
,,........
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.03 PAGE 1

Published: 12/10/68
(Supersedes: BQ.6.04, 07/25/67S

BO. 6.06, 07/27/67

I dent if icat ion

The User-ring IPC
Michael J. Spier

Purpose

The User-rin~ IPC (henceforward referred to as "!PC")
is a collect1on of procedures in segment <ipc>; it is
available in all non-hardcore rin~s and is responsible
for the management of the process Event Channel Tables
(ECT).

Introduction

The IPe consists of three major collections of procedures,

1. Procedures to create, destroy and maintain event
channels; these procedures are collectively
referred to in this writeup as the "event
channe 1 manager''.

2. The process' wait coordinator (We); these
procedures keep track of all the event
signals received by.this process. TheY file
incoming event messages into the appropriate
event channels and retrieve event messages (or
call block to suspend the process' execution
unt i 1 some event message arrives) wheneve.r the
process' flow of control demands it.

3. Procedures to set control variables associated
with the wait coordinator, collectively
referred to as we-controller. The We-controller
~ives the user a handle with which to control the
1nte·rnal logic of the wait coordinator. .

There is an EeT per non-hardcore ring (see BJ.10.02).
The IPe manipulates the EeT of its current ring as well
as those of all outer rings (the IPe, executing in ring
n can manipulate the EeTs of rings n->63). To this end
it maintains in segment <process_info>, which is readable
in all rin~s, a table of pointers to all (potential) 63
EeTs of th1s process.

An event channel name uniquely iqentifies an event channel
entry in a specific event channe·l table; it consists of.
72 bits of information structured as follows:

• I

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.03 PAGE 2

del 1 event_channel_name based(p),

2 r i ng b i t (6) , 1·k the ring number of the
ECT in which this channel
is a 11 oca ted ,-r I

2 entry_pointer bit(14),

2 key bit (52);

I* a relative pointer within
the ECT to this channel's
entry *I

I* a 52-bit clock reading to
uniquely identify this
event channel *I

The ipc is able to directly access any given event channel
by merely ''dissecting" its event channel name and reconstructing
a pointer to it.

Following is a detailed description of the ipc procedures.
Calling sequences are given, however the arguments' PLI1
declarations are not. They can be looked up in the !PC
reference manual, section BJ.10.01. For the sake of clarity,
return arguments in the calling sequences are underlined.

Tbe eyent channel manager

The IPC can manipulate the ECT of either its current,
or outer rings. When reaching for the ECT of an outer
ring, it attempts to use the corresponding ect-pointer
stored in <process_info>; if that pointer is null then
that specific ECT is considered to be non-existing and.
an error return is made.

The ECT is a table which is allocated in the ipc's internal
static storage. When IPC reaches for the ECT in its current
ring, it is able to determine whether or not that ECT
exists and in the latter case call entry point ipc$init
which initializes the current ring's ECT, creates this
ring's channel-1 and channel-2 (see BJ.10.02) and calls
the Hardcore-IPC entry point hcs$ipc_init (ect_pointer)
(see BJ. 10.04) to entry "ect_pointer" into the corresponding
slot in <process_info>.

To create an event channel in the caller's validation
ring associated ECT (caution: to create an event channel
in one's current ring, it is advisable to explicitly set
one's validation level before making this call),

call ipc$create_ev_chn(chname, codg);

, .

,-.
MULTlCS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.03 PAGE 3

this call creates an event channel in the ECT associated
with the current validation ring. The newly created channel
has by default the event-wait type. The call returns
the ev.ent channe 1 name of the new channe 1; it may return
an error code (code-=0) if reference was made to a nonexistent
outer-ring ECT.

