
MULTICS SYSTEM-PROGRAMMERS' MANUAL

Identification

Tape Formats for Backup
S. H. IJJebber

Purpose

SECTION BH.4.03 PAGE 1

Published: 01/12/67

The tape formats which backup uses are based on the assumption
that Multics will likely change with time 1 and that there
will therefore be the need of a generalized tape format
which allows the insertion and deletion of certain parameters.
That is 1 it is necessary that any tape formed on a Multics
system for backup purposes be compatible with any subsequent
Multics system. This section explains how this is to
be done.

Introduct'ion

The organization of all backup tapes will be the same.
The contents are as follows:

1) Header
2a) Record a
2b) Record b

•
2n) Record r

The header format will never change. It is possible that
record formatting may change as is explained later.

The Tape Header.

The contents of the tape header must be complete enou~h
to uniquely specify the tape. This includes informat1on
such as the date/time the tape was created and why the
tape was created. More specifically the header contains
the following: ·

1) tape type
2) date/time first made known
3) the reload list

a) user checkpoint labels
b) system checkpoint labels
c) incrementa 1 ree 1 1 abe 1 s
d) other

4) destroy date.

MULTICS SYSTEfvl-PROGRArJlMERS' MANUAL SECTION BH.4.03 PAGE 2

An explanation of each of these follows:

1) tape type

The tape type refers to the type of backup tape being
formed. There are two types; incremental and checkpoint.
The incremental tapes will be kept 11 forever 11 ; there may
be consolidation of the information- but 1 it will be
kept. "Forever" may be ·o years or more. Checkpoint
tapes are kept for a smaller length of time and are
generally reestablished in full at specified times. The
system and user checkpoint dumps create checkpoint tapes.

2) date/time first ·made known

3)

4)

This time refers to the time this tape reel was first
made known to the backup system.

the reload list

The reload list is a list of tape reel labels to be used
should it become necessary to reload the hierarchy.
Each backup tape contains such a list. The list itself
specifies which tape reels must be loaded~ and in which
order 1 when a reload is called for. Each tape reel then
specifies how reloading should proceed if the system goes
down while that tape is being written. This list is up
dated whenever a new incremental reel is created and at
the end of system and user checkpoint dumps.

destroy date

The destroy date is that date after which the tape is no
longer of interest to Multics. For checkpoint tapes this
may be weeks after the tape is first made known. For
incremental tapes it may be decades after the tape is
first made known.

The Record Format

Each logical record of every backup tape is independent
of all other lo~ical records (excluding header records).
There is suffic1ent information in the header of each
logical record to identify it completely. There are no
assumptions made about information contained in other
logical records (although there are means for making use
of redundant information). This design allows for a minimum
loss when the system goes down as well as logical and
simple reload algorithms.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.4.03 PAGE 3

Each logical record on tape contains 1 or 2 sections.
The first section contains a record header and a preamble.
The second section 1 which is optional 1 contains the data
segment or directory pointed to by the last (deepest)
entry of the preamble.

The record header contains the following information:

1) dump type
2) terminal entry type
3) ~ape type .
4) number of preamble entries
5) unique identification of the deepest entry
6) date/time-last-modified of the deepest entry
7) slot name of the deepest entry
8) slot number of the deepest entry

These are explained in more detail as follows:
'

2)

dump type

The dump type can be any of 5 (at present) different
types. These are 1) incremental dump 1 2) user checkpoint
dump 1 3) system checkpoint dump 1 4) multilevel dump arid
5) auto-dump. The design of the system insures that all
of these dumps form tapes which look alike in form and
differ only in content. The multilevel dump 1 incremental
dump 1 and auto-dump processes all write on the current
incremental tape. Any retrieval required by a user can
refer to any of the incremental tapes (to get the most
recent version) and hence they must all appear to the
reloader to be identical.

terminal entry type

The terminal entry type is a multiple setting switch which
at the outset will have 5 settings. These are distinguished
by the first 3 bits of the string. The first bit of the
string is the directory switch (of the branch) and is hence
ON only when the branch is a direttory. The second bit of
the string specifies whether a segment (directory or data
segment as the case may be) follows in the logical record.
This switch is kno\ilm as the "segment-follows-switch". The
third bit of the string indicates whether or not the curr~nt
segment being dumped is a secondary copy by the incremental
dumper. (This switch can be set only if the terminal entry
is a non-directory branch.) The foll0\11/ing possibilities
therefore exist:

''11a'b The terminal entry is a directory branch with a
directory following as a second segment in the
logical record.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.4.03 PAGE 4

••1oa•b The terminal entry is a directory branch but no
directory segment follows.

