need
be modified by future reloading activities. Sufficient
data and procedures are present so that Multics may function
with users.

Missing user segments are flagged so that any reference
to them will automatically inform their user that restoration
is not yet complete. Thus~ the system may now be opened
to users and the secondary storage reload process (see
above) can begin its work.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.3.01 PAGE 2

The latest system checkpoint dump (see section BH.2.DO)
provides the bulk of detachable storage from which the
reconstruction proc~ss reloads the hierarchy skeleton
and the system and accounting segments. This dump contains
exactly this data and was accurate at the time the dumo
began. All subsequent modifications to the skeleton and
the system and accounting segments are contained in detachable
storage produced by· the incremental dumper after the time
when the last system checkpoint began. Thus it is possible
to accomplish the first phase reloading objectives by
scanning these bodies of detachable storage and restoring
to the hierarchy the latest version of every directory
entry and non-directory segment found. therein.

The method by which the correct set of detachable storage
units is identified and remembered is explained in Section
BH.4.02. In general, the current reloading unit list
is writt~n at the beginning of each newly created detachable
storage unit by the output process (BH.4.01) and read
by the input process (BH.4.02).

Reloading

The hierarchy reconstruction process scans its assigned
units of detachable storage and loads 1) all directory
entries which are later versions of other entries already
in the hierarchy or which do not yet exist and 2) all
segments defined by previously loaded branchs and which
are later versions of an existing segment. Due to the
nature of the dumping processes~ copies of newly vacated
entries are dumped signifying. the deletion of some hierarchy
subtree. When an entry of this type is encountered and
supersedes the current entry in the hierarchy, any sub-tree
inferior to the entry is also superseded and 8ence is
deleted. Thus the hierarchy skeleton is recreated by
the reloading and superseding of entries and segments
read from detachable storage until all incremental storage
created since the last system checkpoint dump began and
the last system checkpoint dump itself have been processed.

The reloading operation is centered about each independent
logical record found on the designated portions of detachable
storage. Each record is composed of a mandatory header
and preamble follm-Jed by an optional segment copy (see
section BH.4.03 for a detailed discussion bf this format).
An input request is issued to the input process (BH.4.02)
which returns the heading information of an available
logical record. The caller is assured that the preamble
and segment portion (if any) will be available on a subsequent

.r
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.3.01 PAGE 3

~all. The preamble is requested next and dissected into
1ts component (and successively inferior) entries. Each
entry is loaded into the proper place in the directory
hierarchy unless it is superseded by a later version of
the same data 16aded previously. If a non-directory segment
copy accompani~s the preamble~ a similar interrogation
is made and th~ segment is loaded if required. If a directory
segment follow~ the preamble then it is decomposed entry
by entry in a manner similar to the dissection of the
preamble~ Each entry is then loaded individually if required.

The Modules

The modular constituents of the reconstruction process
are process control~ preamble processor, segment load
module, directory load module and the entry setupimOdule.
The following is a brief introduction to each.

' Process control - The process control module directs the
logical record processing of all records on the
assigned portions of detachable storage in the
following order. First, it issues an input request
and thus establishes a record header. It then calls
the preamble processor module to dispose of the
ensuing preamble. A return from that module implies
that each component entry of the preamble has been
loaded if so required. Finally the directory load
module or segment load module is called, if necessary,
to load the remaining portion of the logical record.

Preamble processor - This module reads the preamble portion of
the logical record currently being held by the input
process. The preamble consists of a string of
successively inferior directory entries. Each is
extracted in turn and passed to the entty setup module
which will update the entry into the hierarchy if
required. The only function of the preamble processor
is to present every preamble component to the entry
setup module. Once the list is exhausted, control is
returned to the caller. The entry setup module may
direct the preamble process to abort further processing
of the current preamble if.)t finds that all remaining
entries in the list are out of date. .