Analogous to ipc~create_ev_chn, the following two calls
are provided to return the names of channel-1 and channel-2
of a given ring (validation level). As mentioned above,
those two channels are automatically created by ipc$init.
They are just like any normally created channel except
for their name which is D..Q1 unique, but rather universal
within a ;Jiven ring. By knowing my ring's channel-1 name
I automat1cally know my fellow-process' channel-1 name
in the same ring and can communicate with him over his
channel-1.. This is extremely useful in ''broadcast"-type
event signalling where the sending process has had no
previous understanding (basic interprocess communication)
with the target process. The two calls are,

ca 11 i pc$ ch n_1(ch name, code);

call ipc~chn_2(chname, code);

A newly-created channel (including channel-1 and channel-2)
has by default the event-wait type. To convert this channel
into an event-call channel,

call ipc$decl_ev_call_chn(chname, procptr, dataptr,
prior, coae);

where chname is the name of the affected event channel,
procptr is a pointer to a procedure entry point to be
associated with the channel, dataptr is a pointer to some
data to be associated with this channel, prior is a priority
number assigned to this channel by the caller and code
is a variable in which ipc stores status information:-

An event call channel (see BJ.10.02) is a channel which
is automatically interrogated by the wait coordinator;
upon reception of an event message over such a channel,
the wait coordinator automatically invokes an associated
procedure (pointed to by procptr) and passes to it as
arguments dataptr and the received event message.

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BJ. 10.03 PAGE 4

ipc~decl_ev_call_chn goes through the following steps:

1. Retrieve the channel. If unsuccessful make an error return.

2. If the channel already is ~n event-call channel, call
ipc~decl_ev_wait_chn to reset it to the event-wait type.

3. Lookup the ECT's associated-procedure list for an entry
corresponding to procptr. (~: more than one event
call channel can be associated with a single procedure).
If successful go to step 5.

4. Create an associated procedure entry for procptr, thread
it into the associated procedure list.

5. ! Increment the associated procedure entry's user-count by
one. This count shows the number of channels currently
associated with this procedure.

6. Create an event call trailer entry, store dataptr and prior
in it and link it to the associated procedure entry and
to the event channel entry.

7. Follow down the event call channel list, thread this channel
into the relative location indicated by its priority number.
The lower the va 1 ue of prior, the closer the channe 1 wi 11
be to the head of the list.

8. Set the channel's event_ca 11 -f 1 ag to "on11 • Return.

An event call channel can be re~et to the event wait type
by calling,

call ipc~decl_ev_wait_chn(chname, ~);

which goes through the following steps:

1. Retrieve.the channel. -If unsuccessful make an error return.

2. If the channel already is an event-wait channel, return.

3. Find associated procedure entry. If it is inhibited
(procedure called by wait-coordinator but has not yet
returned) this is clearly a logical err6r (lik~ trying
to cut off the branch on which one sits). Make an
error return.

4. Decrement the associated procedure's user count by one.
If count has reached zero, remove entry from associated
procedure list, then delete entry.

' ,;

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.03 PAGE 5

5. Delete the channel's event call trailer entry.

6. Unthread the channel from the event call channel list.

7. Reset the channe l"s event ca 11 flag to ''off''. Return.

The following three calls are associated with the reception
of event messages.

call ipc$drain_chn(chname# £2Qg);

deletes all the event message entries which may be appended
to the channel's event queue. This call resets the channel
to an ''empty 11 state# discarding all received event messages.

call ipc$cutoff(chname# ~);

makes the channe 1 appear to be ''empty" without actua 11 y
deleting the event messages. This call sets a flag which
is interrogated by the wait coordinator before it attempts
to read a channel. When this flag is "on"# the wait coordinator
simply ignores the channel. As described above# event
call channels are set up once whereupon they are automatically
interrogated whenever the process executes in the wait
coordinator. ipc$cutoff is very useful in temporarily
disabling such channels.

call ipc$reconnect(chname, code);

resets the flag which was $et by ipc$cutoff.