••o1a•b The terminal entry is a non-directory branch
with a data segment following as a second
segment in the logical record. The logical
record is the result of a primary dump.

11 01 111 b Same as above except the logical record is the
result of a secondary dump by the incremental
dumper.

11 00011 b The terminal entry is a non-directory branch - no
data segment follows.

The slot number specifies if the entry is a link, a cacl,
or a branch. If the entry is a branch the terminal entry
type is relevant.

\

3) The tape type

4)

The tape type specifies what type of tape is being
formed, i.e. incremental or checkpoint.

Number of preamble entries

This count specifies how many entries follow. It is a
direct measure of the current depth in the hierarchy tree
when the preamble was dumped.

5) and 6) Uniaue identification and date/time-last-modified
for the deepest entry

The "uid11 and 11 dtm11 are used by the reloader to decide
quickly and accurately whether or not the preamble on
tape should be reloaded as well as whether or not the
data file or directory which may follow should be reloaded.

7) Slot name of the deepest entry

8)

Is the character string consistin~ of a concatenation of
all superior slot numbers. This 1s needed primarily by
the secondary storage reloader which· would otherwise not
have access to it in that it does not look at the preamble.

Slot number of the deepest entry

The slot number of the deepest entry is used by the
secondary storage reloader (which does not examine the
preamb te).

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BH.4.03 PAGE 5

Following the record header comes the preamble. This
is a complete series of consecutively inferior entries
copied from the hierarchy. This preamble then defines
the position of the last entry (and data file if present)
in the hierarchy. Furthermore, this complete list of
entries allows the hierarchy to be reestablished during
the hierarchy reconstruction process and for data files
to be loaded before a complete hierarchy is present by
reestablishing at least that part of the hierarchy necessary
to make that data file accurately established in the hierarchy.

The user-checkpoint tapes, which are used only after a
complete and up-to-date version of the hierarchy has been
established, do not technically need this preamble of
entires. However all backup tapes are to appear identical
in form and for this reason the user checkpoint tapes
include a complete preamble with each data file dumped.

' Note that because of the organization of the hierarchy
all of the preamble entries, except possibly the last
entry, are directory branches. The last entry as explained
earlier may be a link, a cacl, a directory branch, or
a non-directory branch. Only the latter two of these
may be accompanied by a second section on tape.

The preamble format is designed to be general enough so
that tapes made for one version of Multics can be used
on later versions. This is done by having a fixed identifier
variable relationship which will not change. This allows
variables to be deleted and others to be added, but this
must be done in the following way. Each variable to be
output onto tape must have associated with it a unique
identifier. This identifier always refers to that variable
and it is written onto tape with the variable. If the
variable is subsequently deleted from the Multics system,
then that variable is ignored at a subsequent reload.
If new variables are needed, new identifiers will be assigned.
Old identifiers are not to be used again. With this organiza
tion the reloader, by having a list of identifiers referring
to variables currently being used by Multics, can decide
what information found on tape is meanin~ful to Multics.
The identifier always precedes its assoc1ated variable
and hence order of variables is generally not important.
This also allows subsequent dumpers to dump different,
possibly less complete, information. The reloader only
operates on that information found on tape.

The preamble string is a bit string consisting of all
the entry data superior to the terminal entry. This bit
string is formed by first packing each entry in a specified
form and then concatenating, in order, all of the entries
superior to and including the terminal entry.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.4.03 PAGE 6

Each entry is itself 1 composed of several variables.
At present there are six variables for each entry. These
are:

1) i terns
2) names
3) acl
4) count
5) date
6) slot number

The information ca 11 ed '' i terns" varies depending on whether
the entry is a link~ a cacl 1 or a branch. In any case
"items" is a bit string representation of certain structured
data relevant to the entry. If the entry is a 1 ink 1 "acl"
is empty (i.e. is a bit string of length 0). If the entry
is a cacl "names" is empty and has length o. If the entry
is a branch (as all except possibly the terminal entry
are) "items" contains all the information in the branch
which is meaningful to dump. In that the entire storage
configuration may be different at reload time 1 relative
pointers and similar transcient quantities are not included.

1) items

The "items" string is always packed w5.th a specific
format. This is: all items are preceded by a count~
right justified in a 17 bit field. If any count is
zero either that item is no longer meaningful to Multics
or it was not included on this particular tape. Any
new items to be added to the "items" structure must be
added at the end.

2) names

This is a list of names (and lengths of names) which are
currently associated with this entry. ''names" will be
empty and of length 0 1 if the entry was a cacl.

3) ac 1

The contents of the access control list of an entry is
saved in "ac 1".

