
TO:
FROf_,:
DATE:
SUBJECT:

MSPM Distribution
Michae 1 J. Spier
October 3, 1968
Redesign of the Interprocess Communication Facility

The Interprocess Communication Facility has been completely
redesigned to operate according to a different logic.

Even though the user-interfaces have not been changed,
individual calling sequences have undergone some modification.
Furthermore, the IPC which was up to now in the hardcore
ring will in the future be a per-ring facility. For this
reason no interim dummy-ipc can be provided as transfer
vector (you Just can't make a dummy hcs_) and all IPC
interfaces wlll have to be receded as soon as the new
IPC is put on the standard Library (hopefully in a couple
of weeks' time).

The attached sections BJ.10.00 and BJ.10.01 will provide
ample reference material for those who wish to use the
new IPC.

Any questions or comments wi 11 be welcomed by Michael
J. Spier, Ex-6037 Room 516.

The publication of sections BJ.10 supersedes and annuls
all BQ.6 sections which are to be discarded.

i !""'·

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.00 PAGE 1

Published: 10/03/68
(Supersedes: all BQ.6 sections)

Identification

Overview of the Interprocess Communication Facility
Michael J. Spier. Robert L. Rappaport. A. Bensoussan. B. A. Tague

Purpose

In the 'life' of every process in Multics. the need arises
at least once for some information to be furnished by
some other process. Processes are. by definition. completely
independent of one another, an observer in one process
can never tell with certainty what is actually happening
inside another process at any given time. However. in order
to exchange information, processes must be able to communicate
and communication means synchronization. The only point
in the system where processes are "under control" (mainly
because it is there that a process' virtual processor
is managed) is in the Traffic Controller, its entries
block and wakeup are the basic tools available for process
synchronization. The interprocess conmunication faci 1 ity
(IPC) is the immediate (and only) 'customer' of block
and wakeup and offers the additional service of transmitting
(in association with each call to wakeup) a limited amount
of control information from one process to another.

The Traffic Controller is described in sections BJ. familiarity
with which is assumed.

Terminology

An event is anything observed during the execution of
one process which may be of interest to another process
or perhaps to another procedure of the same process.
The IPC handles events which are of interest to non-hardcore
procedures and which are kn~n as user-events. Events
which are of interest in the hardcore ring only are named
system·e~ents and are handled by a dedicated. wired-down
module, the module's name is Process Wait and Notify (PWN)
and it is documented in section BJ.2; any reference to
'event' in sections BJ.10.00 implies 'user-event'.

An event is always associated with a call to the Traffic
Controller's entry wakeup. A group of one or more events
is always known -under a collective event channel name
which is the symbolic name of an event channel (wh!Ch
we loosely define. for the moment. as a mailbox for events).
For example: All the events which are time observations

MULTICS SYSTEM-PROGRAMMERS' r-tl\NUAL SECTION BJ.10.00 PAGE 2

may be co 11 ec t i ve 1 y known by event channe 1 name ''time"
(or "clock" or any other agreed ypon symbolic name.)
Processes which happen to make t1me observations may put
messages into event channel 11 time"; a process may int~rrogate
this event channel (mailbox) and find there messages indicating
that time readings have been taken at (let's say) 3, 4
and 5 o'clock.

An event channel is the basic IPC variable and is, physically,
an entry in an event channel table (ECT).

Introduction

Following is a typical, and oversimplified, example to
demonstrate the basics of IPC; the implemented IPC facility.
is much more complicated largely because of reasons of
protection.

Process 'A' (sending process) observes an event 'E' which
it knows to be of interest to process 'B' (receiving process);
it knows an event channel name 'C' which belongs to the
receiving process and which is the receiving process'
collective name for events such as 'E'. Process 'A' calls
the IPC and asks it to transmit a message to process 'B'
over event channel 'C'; the message contains information
about event 'E', process 'A' and event channel 'C'.