When an event channel is no longer useful,

call ipc$delete_ev_chn(chname, ~);

which causes the channel to be destroyed. It goes through
the following steps,

1. Call ipc$drain_chn to delete possible pending event
messages.

2. Call ipc$decl_ev_wait_chn to delete possible event
call trailers and associated procedure entries.

3. Delete the channel entry.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ. 10.03

The ~ Coordinator

When a process reaches a point in its execution where
it cannot proceed until some event (or one of several
different events) occurs, it calls the wait coordinator.

PAGE 6

The wait coordinator manages the traffic of incoming event .
messages by "f i 1 ing" them into the appropriate event channe 1 s
(by appending the message to the event channel's queue).
When it is called because the process cannot continue
its execution-t the wait coordinator interrogates all the
(not "cutoff''; event channels of interest. If a 11 of
them are found to be empty, it calls the Hardcore_IPC
(see BJ.10.04) at entry point hcs_$block knowing that
a return will be made only if some event message was received
(but not necessarily in a channel of interest).

We now define the expression ''channel of interest". Some
procedure has called the wait coordinator with a list
of one or more event wait channel names, asking the wait
coordinator not to return to its caller before it received
an event message over one of the.se channe 1 s. However,
in addition to this explicitly-stated wait list, the wait
coordinator also disposes of an event-call list which
implicitly states event channels of continuous interest.
The wait coordinator concatenates both lists which then
form the list of channels of current interest. The order
of concatenation is determined by the ECT's call_wait
flag; when 11 on11 , the event-call list becomes the head
of the list of current interest, else it is the wait-list.
The list of current interest is scanned sequentially;
the order of event-wait channels is arranged by the wait
coordinator's caller, the order of event-call channels
is determined by their priority number.

Note that the wait list may comprise channels residing
in different ECTs, whereas the wait coordinator always
interrogat~s the call list of its actual-ring ECT only,
for obvious reasons of protection.

The wait coordinator goes through the following steps
(CLIST stands for the list of channels of current interest);

1. Make CLIST. This operation requires the followingisub-steps:

a. If event-calls are masked in this ring (explained
below) set call-list=null.

MUL TICS SYSTEM- PROGRAMMERS" MANUAL SECTION BJ.10.03 PAGE 7

b. Get this ring's Cqll_wait flag to determine
the order of concatenation.

c. Make CLIST by concatenating wait-list (argument
of call) and call-list (of current ring's ECT)
in order specified by call_wait.

2. Scan CLIST sequentially, interrogating every channel.
Upon finding the first non-''empty11 channel, go through
the following sub-steps: ·

a. If this channel is an event wait channel,
write the event message into argument provided
by caller. Return.

b. Else, this is an event call channel. Set its
associated procedure" s inhibit f 1 ag to ''on" ,
then invoke the associated procedure passing
to it as arguments the event message and the
channel's associated data pointer.

c. Upon return from·the associated procedure
reset its inhibit flag; go to step 2.

3. If we arrive here, we know that all the event channels
on CLIST are "empty11 • We call the Hardcore_IPC entry
point hcs_$block. We return only if at least one
event message was received for this (or an outer)
ring (but not necessarily for a channel on CLIST).

4. Invoke internal procedure copy_itt_messages. The
Hardcore_IPC (see BJ. 10.04) has put ITT messages
into the ITT transcription area of this ring's ECT
(see BJ.10.02') as well as those of outer rings.
These event messages belong in event channel's;
copy_itt_messages looks up all the.event channel
tables in ring-brackets (current_rlng)->63, looks
into the ITT transcription areas of those ECTs, and
wherever it finds an ITT message it copies it into
the ECTs entry-table and appends it to the
appropriate channel's queue.

5. Now that all the event messages received by th.is process
have been "filed" away into their corresponding event
channels, the wait coordinator can try again to
interrogate CLIST, in the hope that at least one of
the received event messages was meant for a CLIST
~hannel. Go to step 2.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.03 PAGE 8

~: because, in the ac;.tual implementation, the wait and call
lists have different formats and cannot physically be
concatenated into a single list, CLIST is only a conceptual
entity introduced her.e for the sake of clarity. lts actual
implementation is more complex than one is led to believe
from the description above.