4) count

This quantity specifies the maximum slot number for that
type of entry. If the entry is a link, the largest
negative slot number is saved in "count".

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.4.03 PAGE 7

5) date

This date is the last time that "count" was updated.
This is saved primarily for the reloading process.

6) slot number

As the hierarchy reconstruction process restores the
hierarchy with a preamble it forms the slot name for
the deepest entry by successively concatenating the
slot numbers of each of the superior entries. The
slot numbers alone at each and every level of the
preamble are therefore sufficient to uniquely define
any of the entries in the preamble with respect to
the hierarchy.

The 6 variables "items"~ "names"~ etc.~ are concatenated
together ~o form the entry bit string for the entry.
Each of the 6 quantities is preceded by its identifier
and then its length. For "names" and "acl'' there is also
a count specifying the total number.

A typical entry of the preamble string would then appear
as follows:

length index length slot index length number I acl index
slot slot acl acl acl names

L1··length number names
names names h

L index length items I index length count index I length date
items items count count date date

qtermi

The index and length for each variable will always be
17 bits long (each) for any version of Multics. The preamble
consists of many such strings concatenated to~ether. ·
The finer structure of items~ names, and acl 1s shown
in figure •.

Before each entry of the preamble string there is a length
which specifies how long that entry is (in bits). With
this information and the total number of entries~ the
reloader can easily decode the bit strings and give the
correct information to putentry~ the directory control
primitive (BG.8).

n

n

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.4.03 PAGE 8

As a further check in decoding~ each separate entry bit
strin~ is terminated by a special identifier. The value
of th1s identifier (termi) is sufficiently large so that
it will not interfere with future Multics expansion.
When the strin~ scanner finds this identifier~ it realizes
that this part1cular entry has been completely decoded
and that the next data will be an index of the next entry.

The slot number data (i.e. index~ length~ and actual data)
must precede the items 1 names 1 and acl data for each entry.
This is so unpacking routines can tell the entry type
prior to handling the actual entry data.

Each of the 6 items is packed in a specific way which
will allow unambi~uous unpacking. This is done by preceding
each packed quant1ty with a length (in units of bits).
If the length is ever zero 1 that quantity is not represented
on the tape being processed. The order of the quantities
so packed must naturally remain unchanged. Deletions
of quantities from the system are signaled by a length
of zero. All additions must come at the end of the string.

Figure 1

Items (each item is preceded by its length)

{i terns i 11 ength] s ys ts i ze

systrap

bupsize

backup

vacant

dirsw

uid

dtu

dtm

dtd

dtem

io

ml

size of system trap information

system trap

size of backup area

backup information - retrieval
arguments

vacant switch

directory switch

unique id

date/time-last-used

date/time-file-last modified

date/time-last dumped

date/time-entry-last modified

io information

maximum length of segment

/,........'

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BH.4.03 PAGE 9

Items

.Names

(each item is preceded by its length) Cont.

cl

copy

rd

actind

actime

pp1

pp2

acct

did

cons

dupsw

systsw

current length of segment

copy switch

retention date

activity indicator

activity time

priority parameter 1

priority parameter 2

accounting

device id

consistent dump switch

backup (retrieval trap) switch

system switch

(each name is preceded by its length)

(names i 11 ength r number] name 1

•
namen

(each ACL item is preceded by its length)

{ac 1 i 11 ength I number}

one for each ACL

job
name
count
mode
trapsize
trap
protectsize
segsize
protect list1
protect list2

.
protect listN
entrynames

' -

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BH.4.03 PAGE 10

(each link item is preceded by its length)

{itemsiflengthj pathsize

path name

vacant

uid

dtu

dtem

dtd

pathname size

path name

vacant ·switch

unique id

date/time-last-used

date/time-entry-last-modified

date/time-last-dumped

The following PL/I declarations specify the various identifiers
used by the backup coding and decoding modules:

del (itemsize initial ("000 ••• 1"b) 1

namesi initial (11 000 ••• 10"b),

acl i initial ("000 ••• t t"b)~

sloti initial (11 000 ••• 10011 b),

counti initial (11 000 ••. 101"b) 1

datei initial (11 000 ••• 11011 b),

.I* items index*/

I* names index */

!'~~ ac 1 index ,·~1

I* slot number index */

I* count index */

I* date index */

termi initial ("000 ••• 1111101000"b), !'~~ terminal index=
1000 'i:f

fixil initial ("000 .•• 1011"b) 1 /*first fix initial '~~!

headeri initial ("000 ••• 1100101"b), !'~~ header index = 101 '~~!

recordi initial ("000 •.• 1100110"b) /,·~ record index = 102 '~~!

bit (17);