The only way messages can be communicated between processes
is through the use of shared segments. The IPC maintains
a system-wide data base named the Interprocess Transmission
Table (ITT) which is known and accessible to all processes
in the system. It therefore allocates an entry in that
table and puts into it the event message. It now has
to associate that message with the receiving process 'B'.
To do so, it calls the Traffic Controller entry 'wakeup',
giving it as arguments the event message and process 'B's
ID. The Traffic Controller appends the message to process
'B's Active Process Table (APT) entry and wakes the process
up. Process 'A' returns from the Traffic Controller to
the IPC, and from there to its original procedure.

At some point of its execution, process 'B' needs some
information from some other process. It knows that the
information will be put in a specific event channel which
is the mailbox for that type of information. It calls
an IPC entry point named ~which interrogates the
event channel. If there ls--a-message in it, process 'B'
is satisfied and resumes its execution. However, if it
is empty, process 'B' must stop executing until such time
as the message wi 11 be available; it calls the Traffic ·
Controller's entry 'block' and abandons the processor.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.00 PAGE 3

When the process returns from block, it knows that it
returned because some other process sent it an event message;
it finds that message appended to its own APT entry.
However, the message may, or may not, be the one for which
the process is currently waiting. The wait coordinator
therefore first copies the message into the appropriate
event channel (remember that the event channel name was
part of t:he message), then loops back to the interrogation
of the event channel which is of current interest, and
either returns or calls block depending upon whether or
not it finds the awaited message.

Basic lnterprgccss Commynication

We now further define an event channel as being in the
receiving process' address space only, and an event channel·
name as being a unique identifier. This poses a certain
problem, because in order to send an interprocess message
the sending process needs the "mailbox" event channel
name which is unique and can be kDftn only throu?h int.erprggest
communication. The answer is that theres noth ng spontaneous
or dynamic about interprocess communication. When we
say that a process reaches a point in its execution at
which it needs some information from another process,
we ~an that when that particular procedure was coded
·the programmer had a very specific type of event in mind
and that he knew, at coding time, what the event channel
name was to be. For example, when a process accesses
a shared data base, by convention it first sets a "lock"
word to a non-zero value, and before leaving the data
base resets the same lock word to zero. Another process
which wishes to access that data base first tests the
lock word, and if it finds it non-zero it knows the data'
base to be "locked", and calls the IPC to wait for an
event signal which would announce the unlocking of that
data base. Respecting that convention the first process,
after unlocking, sends IPC messages to all waiting processes.
Now this traffic necessitates the knowledge of event channel
names. They are made known by.the use of the lock wor~
as a mailbox deslgf1ed for the ~:>mmunication of-evint c annel
names.

Once that an event channel name: is known, the nature of
the event channel allows the transmission of some additional
information which may be another event channel name thus 1

allowing a growing complexity of event channel networks.
However, the fact remains that the very first mailbox,
namely the lock word, was known at coding time and that
without this knowledge no interprocess communication would
have been possible.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.00 PAGE 4.

In other words. the fact that an IPC message contains
some information which may be an event channel name allows
interprocess communication to be recursive and tree-structured.
However. the recursion must have a beginning1 we name
that beginning "basic interprocess communication" and
understand it to be any feasible means (going as far as
manually-fed inter-console messages) by which a vnique
event channel name. known to some process. may be made
known to some other process.

Normally. this problem is solved by having programmers
agree, at coding time, upon some common external symbol
(or upon some absolute location) within a segment which
is known to both processes. There they communicate the
very first event channel name.

Typical examples would be: The above-mentioned lock-word
in which the locking process puts an event channel name
over which all other waiting processes may communicate
with it. th~ Device Signal Table (DST) where a sending
process finds the event channel associated with an I/O
device. etc.