Entry Setup Module - Whenever a candidate entry for reloading
is to be considered, the entry setup module is called
either by the pre~mble processor or the directory
load module. Associated with each ehtry copy
accompanying the call are 1) a count of the number of
entries of this type within its directory current at
the time when it was dumped and 2) the date and time

MULTICS SYSTEM-PROGRAMMERS., MANUAL SECTION BH.3.01 PAGE 4

Directory

when that count fast changed. The.number of entries
of the current type is established in the directory
containing the entry as the size stated in the entry
data under consideration if that number is later
than the existing count in the directory. Once the
size of this directory portion is set, the entry
itself is loaded. If a version exists in the directory
corresponding to the copy derived from the input
medium then it is determined which of the two is the
later version and that one is left standing or loaded
as required. The above operation may reduce the size
of the directory if the new count is later than and
less than the old count. In this way, proper directory
sizes are established.

load module- Whenever this procedure is called, the
process has available a directory segment on detachable
storage awaiting input and loading. The directory load

,module dissects this mass of data into the individual
entries belonging to a common directory. For each so
isolated, the entry setup module is called to insure
that the proper version gets (or remains) loaded into
the hierarchy.

Segment load module - The procedure expects that a non-directory
segment exists next on the input medium. It reads the
required amount of data via the input process and
places it in the appropriate location with~n the file
system hierarchy.

Figure one shows the block configuration of the reconstruction
process modules.

The Process Control Module

The process control module serves as the main logic program
for the reconstruction process. Whenever the process
begins execution, .control passes to this procedure via ·
the following call.

call reconstructor;

Each logical record is composed of header information
and a preamble record optionally followed by a segment.
An input request is issued to the input process which
returns the header data of an available logical record.
The following information is included in that block.

1. The specific location of the record on detachable storage.

2. Unique identification of the branch entry defining the
segment portion if one is included in the logical record.

MULTICS SYSTEM-PROGRAr~MERS" MANUAL

Directory
Load
Module

Entry
Setup
Module

Directory

Control

Process
Control

Preamble
Processor

SECTION BH. 3. 01

..

Segment
Load
Module

Figure One - The Reconstruction Process

PAGE 5

MULTICS SYSTEM-PROGRAf\1MERS" ~'lANUAL SECTION BH.3.01 PAGE 6

3. The date/time-last-modified of the segment portion if one
is included in the logical record.

4. File-removed-switch indicating whether (ON) or not (OFF)
the trailing segment was dumped because of a multilevel
move-off operation. (N.B. this condition is rare since
almost al segments are backed-up before any mo e off
operation is required.) .

5. File-follows-switch indicating whether (ON) or not (OFF)
a segment portion is included as part of the logical
record.

6. The type of backup storage (incremental or checkpoint)
from which the record is being read.

7. The number of distinct entry components of the preamble.

The proc~ss control module then calls the preamble' processor
to read and load the preamble record which follows the
header record. The preamble processor is supplied with
the number of entry components in the preamble as an argument.

The preamble processor returns three parameters: 1) the
date-time-last-modified and, 2) unique identification
of the hierarchy entry corresponding to the terminal preamble
component (this entry will be the later of the input entry
and the current hierarchy entry) and 3) the segment-already
loaded-switch which indicates, if .ON, that the terminal
entry defines a non·directory segment and that the segment
defined by that b1·anch was loaded sometime in the past
and that the segment is not to be superseded by another
version, if one exists, within the current logical record.

Process control then calls the directory or segment load
rnodule (vvhich ever is appropriate) to process the final
portion of the logical record unless one or more of the
fo 11 mil in g conditions exist.

1. There is no segment included in the logical record
(file-follows-switch is OFF).

2 . The file-removed-switch is ON. ..
3. The segment version which is defined by the terminal

entry of the preamble is not the exact version of the
one that constitutes a part of this logical record and
hence no loading is re~uired~ (The unique identification
and date/time-last-modified found in the header record
do not match the same pair of parameters returned by the
preamble processor.)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.3.01 PAGE 7

4. The segment-already-loaded switch is ON.

5. The p-reamble string was purposely aborted before all the
entries were processed. This means that the segment
should definitely not be loaded since its defining branch
was superseded. (This condition is signalled by returning
the date/time-last-modified and unique identification
va 1 ues as zero.).

Whenever a segment is dumped by the incremental dumper~
the dumped copy of the branch defining that segment is
incorrect because the retrieval arguments 1 which are supposed
to locate where in the detachable storage archives the
segment copy can be found 1 point to the previously dumped
version of the segment (presumably with different contents).
Therefore~ whenever the reconstruction process loads a
segment from incremental storage~ the retrieval arguments
in the hierarchy must be altered to point to the segment
copy just,loaded. Similarly~ if a segment load from incremental
storage is inhibited because of an ON file-removed-switch
a similar alteration must take plase since the current
retrieval arguments are incorrect. ·

The last· act of process control is to insure that the
retrieval-trap-switch in those branches defining non-directory
segments is set to signal the presence of the segment.
(OFF if the segment is loaded 1 ON otherwise.) For this
purpose the segment-already-loaded-switch is interrogated.
It was set either by the segment load module if a segment
was just loaded or by the preamble processor if a segment
version exists in the hierarchy and was not superseded.
The retrieval-trap-switch is set ON only if the segment
already-loaded switch is OFF.

