
MULTICS SYSTEM-PROGRAMERS'" MA.NUAL SECTION BJ.10.04 PAGE 1 

Published: 12/06/68 

I dent i ficat ion 

The Hardcore IPC 
Michae 1 J. Spier 

Purpose 

The Hardcore IPC is ~collection of 4 procedures in the 
hardcore ring# all of which are accessible from outer 
rings (in fact none of them is ever invoked from within 
the hardcore ring). Only one of them. hcs_~wakeup is 
intended to be invoked directly by the user procedure. 
The remaining three are normally invoked by the user 
ring ipc only (see BJ.10.03). However# all may be called 
from non-hardcore rings without causing damage (except 
perhaps to the process itself). The procedures are named 
wakeup. block# read_events and ipc_init. 

Wakeup 

Entry point hcs_~wakeup is the user'"s interface with the 
Traffic Controller'"s entry point wakeup. To se:nd a wakeup 
to some process. 

call hcs_~wakeup(processid# chname# message# ~)~ 

del processid bit (36). (ev_chn. message) 
fixed bin (71), code fixedJ 

where processid is the ID of the target process (possibly 
one'"s own process). chname is the name of one of the target 
process'" event channels, message is a 72-bit string associated 
with this particular wakeup (the value of which is specified 
by the caller)# code is a returned error status which 
can assume one of the following values: 

0 

1 

2 

3 

no error 

signalling correctly done, but target process 
was found to be in the "stopped" state. 

erroneous call arguments (illegal process 
10 or event channel name). Call aborted. 

target process not found (wrong process ID# 
or process has been destroyed). Call aborted. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.04 PAGE 2 

hcs ~wakeup checks for error condition 2, then if ar~uments ~ 
are-valid it calls the Traffic Controller's entry po1nt 
pxss~wakeup to which it passes its first three arguments. 

If the Traffic Controller fails to find the process it returns 
with error condition 3, otherwise it allocates an entry 
in the wired-down interprocess Transmission Table (ITT) 
where it stores the following items: 

1. sending process' ID, extracted from PDS. 

2. receiving (target) process' ID 

3. a flag to indicate that this is a user-event 
mes~age (to distinguish it from a device-signal 
message) 

4. the caller's ring number, extracted from PDS. 

5. the event channel name. 

6. the event message. 

it appends this ITT message to an event queue belonging 
to the target process, then sends a wakeup to that process, 
and returns. If the target process was found in the "stopped" 
state, pxss~wakeup returns error code 1. 

block 

Entry point hcs_gblock is the user's interface with the Traffic 
Controller's entry point pxssgblock. It has no arguments 
and is normally invoked by the wait coordinator only (see 
BJ.10.03). When called, hcs-~block does the following: 

1. call pxssgblock. This suspends the process' execution 
until some event signal is received by it (some other 
process sends it a wakeup). pxssgblock returns to its 
caller the head of the process' ITT event queue~ This 
event queue consists of event messages directed towards 
specific event channels. The Hardcore IPC knows nothing 
about event channels per-se, but it knows that every event 
message must be copied into the ECT in which the addressed 
event channel resides. 

The IPC maintains in segment <process info> an array of 63 pointer 
variables corresponding to (potential) rings 1->63. Each 
one of these pointers is either null or it points to the 
base of the ECT of the corresponding ring. 

The number of the ring in which its ECT resides is part 
of an event channel name (see BJ.10.03). Our procedure 
now scans the returned even-queue message by message, 
finding the event channel name and extracting its 



MULTI CS SYS TH1-PROGRAM"'ERS' ~NUA L SECTION BJ.10.04 PAGE 3 

ring number. With this ring number it looks up the pointer 
array. If the pointer is null, then this ever1t message 
is discarded, else the pointer 1s assumed to point to 
the base of a valid ECT and the message is co~ied into 
that [CT'S ITT transcription area (see RJ.10.02). ~vhen 
the whole event queue has been processed, a call is made 
to pxss~free_itt which puts those entries on the JTT's 
empty list. 

hcs_~block assumes that it was called by the wait coordinator 
in some ring (say, ring n). It knows that the wait coordinator 
will not return to its caller unless some event of interest 
has been received by its (or an outer) rin9. Consequently, 
to avoid meedless thrashing between the wa1t coordinator 
and the hardcore_ipc, block returns to j_ts caller only 
if at least one of the ITT messages was directed to,!Vards 
one of the rings n->63. If all received event messages 
were directed towards rings m, where m<n, it simply loops 
back and calls pxss~block again. 

Read events 

Entry point hcs_~read_events is invoked by the wait coordinator 
entry :tpc~read_ev_chn. It is simi 1 iar to entry point 
block except for the two follow.lng differences, 

l.Q£ init 

1. Instead of calling pxss~block it calls 
pxss~get_event whlch returns the current 
(possibly null) event queue from the ITT 
but never blocks the process, regardless 
of whether or not wakeups have actually occurred. 

2. It always returns to its caller, regardless 
of whether or not such messages were directed 
to the caller's ring. 

Entry point hcs_~ipc_init is invoked by ipc~init in order 
to register in the pointer array of <process_info>· a pointer 
to a new ECT. 

call hcs_Sipc_init(ect_pointe~) 

validity checks ect_pointer. then puts it into the pointer 
array at the slot pointed to by sbl3 (caller's validation 
ring number). 