The wait coordinator is invoked as follows,

call ipc$block(argptr, msgptr, code);

where ~rgpt£ points to the wait list, m~gptr points to
a structure into which the wait coordinator puts the received
event message, and code is a variable into which the wait
coordinator stores its return status. The wait list pointed
to by argptr has the following structure:

del 1 wait_list based(argptr),

2 n_chn fixed, I* size of wait list *I
2 list(argptr->wait_list.n_chn) fixed bin(71)J

The message structure has the following format:

del 1 message based(msgptr),

2 ev_chn fixed bin(71),

2 message fixed bin(71),

2 sender bit(36),

2 origin,

3 dev_signal bit(18),

3 ring bit(18),

2 wait_list_index fixedJ

I* name of channel over
which message was
received .,'r I

I* a 72-bit message
associated with this
event .,'rl

I* sending process ID *I
I* origin of event

message ·kf

I* O=user event,
1=device signal *I

I* ring number of
signalling procedure*/

I* index in wait-list
corresponding to
"ev_chn" "fr/

' • i

.... ' ..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.03

The wait coordinator invokes an event call associated
procedure a$ follows:

call [associated_procedure] (msgptr)

where msgptr points to an event message similar to the
one described above except that insteadof item
••wait list index" it contains the channel's associated
data pointer, · ·

del 1 associated_proc_argument based(arg_ptr),

2 ev_chn fixed bin(71),

2 message fixed bin(71),

2 sender bit(36),

2 origin,

3 dev_signal bi t(1 8),

3 r 1 ng bit (1 8) ,;

2 associated_data_ptr pointer;

PAGE 9

In addition to entry point ipc~block, the wait coordinator
also has an entry point ipc~read_ev_chn which allows the
user to interrogate one event channel without blocking
the process in case the channel is "empty".

call ipc~read_ev_chn(chname, readmark, msgptr, code);

where chname is the channel to be interrogated, readmark
is a flag which is set 11 on" if the interrogation was successful,
msgG>tr is a pointer to an event message structure similar
to 1pc~block's in which a message is returned if readmark=11on",
~ is a returned error status.

ipc~read_ev_chn goes through the following steps:

1. Retrieve the channel. If unsuccessful make an error
return.

2. Examine the channel's queue to see whether or not it
contains event messages. If yes, go to step 5.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.03 PAGE 10

3. The channel is "empty", however there may be event messa~es
waiting for this process in the ITT. Call the hardcore_1pc
entry point hcs_$read events which retrieves the process'
ITT messages and copies them into the appropriate ECTs
without, however, calling the Traffic Controller's entry
point block.

4. Upon return from hcs_~read_events, invoke copy_itt_messages
to retrieve and file the (possibly) received messages.

5. Attempt to read the ev~nt channel. If successful, set
. readmark-=11 on" and copy the event message into the
caller-specified structure. If unsuccessful, set
readmark to ''off". Return.

The WC-controller

The we-controller has four entry points which set the
wait coordinator's control flags "call_wait" and "mask_calls".

call ipc~set_wait_prior(code);

sets call_wait to "wait" (the default setting).
I

call ipc~set_call_prior(code);

sets call_wait to "call".

As explained above, the setting of call_wait determines
which list (wait or call) is interrogated first by the
wait coordinator.

call ipc~mask_ev_calls(code);

sets the mask_calls flag to "on",

call ipc~unmask_ev_calls(code);

resets the flag.

As explained above, if event calls are masked in a given
ring (mask_calls="on") then the wait coordinator assumes
the call list to be null. These two calls do to a whole
list what ipc~cutoff and ipc~reconnect do to a single
channel.

' .. ··•