Tbe Preamble Processor_Module

The preamble processor reads one complete preamble from
detachable storage~ dissects that data into its componerit

·entries and for each entry~ calls the entry setup module
so that hierarchy reloading may take place. Each call
to the setup module returns the unique id~ntification
and date/time-last-modified of either the entry from the
preamble processed by the call or it~ corres~onding entry
already in the hierarchy. The choice is determined by
which of the two entry versions later and hence left standing
in the hierarchy. If both parameters are zero on the
return from the call then the setup module has signaled
the caller that further processing of the preamble should
be aborted. When the last entry in the preamble has been
processed~ return is made to process control with the
date/time modified and unique identification last returned
by the setup module.

,,......_

lr''

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BH.3.01

The preamble processor is called by the following

call preamble_processor (dtm 1 uid 1 n1 sal);

-- In this call n. is the number of component entries to be

PAGE 8

found in the preamble; dtm and uid the returned date/time-last
modified and unique identification of the entry ultimately
left standing in the hierarchy and which corresponds to
the n_th preamble component. sal is the segment-already-loaded
switch returned to the caller. ·

The PL/1 declaration of the parameters used in the call
is:

del dtm bit (72) 1

uid bit (70L ·
n fixed bin (17) 1

'sa 1 bit (1) ;

The Entry Setup Module

The ~ntry setup module is called with one complete entry
vers1on~ Its function is to locate another version of
the same entry which might already exist within the file
system hierarchy and to ascertain which is the later version.
If the current hierarchy entry is more current no action
is required. Otherwise the new must supersede the old.
If no corresponding entry exists 1 then the input entry
is loaded.

For the purposes of the reconstruction process~ a directory
segment can be envisioned as being composed of the following
bodies of information (a detailed account of the directory
structure can be found in section BG.7.00).

1. A set of branch entries which point to othe~ segments.

2. A count of the number of branches (bcount). The only
restriction on this count is that is be greater than
or equal to zero.

3. The time when bcount last changed (btime). btime must
be a legitimate date and time except during the period .
beginning when the directory was created and ending with
the insertion of the first branch. During that period
btime must be zero.

4. A set of link entries which point to other links or
branch entries.

· ULTICS ·sYSTEM-PROGRAMMERS' ~J\ANUAL SECTION BH.3.01 PAGE 9

5. A count of the number of links (lcouot). lcount is
restricted as is bcQun! above.

6. The time when lcount last changed (ltime). ltime is
restricted as is btime above.

7.

8.

f

. I

An optional common access control list (CACL).
I

A count (nor 1) of the CACL's 1 (ccount).

9. The time when ccount last changed (ctime). ctime is
restricted as is btime.

Each branch in a directory defines another segment in
the hierarchy and therefore contains data defining the
location of the segment on secondary storage and the location
of the current backup copy on detachable storage created
by the in~remental dumper (i.e. the retrieval arguments).

Each link and CACL has an associated time indicating when
any information within the entry was last modified. Each
branch has a date/time-last-modified for any data inferior
to the qranch. Given two entries of the. same type both
of which allegedly occupy the same position in the same
directory then a simple comparison of the date/times-entries
modified determines the later entry.

' .

Each time the entry setup module is called, the follovJing
information is supplied:

1.

2.

3.

4.

A direct"ory entry copy read from detachable storage.

A count, accurate at the time the entry was dumped, of
the number of entri·es of the current type in the directory
(entry types are link, branch or common access control
list -(CACL)) (ecount). This count helps establish the
proper directory size. ·

The date/time when the above count was correct (etime).

The tree name of the directory of which the entry is a
member . (d i r) ..

5. The slot number of the entry. (~) slot is< eco.unt.

The getentry primitive of directory control. is used to
ascertain if another version of this same entry now exists
within the directory. ·

The getentry primitive of directory control is also used
to interrogate the current state of the entry determined

/

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.3.01 PAGE 10

by slot in the directory dir. Return from this call results
in one of three situations.