Protection

IPC is a facility which does for the user what the user
can (less) easily do for himself. If the user is expected
to devise a way in which to perform the initial basic
interprocess communication. there is no reason why he
should not be trusted to do all of his interprocess communication
by himself. IPC is provided as a system facility that
can. be invoked by any user. However, it must be implemented
in such a way so as to perform under the very same conditions
under which a user-made IPC would have worked. The reason
is simple, the user operates under the constraints of
a ring protection mechanism. The IPC facility is a system
module and therefore may enjoy a broader range of privileges.
Carelessly implemented, it would provide the ideal means
for the "unfriendly11 user to completely circumvent the
system's protection mechanism. The facility must therefore
be implemented in a way such as to prevent it ~ hardw@re
from doing in behalf of the user whatever the user cannot
do for himself •'

The protection of IPC is implemented as followsa

1. IPC is designed to operate in rings 1-63 only.

MULTICS SYS.TEM-PROGRAMMERS" MANUAL SECTION BJ.10.00 PAGE 5

2. The actual message transmission between processes is :
done in the ring 0 ITT only. The signalling
module is invoked from outside the hardcore ring
to transmit a message. It automatically appends
(and without the caller "s abi 11 ty to interfere)
the caller's process-id and validation ring
number to the ITT message.

3. The receiving process has an event channel table
per ring (normally two~ for rings 1 & 32~ possibly
63). When it returns from block it retrieves all
of its ITT messages and (still in ring 0) copies
them into the corresponding ECTs by ring number.

4. All IPC modules (but for the signalling module and
for the hardcore caller of block) are operating in
the process" current ring and are capable of
manipulating only that (or a lower-privilege)
ring's ECT. Thus 6 if a user decides to either
have his ~ vfirsion of IPC or to simply destroy
his ECT 6 on. y is ring is affected.

s. IPC"s ring 0 procedures 6 mainly the caller of block
, which upon return transcribes the messages into

the various ECTs. must be carefully coded so as
to make them indifferent to ECT contents. All
control information in the ECT must be either·
unreferenced br the ring 0 module. or must be kept
in ring o. Th s is in order to assure that ring 0
will not have to rely on outer ring information.

The Event Channel Name
In order to allow rapid message distribution. the event
channel name has been designed in such a way as to make
it self-addressing. The event·channel name is a 72-bit
string and is structured as follows:

del 1 ev_chn_name.

2 r i ng b i t (6) ,

2 address bit(14)~

2 key bit(S2);

I* ECT"s ring number *I

I* channel's relative address
within ECT *I

I* clock reading at channel creation
time *I

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.00 PAGE 6

When the process returns from block and retrieves the
ITT message. it finds the event channel name. It extracts
the ring number. accesses the ECT of that ring at the
relative address derived from the name and compares the
key with the one stored in the ECT. This helps insure
that only messages addressed to legal event channels will
be distributed. Any error detected. for example the absence
of a ring or the mismatching of keys. causes the message
to be discarded.

Note1 The event channel name's structure will never be
of interest to the user. to him it is merely a (fixed
bin(71)) value. Also. as the 14-bit relative address
implies. an ECT is restricted to a maximum size of 16K.
It is more than ample. and any overflow would most certainly
be due to some faulty system design elsewhere.

JmpleMntation

This paragraph briefly describes the implementation of
IPC. Details can be found in the appropriate BJ.10 sections.

The lnterprocess communication facility consists of three
major modulesz

1. The user-ring interprocess comaunication facility
(IPC). This module does all the event channel table
management and provides the user-interface with the
Traffic Controller's entry point 'block'. It resides
in all non-hardcore rings (1-63).

2. The hardcore-ring interprocess communication facility
(Hardcore-IPC). This module provides the only
non-hardcore interface with the Traffic Controller's
entry points 'block' and 'wakeup' 1 it is this module
which does a 11 the interprocess tra:nsmission table
management. Also. this module contains a procedure
to create and initialize event channel tables in
the non-hardcore rings.

Both the above-mentioned modules reside in pageable memory.

3. The device signal table ma,nager (DSTM). This module
is a collection of procedures to do all the device
srgnal table (DST) management and to provide an
interface between (hardware) processor interrupts
and the Traffic Controller's entry point 'wakeup'.

The DSTM resides in wired-down core.