1. The returned type count time (etime) is zero indicating
that no entries of the current type have ever been created
in the directory specified by dir.

2.

3.

In this case the entry and the directory (i~ need be) are
created via a call to the putentry primitive of directory
control. The directory type s·ize (ecount) and the count
time (etime) are set to whatever is specified in the
incoming data. If the entry sp~cifies a vacant branch
then the date/time-last-modified-and unique identification
returned to the preamble processor are both set to zero.
This signals that there is now no segment defined by the
branch and no version need be loaded. Otherwise~ the date/
time-last-modified and unique identification of the newly
·loa~ed entry are returned.

Some entries of this type exist but the one specified by
slot does not. The present type count-time (etime) is
other than zero.

In this case~ the proper type size for the directory must
be determined and established if necessary. The proper
size is set from a comparison of .the candidate etime with
that extracted from the hierarchy via getentrv •. If the
candidate time is greater (later) than the existing value
then the incoming etime and ecount replace the old values
in the hierarchy. If the new ecount is less than the old~
some entries must be deleted from the directory along with
any segments inferior to the deleted entries. If the new
ecount is greater than the old~ skeleton entries are
inserted to expand this portion of the directory· to its
proper size.

It is po.ssible~ if the existing ecount is later that
the current entry cannot be loaded because it belongs in
a region of the directory which is outside of the proper
directory size. If so~ the date/ti~e-last-modified and
unique identification arguments are returned to the caller
as zero. If the entry is indeed loaded~ then the entry's
vacancy switch is tested and measures taken as in case
1 above.

Another version of the entry specified by dir and slot
currently exist within the directory.

If the resident entry is definitely later (its date/time
last-modified (dtm) is greater than that of the incoming·
candidate entryL or the Q.!m's are equal but the resident

MULTICS SYSTEM-PROGRAM~1ERS' MANUAL SECTION BH.3.01 PAGE 11

. entry was dumped later than the candidate entry then. no
action need be taken. The date/time-modified and unique
identification·returned to the preamble processor assumes
the values of the same parameters of the resident entry

----- unless that entry defines a vacant branch; then both are
returned as zero.

If the candidate entry is a later version of the resident
entry then the former must replace·the latter. In the
case where both are links or CACL's the newer immediately
replaces the older. If branches~ then the old branch and
its entire sub-tree are deleted before the candidate
entry is placed in the directory; Control then returns
to the preamble processor with the proper values set for
the returned date/time modified and unique identification
arguments (i.e. those of the entry just loaded).

The entry setup module is called by;

call entry_setup (dtm 1 uid 1 dir 1 slot 1 sal 1 entryptr 1

date~ count);

In this call dtm and uid become the returned date/time
modified and unique identification of the entry left in
the hierarchy at directory dir and position slot after
the setup module has completed its work. sal is the returned
segment-already-loaded-switch. It is set ON only if a
segment is attached to the resultant branch defined by
dir and slot. entryptr is a pointer to the candidate
entry structure, count and date are respectively, the
number of entries of the current type in the directory
(incoming ecount) at time date (etime).

These parameters are specified as in the following PL/1
declaration.

del (dtm, date) bit (72),
(dir 1 slot) char (*).
uid bit (70),
sa 1 bit (1),
entryptr ptr,
count fixed bin (17); -

Segment Load Module

The segment load module is called to transfer data from
detachable storage to a file system segment by the follm"ling·:.

call load_segment (dir 1 slot, length);

MUL TICS SYSTH1-PROGRAfviMERS' MANUAL SECTION BH.3.01 PAGE 12

Here dir and slot specify the directory and branch of
the segment to be loaded. length is the size of the data
in 64 word blocks.

The PL/I decla(ation of the arguments is:
I

del (dir) slot) char ('i'•),
length bit (12);

I
Directory Load Module

The directory load module is called to read a directory
segment from the input medium and to construct a hierarchy
directory from that data. Whenever this procedure is
called, the process has available a directory segment
on detachable storage awaiting input and loading. The
directory load module dissects this mass of data ~nto
the individual entries belonging to a common directory
For each 'so isolated, the entry setup module is called
to insure that the proper version gets (or remains) loaded
into the hierarchy. It is called by:

call load_directory (dir);

where dir is the tree name of the directory segment to
be assembled and

de 1 d i r ha r (·k);
1

declares the lone argument.

..

